Topics of Competitive and Comprehensive Exams for Doctoral Degree Program (Order of topics is in accordance with Voet D and Voet JG, Biochemistry, 4th edition, 2011). However, there is a list of recommended readings: Harper's Illustrated Biochemistry, Lehninger Principles of Biochemistry, Lippncott Illustrated Reviews: Biochemistry, Pearson's Biochemistry.

Chapter 5: Nucleic Acids, Gene Expression, and Recombinant DNA Technology

Section 1: Nucleotides and Nucleic Acids

A. Nucleotides, Nucleosides, and Bases

B. The Chemical Structures of DNA and RNA

Section 2: DNA Is the Carrier of Genetic Information

A. Transforming Principle Is DNA

B. The Hereditary Molecule of Many Bacteriophages Is DNA

Section 3: Double Helical DNA

A. The Watson–Crick Structure: B-DNA

B. DNA Is Semiconservatively Replicated

C. Denaturation and Renaturation

D. The Size of DNA

Section 4: Gene Expression and Replication: An Overview

A. RNA Synthesis: Transcription

B. Protein Synthesis: Translation

C. DNA Replication

Section 5: Molecular Cloning

A. Restriction Endonucleases

B. Cloning Vectors

F. The Polymerase Chain Reaction

Chapter 6: Techniques of Protein and Nucleic Acid Purification

Section 1: Protein Isolation

A. Selection of a Protein Source

B. Methods of Solubilization

C. Stabilization of Proteins

D. Assay of Proteins

E. General Strategy of Protein Purification

Section 2: Solubilities of Proteins

A. Effects of Salt Concentrations

B. Effects of Organic Solvents

C. Effects of pH

D. Crystallization

Section 3: Chromatographic Separations

A. Ion Exchange Chromatography

B. Gel Filtration Chromatography

C. Affinity Chromatography

Section 4: Electrophoresis

B. Gel Electrophoresis

C. SDS-PAGE

D. Isoelectric Focusing

Section 6: Nucleic Acid Fractionation

A. Solution Methods

B. Chromatography

C. Electrophoresis

Chapter 7: Covalent Structures of Proteins and Nucleic Acids

Section 1: Primary Structure Determination of Proteins

A. End Group Analysis: How Many Different Types of Subunits?

B. Cleavage of the Disulfide Bonds

C. Separation, Purification, and Characterization of the Polypeptide Chains

D. Specific Peptide Cleavage Reactions

E. Separation and Purification of the Peptide Fragments

F. Sequence Determination

G. Ordering the Peptide Fragments

H. Assignment of Disulfide Bond Positions

Section 2: Nucleic Acid Sequencing

A. The Sanger Method

B. Genome Sequencing

C. Next Generation DNA Sequencing Technologies

D. Nucleic Acid Sequencing versus Amino Acid Sequencing

Chapter 14: Rates of Enzymatic Reactions Section 2: Enzyme Kinetics A. The Michaelis–Menten Equation B. Analysis of Kinetic Data C. Reversible Reactions Section 3: Inhibition A. Competitive Inhibition B. Uncompetitive Inhibition C. Mixed Inhibition

Section 4: Effects of pH

Chapter 16: Introduction to Metabolism

Section 1: Metabolic Pathways

Please note that you need to be aware about the Map of the major metabolic pathways in a typical cell. The following topics are required: glycolytic pathway, Kreb's cycle, pentose phosphate pathway, gluconeogenesis, glycogenesis, glycogenolysis, amino acids biosynthesis, amino acids degradation (transamination, deamination, decarboxylation), urea cycle.

Section 2: Organic Reaction Mechanisms

A. Chemical Logic

B. Group-Transfer Reactions

C. Oxidations and Reductions

Chapter 22: Electron Transport and Oxidative Phosphorylation

Section 1: The Mitochondrion

A. Mitochondrial Anatomy

B. Mitochondrial Transport Systems

Section 2: Electron Transport

A. Thermodynamics of Electron Transport

B. The Sequence of Electron Transport

C. Components of the Electron-Transport Chain

Section 3: Oxidative Phosphorylation

A. Energy Coupling Hypotheses

B. Proton Gradient Generation

C. Mechanism of ATP Synthesis

Chapter 25: Lipid Metabolism

Section 1: Lipid Digestion, Absorption, and Transport

Section 2: Fatty Acid Oxidation

- A. Fatty Acid Activation
- **B.** Transport Across the Mitochondrial Membrane
- **C. Oxidation**
- **D.** Oxidation of Unsaturated Fatty Acids
- E. Oxidation of Odd-Chain Fatty Acids
- **F.** Peroxisomal Oxidation
- G. Minor Pathways of Fatty Acid Oxidation
- **Section 3: Ketone Bodies**
- Section 4: Fatty Acid Biosynthesis
- A. Pathway Overview
- **B.** Acetyl-CoA Carboxylase
- C. Fatty Acid Synthase
- **D.** Transport of Mitochondrial Acetyl-CoA into the Cytosol
- **E. Elongases and Desaturases**
- F. Synthesis of Triacylglycerols