DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING COURSE SYLLABUS EE 272: Developer for Dispedicel Engineers

EE 372: Physiology for	Biomedical Engineers
------------------------	-----------------------------

COURSE TITLE		CODE & NUMBER	SUBJECT AREA	Contact Hours			Credit
				Th.	Pr.	Tr.	Units
Physiology for Biomedical		EE372	Engineering	3	0	0	3
Engineers							
Pre-requisites:		BIO321		1	1		
Course Role in Curriculum (Required/Elective):		Required cour	rse				
<i>Catalogue Description:</i> Body environment, fluids an metabolism. Respiratory sys mechanism, hemodynamics. reproductive system and ren	tem and a Metaboli	artificial respiration is and body te	tion. Cardiovasc	ular sy	stem a	nd its r	egulatory
<i>Textbooks</i> : (Author, Title, Pub., year)							

<u>Supplemental Materials</u>:

• References:

- Seeley's Essentials of Anatomy & Physiology (McGraw-Hill)
 (2020) by Cinnamon VanPutte and Jennifer Regan and Andrew Russo and Rod Seeley, 12th edition, ISBN10: 1260172198
- Physiology (BRS Board Review Series) by Linda S.
 Costanzo, Fifth Edition (Lippincott Williams & Wilkins, 2011)

• Web Resources:

- <u>http://highered.mcgraw-hill.com/sites/0072507470/</u> student_view0/
- <u>http://www.biopac.com/</u>
- http://www.getbodysmart.com/
- o <u>http://people.eku.edu/ritchisong/301syl.html</u>
- Lecture Notes and PPTs

Course Learning Outcomes:

By the completion of the course the students should be able to:

- 1. Be able to apply basic physical, mathematical and chemical/biochemical principles of concentration and kinetics in physiological systems.
- 2. Be able to calculate various variables affecting physiological systems.
- 3. Develop a vocabulary of appropriate terminologies related to anatomy and physiology.
- 4. Describe physiological processes of all body systems at length.
- 5. Integrate knowledge of the major physiological systems to understand homeostasis.
- 6. Design simple experiments on human subjects/experimental animals/tissues to observe phenomena, record and analyze data, and infer from data.

<u>Topi</u>	<u>cs to be Covered</u> :	<u>Duration</u> in Weeks
1.	Cells and Physico-chemical foundations	2.5
2.	Senses and nervous system physiology and anatomy	2.5
3.	Skeletal and muscular system physiology and anatomy	2
4.	Cardiovascular physiology and anatomy	2
5.	Respiratory physiology and anatomy	2
6.	Renal physiology and body fluid compartments	1.5
7.	Gastrointestinal physiology and anatomy	1.5
8.	Endocrine & amp; Reproductive physiology and anatomy	2

<u>Key Student Outcomes addressed by the course</u>: (Put a ✓ sign)

r		1
(1)	An ability to identify, formulate, and solve complex engineering problems by applying	
	principles of engineering, science, and mathematics	
(2)	An ability to apply the engineering design to produce solutions that meet specified needs	
(2)	with consideration of public health, safety, and welfare, as well as global, cultural, social,	
	environmental, and economic factors	
(3)	An ability to communicate effectively with a range of audiences	\checkmark
(4)	An ability to recognize ethical and professional responsibilities in engineering situations	
	and make informed judgments, which must consider the impact of engineering solutions	
	in global, economic, environmental, and societal contexts	
(5)	An ability to function effectively on a team whose members together provide leadership,	
	creates a collaborative and inclusive environment, establish goals, plan tasks, and meet	✓
	objectives	
(6)	An ability to develop and conduct appropriate experimentation, analyze and interpret data,	
(0)		✓
	and use engineering judgment to draw conclusions.	
(7)	An ability to acquire and apply new knowledge as needed, using appropriate learning	
	strategies	
	× ·	

Instructor or co	ourse coordinator:
Last updated:	Spring 2020

Prof. Mohammad Asif Hussain