DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING COURSE SYLLABUS EE 321: Introduction to Communications

EE 321: Introduction to	Communications
-------------------------	----------------

COURSE TITLE	CODE & NUMBER	SUBJECT AREA	Contact Hours			Credit
			Th.	Pr.	Tr.	Units
Introduction to Communications	EE 321	Engineering and Design	3	3		4
Pre-requisites:	EE 301		1		I	
<i>Course Role in Curriculum</i> (<i>Required/Elective</i>):	Required Cou	rse				
<i>Catalogue Description:</i> Fourier Signal Analysis. Linear Modulation: AM, DSBSC, SSB, Frequency Conversion, generation						

and detection. FDM, Exponential Modulation: FM, PM, NBFM, WBFM. Pulse Modulation, Sampling Theorem, PAM, PDM, PPM, PCM, TDM, Digital Modulation ASK, PSK and FSK.

<u>Textbooks:</u>	B. P. Lathi and Z. Ding, <i>Modern Digital and Analog</i>
(Author, Title, Pub., year)	<i>Communication Systems</i> . Int. 5th ed., Oxford Univ. Press, 2019.
<u>Supplemental Materials</u> :	 S. Haykin, <i>Communication Systems</i>, 5th ed., Wiley, 2015. A. B. Carlson, P. B. Crilly and J. C. Rutledge, <i>Communication Systems: An Introduction to Signals and Noise in Electrical Communications</i>. 5th ed., McGraw Hill, 2012.

Course Learning Outcomes:

By the completion of the course the students should be able to:

- 1. Analyze signals in time and frequency domains.
- 2. Analyze linear, time-invariant systems in time and frequency domains.
- 3. Analyze and design an amplitude modulation system in time and frequency domain.
- 4. Analyze and design an angle modulation system in time system and frequency domain.
- 5. Apply the sampling theorem and describe and perform simple analysis of pulse modulation systems.

<u>Topi</u>	cs to be Covered:	<u>Duration</u> in Weeks
1.	Classifications of signals and systems. Energy and power signals, Linear time invariant systems (LTI), Fourier series representation, Fourier transform, Spectral	5
	properties and bandwidth, unit step and unit impulse functions, Impulse response and transfer function of linear systems, Filters (LPF, HPF, and BPF)	
2.	Amplitude modulation (Double side-band - Large carrier (DSB-LC)), Double side-band-Suppressed Carrier (DSB-SC), Single side-band (SSB); Hilbert	4

Transform, Vestigial side-band (VSB); Spectral analysis, modulators, demodulators, Super heterodyne receiver.

- 3. Frequency modulation, Phase modulation; spectral analysis, bandwidth, generation, detection, discriminators, phase-locked-loop (PLL), Frequency division multiplexing (FDM)
- 4. Sampling theorem, Pulse amplitude modulation (PAM), Time-division multiplexing (TDM), Pulse width modulation (PWM), Pulse position modulation (PPM), Pulse code modulation (PCM)

4

1

Key Student Outcomes addressed by the course: (Put a ✓ sign)

(1)	An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics	~
(2)	An ability to apply the engineering design to produce solutions that meet specified needs	
	environmental, and economic factors	
(3)	An ability to communicate effectively with a range of audiences	
(4)	An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts	
(5)	An ability to function effectively on a team whose members together provide leadership, creates a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives	
(6)	An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.	
(7)	An ability to acquire and apply new knowledge as needed, using appropriate learning strategies	

Instructor or course coordinator: Dr. Fuad E. Alsaadi *Last updated:* Spring 2020