$\begin{array}{c} \text{math } 464 \\ \text{First Homework} \\ \text{Due Date Friday } 17 \ / \ 5 \ / \ 1437, \ \text{at } 11:59 \ \text{Pm}. \end{array}$

Name: Number:

Always try to justify your answer (SHORT PROOF).

Q1: (2 point)

Prove or disprove:

1. $\tau = {\mathbb{R}, \phi, (0, a); a \in \mathbb{R}, a > 0}$ is a topology on \mathbb{R} .

2. $(A \cup B)^o \subset A^o \cup B^o$

 $3. \ (A \cup B)^o = A^o \cup B^o$

4. If (\mathbb{R}, CC) be the countable complement topological space, and $A = \mathbb{Q}$ (the set of rational numbers), then $\overline{A} = A$.

Page 2 of 2

Q2: (2 points)

If (X, τ_1) be a topological space, $Y \neq \phi$ and $f: (X, \tau_1) \to Y$ is a function. Show that $\tau_2 = \{u \subseteq Y : f^{-1}(u) \in \tau_1\}$ is a topology on Y.

Q3: (1 point)

Consider the usual topology \mathcal{U} on \mathbb{R} .

Describe the relative topological space $(\mathbb{Z}, \mathcal{U}_{\mathbb{Z}})$ where \mathbb{Z} is the set of all integer numbers.