King Abdul Aziz University College of Engineering Electrical Engineering Dept.

EE 404 Power Systems Lab

بسم الله الرحمن الرحيم

إخواني الطلاب...

السلام عليكم و رحمة الله و بركاته..

تجدون في هذا المستند حلول المسائل التي وردت في تجارب المعمل و هي:

- 1- Experiment # 3 : Real Power and Reactive Power.
- 2- Experiment # 4 : Power Flow and Voltage Regulation of a Simple Transmission Line.
- 3- Experiment # 5 : Current Transformer (Burden).

و نظرا لقلة المسائل قمت باختيار أفضل الإجابات التي وردت في تقاريركم و وضعها كحلول لهذه المسائل مع كتابة اسم صاحب الحل و ليس لسبب إلا تقديرا - لهم و للجميع - على مجهوداتكم الرائعة خلال هذا الفصل الدراسي.

الكل يستحق الإشادة و الشكر .. فشكر الكم..

أخوكم

م. فهد حريري

Solutions

Experiment #3: Real Power and Reactive Power

Answer of Q.1: (by: Eng. Rayan Al-Amoudi)

	Direction of real and reactive power flow with Ideal element load						
	Load	Real Power	Reactive Power				
a	Resistance	+VE	0				
b	Inductance	+VE	+VE				
c	Capacitance	0	-VE				
d	Resistance & Inductance	+VE	+VE				
e	Resistance & Capacitance	+VE	-VE				

Answer of Q.2: (by: Eng. Emad Al-Zzahrani)

a)
$$S = \frac{V^2}{Z^*}$$

$$V = 120 V$$
,

$$Z^* = 40 - j 30 \Omega$$
,

$$S = \frac{120^2}{40 - j \, 30} = 230.4 + j \, 172.8 \, \text{VA}$$

P = 230.4 W

Q = 172.8 var.

b)
$$S = \frac{V^2}{Z^*}$$

$$V = 120 V$$

$$Z = 40 // (j60 // -j90) = 40 // j180 = 38.118 + j 8.47 \Omega$$

$$Z^* = 38.118 - j 8.47 \Omega$$

$$S = \frac{120^2}{38.118 - j \, 8.47} = 360 + j \, 80 \, VA$$

$P = 360 \text{ W}, \quad Q = 80 \text{ var}.$

Answer of Q.3: (by: Eng. Mansoor Al-Zzahrani)

Fig. : Question no. 3 circuit.

Complex power(
$$3\emptyset$$
) = $3V_{L-N}I^* = 3\left(\frac{69k}{\sqrt{3}} \bot 0\right)(398.37 \bot 0) = 47.610 \bot 0 \ MVA$
Complex power($S_{3\emptyset}$) = $47.610 + j0 = +P + jQ \ MVA$
 $P = +47.6 \ MW$

Answer of Q.4: (by: Eng. Fahd Hariri)

Power flows *into* the inductor.

Power flows out of the capacitor.

Answer of Q.5: (by: Eng. Mohammad Bahadeg)

Line $KW = KW_1 - KW_2$

Line Kvar = $Kvar_1 - kvar_2$

Fig. Transmission line inductor model

kW1	Kvar1	kW2	Kvar2	LINE kW	LINE kvar
+100	+95	+5	+5	+5	+5
+100	+95	-10	-10	+5	+20
+100	+95	-25	-25	+5	+15
-100	-105	+5	+5	+5	+5

Answer of Q.6: (by: Eng. Sultan Al-Ghamdi)

$$P = 3 Ep Ip = 3 * \frac{E}{\sqrt{3}} * \frac{E}{\sqrt{3}*Z} = \frac{E^2}{Z}$$

Experiment # 4 : Power Flow and Voltage Regulation of a Simple Transmission Line

Answer of Q.1: (by: Eng. Badr al-jehani)

a) The line-to-neutral voltage per phase.

$$V_{\rm ph} = \frac{V_{\rm L}}{\sqrt{3}} = \frac{70000 \text{ V}}{\sqrt{3}} = 40410 \text{ V}$$

b) The line current per phase.

$$I_{Line} = \frac{V_{ph}}{z} = \frac{40410 \text{ V}}{160 + i120} = 202.05 \text{ A}$$

c) The real and reactive power supplied to the load.

$$P_{Load(3\emptyset)} = 3P_{Load(1\emptyset)} = 19595.6 \text{ kW}$$

$$Q_{Load(3\emptyset)} = 3Q_{Load(1\emptyset)} = \mathbf{0} \text{ VAR}$$

d) The real and reactive power absorbed by the line.

$$P_{\text{Line}(3\emptyset)} = 3P_{\text{Line}(1\emptyset)} = \mathbf{0} \mathbf{W}$$

$$Q_{Line(3\emptyset)} = 3Q_{Line(1\emptyset)} = 14696.7 \text{ kVAR}$$

e) The line-to-line voltage at the load.

$$V_{Load(line)} = \sqrt{3} V_{load(ph)} = 55993.7V = 56 KV$$

f) The voltage drop per phase in the line.

$$V_{LD} = I_{Line} * Z_{line} = 202.05 \perp (-0.644 \text{rad})(j120) = 24246 \text{ KV} = 24.2 \text{ KV}$$

g) The total apparent power supplied by the source.

$$S_{(ph)} = I_{rms} V_{rms} = 202.05 (40410 V) = 8164 \text{ kVA}$$

$$S_{(3ph)} = 3S_{(ph)} = 3(8164) = 24494 \text{ kVA}$$

h) The total real and reactive power supplied by the source.

$$\begin{split} S_{(ph)} &= \sum P + j \sum Q \\ &= (6531.9 \text{ kW}) + j(4898.9 \text{ kVAR}) = 8164 \text{ } \bot (0.64 \text{rad}) \text{ kVA} \\ S_{(3ph)} &= 3S_{S(ph)} = 3(8164 \text{ } \bot (0.64 \text{rad})) = \textbf{19595.7} + j\textbf{14696.7} \text{ kVA} \end{split}$$

Answer of Q.2: (by Eng. Rayan Al-Amoudi)

A)

Since R is open the we neglect j120 therefore the voltage across R is the same as the voltage across $\mbox{\it C}$

$$VR = Vc = \frac{-j600}{-j600 + j120} \times 330kv = 412.5kv$$

B)

$$S = 3 * V * I^* = 3 * \frac{330k}{\sqrt{3}} * \left(\frac{\frac{330k}{\sqrt{3}}}{j120 - j600}\right)^* = -226.874645j VA$$

$$Q = -226.874645 Mvar$$

Or

$$Q = 3 * |I|^2 * X = 3 * 396.928^2 * (j120 - j600) = -226.875 Mvar$$

And since the power is -ve (the power absorbed by the source)

Experiment # 5 : Current Transformer (Burden)

Answer of Q.2: (by Eng. AbdulRaheem AL-Obaidi)

Total burden = cable burden+ burden of relay

Case 1

Rated burden of relay = 0.1 VA

Cable burden $=\frac{2*lc*\rho*Isc^2}{A} = \frac{2*50*.0203104*1}{4} = 0.50776VA$

Total burden =0.50776VA + 0.1VA

=.606776 VA

In case 2 the burden is equal burden in case 1 because the Is in case 1 equal Is in case 2.

Since $P_{total} < P_n$

Therefore the C.T can handle the burden of the relay and the cables.