Question I: Circle the correct answer

- 1] The focus of the parabola $y^2 = 8(x-3)$ is
- a)(5,0)
- b)(1,0)
- c)(0,1).
- 2] The directrix of $5x^2 + 8y = 0$ is
- a) $y = \frac{2}{5}$
- b) $x = \frac{2}{5}$ $c) y = -\frac{2}{5}$.
- 3] Asymptotes of the hyperbola $\frac{x^2}{9} \frac{y^2}{4} = 1$ are
- a) $y = \pm \frac{2}{3}x$
- $b) y = \pm \frac{3}{2} x$
- $c) x = \pm \frac{2}{3} y.$
- 4] In the ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$, the length of the minor axis is
- a) 3

- 5] \vec{a} and \vec{b} are parallel iff
- a) $\vec{a} \cdot \vec{b} = 0$
- $(b) \vec{a} \times \vec{b} = \vec{0}$ $(c) |\vec{a}| = |\vec{b}|$
- 6] The meaningfull statement is a) $(\vec{a} \cdot \vec{b}) + \vec{c}$ b) $|\vec{a}| (\vec{b} \cdot \vec{c})$ c) $|\vec{a}| \cdot (\vec{b} + \vec{c})$.

- 7] The angle between $\vec{a} = -i + 2j + 5k$, $\vec{b} = 3i + 4j k$ is a) zero b) $\frac{\pi}{2}$ c) π .

- 8]- If $\vec{a} = 3i 4j$, $\vec{b} = 5i$, then the scalar projection of \vec{b} onto \vec{a} is a) 3 \vec{b} $-\frac{11}{5}$ \vec{c} $\frac{11}{5}$.

- 9] The distance from the point (1,-2,4) and the plane 3x + 2y + 6z = 5 is
- b) $\frac{28}{7}$
- 10] The volume of the parallelpiped determined by $\vec{a} = \langle 1, 1, -1 \rangle$, $\vec{b} = \langle 1, -1, 1 \rangle$, $\vec{c} = \langle -1, 1, 1 \rangle$
- is
- a) 0
- b) 4
- c) 6.

Find the values of x such that the vectors (3,2,x) and (2x,4,x) are orthogonal.

Question III:(3marks)

Find the parametric equations of the line through (1,0,-1) and parallel to the line $\frac{x-4}{3}=\frac{y}{2}=z+2.$

Find the equation of the plane through the points P(0,1,0) and Q(1,0,1) and R(1,1,0).

Question V:(3 marks)

Find the equation of the hyperbola where one of the vertices is at (0,2) and the asymptotes are $y-2=\pm\frac{2}{3}(x-3)$ and sketch the graph.