King Abdul Aziz university

Science-Math department

Second semester (2016)

Time: 90 minutes

Name:

computer No.:

Q1: Choose The Correct Answer:(8 marks)

1. If x = f(t), y = g(t) are twice differentiable, then $\frac{d^2y}{dx^2} =$

a)
$$\frac{\frac{d}{dt}(\frac{dy}{dt})}{\frac{d^2x}{dt^2}}$$
 b) $\frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}$ c) $\frac{\frac{d}{dt}(\frac{dy}{dt})}{\frac{dx}{dt^2}}$

b)
$$\frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}$$

$$\mathsf{C}) \frac{\frac{d}{dt} (\frac{dy}{dt})}{\frac{dx}{dt^2}}$$

2. The surface area of the curve x = f(t), y = g(t), $a \le t \le b$ that is rotated about the y - axis is:

a)
$$\int_a^b 2\pi x \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \ dt$$

a)
$$\int_{a}^{b} 2\pi x \sqrt{(\frac{dx}{dt})^{2} + (\frac{dy}{dt})^{2}} dt$$
 b) $\int_{a}^{b} 2\pi y \sqrt{(\frac{dx}{dt})^{2} + (\frac{dy}{dt})^{2}} dt$ c) $\int_{a}^{b} 2\pi x \sqrt{\frac{dx}{dt} + \frac{dy}{dt}} dt$

c)
$$\int_a^b 2\pi x \sqrt{\frac{dx}{dt} + \frac{dy}{dt}} dt$$

3.The parametric equation of the circle with radius 3 $\,$ at center (2,3) $\,$ is , $0 \le t \le 2\pi$

a)
$$x = 3\cos 2t$$
 , $y = 3\sin 3t$

b)
$$x = 2 - 3\cos t$$
, $y = 3 - 3\sin t$

c)
$$x = 2 + 3\cos t$$
, $y = 3 + 3\sin t$

4.The Cartesian equation for $r = -3\cos\theta$ is :

a)
$$x = -3$$

b)
$$x - \sqrt{x^2 + y^2} = 3$$

a)
$$x = -3$$
 b) $x - \sqrt{x^2 + y^2} = 3$ c) $x^2 + 3x + y^2 = 0$

5. Another polar coordinate of $(2, \frac{\pi}{2})$ is :

a)
$$(-2, \frac{7\pi}{3})$$

a)
$$\left(-2, \frac{7\pi}{3}\right)$$
 b) $\left(-2, \frac{4\pi}{3}\right)$ c) $\left(2, \frac{4\pi}{3}\right)$

c)
$$(2, \frac{4\pi}{3})$$

6. The length of the curve: $x = 1 + 3t^2$, $y = 4 + 2t^3$, $0 \le t \le 1$ is:

a)
$$2(2\sqrt{2}-1)$$

b)
$$3(2\sqrt{2}-1)$$

a)
$$2(2\sqrt{2}-1)$$
 b) $3(2\sqrt{2}-1)$ c) $\frac{2}{3}(2\sqrt{2}-1)$

7. The polar equation of hyperbola with focus of the origin , eccentricity 2 and directix y=-2 is:

a)
$$r = \frac{16}{4 - 4 \sin \theta}$$
 b) $r = \frac{8}{2 - 4 \sin \theta}$ c) $r = \frac{4}{4 - \sin \theta}$

b)
$$r = \frac{8}{2-4\sin\theta}$$

c)
$$r = \frac{4}{4-\sin\theta}$$

8. The Points (x, y) on the curve where the tangent is vertical $x = t^3 - 3t$, $y = t^2 - 3$ is:

a)
$$(0, -3)$$

a)
$$(0,-3)$$
 b) $(0,-3),(-2,2)$ c) $(\pm 2,-2)$

c)
$$(\pm 2, -2)$$

Q2: Solve the Following Questions:

1. Find the Area that it encloses the curve where : $r = 2\cos 3\theta$ (3 marks)

2. Study the symmetry of the curve: $r = 1 - 2 \sin \theta$. (3 marks)

3. Reduce the equation to the standard from, classify the surface and sketch it.

$$4x^2 + y^2 + 4z^2 - 4y - 24z + 36 = 0$$
 (3.5 marks)

4. Find the eccentricity, identify the conic, given an equation of directrix and sketch the conic. $r=\frac{3}{2-2\cos\theta}$ (2.5 marks)