
JAVA PROGRAMMING II

Abstract Class

CPCS 203

Abstract Superclasses and Abstract
Methods

• Abstract classes are like regular classes with
data and methods, but you cannot create
instances (objects) of abstract classes using
the new operator.

• An abstract method cannot be placed in a
non-abstract class.

• If a subclass of an abstract superclass does not
implement all the abstract methods, the
subclass must be declared abstract.

2

Abstract Superclasses and Abstract
Methods

• A classes that contains abstract methods must
be abstract. However, it is possible to declare
an abstract class that contains no abstract
methods.

• A subclass can be abstract even if its
superclass is concrete.

3

Abstract Superclasses and Abstract
Methods

• When we define a superclass, we often do not
need to create any instances of the superclass.

• Depending on whether we need to create
instances (objects) of the superclass, we must
define the class differently.

• We will study examples based on the Student
superclass defined earlier.

4

Abstract Superclasses and Abstract
Methods

• Example: A Student Must Be Undergraduate
or Graduate
– If a student must be either an undergraduate or a

graduate student, we only need instances
(objects) of UndergraduateStudent or
GraduateStudent.

– Therefore, we must define the Student class so
that no instances (objects) may be created of it.

5

Abstract Superclasses and Abstract
Methods

• An abstract class is a class defined with the
modifier abstract. No instances can be
created from an abstract class.

6

Abstract Superclasses and Abstract
Methods

abstract class Student {
protected final static int NUM_OF_TESTS = 3;
protected String name;
protected int[] test;
protected String courseGrade;

public Student() {
this(“No name”);

}

public Student(String studentName) {
name = studentName;
test = new int[NUM_OF_TESTS];
courseGrade = “******”;

}

abstract public void computeCourseGrade();

Note: If a subclass of this abstract superclass does not implement
this abstract methods, the subclass must be declared abstract.

7

Abstract Superclasses and Abstract
Methods

public String getCourseGrade() {

return courseGrade;

}

public String getName() {

return name;

}

public int getTestScore(int testNumber) {

return test[testNumber-1];

}

public void setName(String newName) {

name = newName;

}

public void setTestScore(int testNumber, int testScore) {

test[testNumber-1] = testScore;

}

}

8

Abstract Superclasses and Abstract
Methods

• An abstract method is a method with the
keyword abstract, and it ends with a
semicolon instead of a method body.

• A class is abstract if the class contains an
abstract method or does not provide an
implementation of an inherited abstract
method.

9

Abstract Superclasses and Abstract
Methods

• We say a method is implemented (concrete) if
it has a method body.

• If a subclass has no abstract methods and no
unimplemented inherited abstract methods,
then the subclass is no longer abstract, and
instances (objects) may be created of it.

• An abstract class must contain the keyword
abstract in its definition.

10

Abstract Superclasses and Abstract
Methods

• In a program diagram, we represent an
abstract class by using the keyword abstract.

11

Abstract Superclasses and Abstract
Methods

• Example: Student Does Not Have to Be
Undergraduate or Graduate.

• In this case, we may design the Student class in
one of two ways.
– We can make the Student class instantiable (able to

create an object) OR
– We can leave the Student class abstract and add a

third subclass, OtherStudent, to handle a student who
does not fall into the UndergraduateStudent or
GraduateStudent categories.

12

Abstract Superclasses and Abstract
Methods

• With the first approach, we delete the keyword abstract from the
class and method definition. We provide a method body for
computeCourseGrade.

class Student {
...

public void computeCourseGrade(){
int total = 0;
for (int i = 0; i < NUM_OF_TESTS; i++){

total += test[i];
}

13

Abstract Superclasses and Abstract
Methods

if (total/NUM_OF_TESTS >= 50){
courseGrade = “Pass”;

}else{
courseGrade = “No Pass”;

}
}

...
}

• This design allows us to create an instance of Student
to represent a non-regular student.

14

Abstract Superclasses and Abstract
Methods

• In the second approach, we leave the Student class abstract. We define a third
subclass, OtherStudent (better approach):

class OtherStudent extends Student {
public void computeCourseGrade() {

int total = 0;
for (int i=0; i < NUM_OF_TESTS; i++){

total += test[i];
}
if (total/NUM_OF_TESTS >= 50){

courseGrade = “Pass”;
}else{

courseGrade = “No Pass”;
}

}
}

15

A Superclass and Three Subclasses

• A program diagram of the abstract superclass
Student and its three subclasses.

16

Abstract Superclasses and Abstract
Methods

• The best approach depends on the particular
situation.

• When considering design options, we can ask
ourselves which approach allows easier
modification and extension.

• Not all methods can be declared abstract.
Private methods and static methods can not
be declared abstract.

17

Thank You

18

