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Abstract. This paper is devoted to the Boolean-based analysis of non-repairable coherent multi-state
systems with independent non-identical multi-state components. We adapt several binary concepts
and tools such as probability-ready expressions, Boolean quotients, the Boole-Shannon expansion,
and the Karnaugh map to the multi-state case. The paper utilizes algebraic techniques of multiple-
valued logic to evaluate each of the multiple levels of the system output as a binary or propositional
function of the system multi-valued inputs. The formula of each of these levels is then written as a
probability—ready expression, thereby allowing its immediate conversion, on a one-to-one basis, into
a probability or expected value. The symbolic reliability analysis of two small systems (which serve
as standard gold examples of coherent multi-state systems) is completed successfully herein, yielding
results that have been checked symbolically, and are also shown to agree numerically with those
obtained earlier. The algebraic techniques used are supplemented by illustrative visualization via
multi-valued Karnaugh maps. Emphasis is placed on the generalization of concepts of coherent
binary systems to those of coherent multi-state ones, rather than innovating new unfamiliar stand-
alone concepts for these latter systems.
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1. Introduction

The reliability literature deals mainly with
binary or dichotomous systems, in which both
a system and its components have two states
(i.e., either operational or failed). However, in
many practical situations, there are multiple
levels of system capacity or performance and/or
different component performance levels and
multiple component failure modes having
different impacts on the system performance [
31, These systems are modeled as multi-state
systems (MSSs), which might be coherent or
non-coherent 61, This paper deals with the
prominent class of non-repairable coherent

MSSs with independent non-identical multi-
state components. The main contribution of the
paper is to demonstrate that, similarly to
coherent binary systems, coherent multi-state
systems can be conveniently analyzed with the
aid of switching-algebraic techniques and tools.

The literature abounds with standard
research techniques for the reliability analysis
of MSSs U734 Most of these standard
techniques rely on the utilization of discrete
non-binary functions 337 or multiple-valued
logic 34361, The main theme of this paper is that
instead of tightening or narrowing the
paradigms of discrete functions or multi-valued
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logic to fit the multi-state reliability problem,
one could generalize or enlarge the switching-
algebraic reliability analysis to suit the multi-
state case. The starting point in our scheme
pertains to reliability per se, and hence the
adaptation to the multi-state case is
straightforward. By contrast, the starting point
in the standard analysis does not relate directly
to reliability, or even to probability, and has to
augment its course of action with some
probability techniques, which might be lacking
in efficiency.

This paper extends algebraic techniques
and tools of switching algebra or binary logic to
ones of multiple-valued logic, so as to evaluate
each of the multiple levels of the system output
as an individual binary or propositional function
of the system multi-valued inputs. The formula
of each of these levels is then written as a
probability—ready expression, thereby allowing
its immediate conversion, on a one-to-one basis,
into a probability or expected value. The analysis
will be seen to be particularly simple when the
multi-state system is binary-imaged, i.e., when its
success at each specific level is dependent only
on component successes at the same level [ 16
3034 The paper strives to provide a
pedagogically-oriented treatment that establishes
a clear and insightful interrelationship between
binary modeling and MSS modeling by stressing
that multi-valued concepts are natural and simple
extensions of two-valued ones. Visual insight
secured through the use of Karnaugh maps aids
in the comprehension of coherent-system
concepts, whether they are binary and multi state.
A notable achievement for the multi-state case is
the clarification of the subtle relation between a
minimal upper vector (MUV) at a certain level
and a prime implicant of success (minimal path)
at that level, or the dual relation between a
maximal lower vector (MLV) at a certain level
and a prime implicant of failure (minimal cutsets)
at that level. Many authors (see, e.g., [9, 15])
consider that the MUVs and MLVs play the role

of (or are synonymous to) minimal paths and
minimal cutsets, respectively. However, a
minimal path constitutes all the upper vectors
extending (inclusively) from a particular MUV to
the all-highest vector, while a minimal cutset
comprises all the lower vectors extending
(inclusively) from the all-0 vector to a particular
MLV.

The organization of the remainder of this
paper is as follows. Section 2 presents important
assumptions, notation and nomenclature.
Section 3 introduces the concept of Boolean
quotient in a multi-valued context. Section 4
extends the concept of a probability-ready
expression (PRE) from the binary to the multi-
state case. Section 5 provides a quick review of
the concept of the Boole-Shannon expansion,
again with an emphasis on its interpretation in a
multi-valued sense. In Sections 6 and 7, the
paper makes its main point through the multi-
valued analysis of two specific (albeit standard)
multi-state systems. Section 6 deals with a
nonhomogeneous two-component system, while
Section 7 handles a homogenous binary-imaged
three-component system. Section 8 explores the
issue of duality, which is rooted in the theory of
switching and discrete functions, wherein it
spreads to binary and multi-state reliability.
Section 9 concludes the paper.

2. Assumptions, Notation and Nomenclature
2.1 Assumptions

e The model considered is one of a multi-
state system with multistate components [
61 specified by the structure or success
function S(X) [15]

S:{0,1, -, m;} X {0,1, -+, m,} X ...
X {0’ 1f”"mn}
-{0,1,---,M}. (D

e The system is generally non-homogeneous,
i.e., the number of system states (M + 1)
and the numbers of component states
(m; +1),(m, +1),---,(my, + 1) might



Boolean-Based Symbolic Analysis for the Reliability of Coherent Multi-State Systems of Heterogeneous Components 3

differ. When these numbers have a e The system is a coherent one enjoying the
common value, the system reduces to a properties of causality, monotonicity, and
homogeneous one. component relevancy (124 31-34],

e The system is a non-repairable one with The system is not necessarily binary-
statistically independent non-identical imaged or dominant !¢,

(heterogeneous) components.

2.2 Notation

Symbol
Xie

XU}

Xe{= j3

Xi{=J}

Description

A multivalued input variable representing component k (1 < k <n), where X, €
{0,1,...,my}, and my, = 1 is the highest value of X,.

A binary variable representing instant j of X,
X U3 =X =J}
ie, X {j} =1if X, =j and X {j} = 0 if X} # j. The instances X;{j} for {0 <j <
m,;,} form an orthonormal set, namely, for {1 < k < n}
V;'nzko Xk{]} = 13 (23.)
X3 (1) Xi(2) = 0 for ji # j; . (2b)
Orthonormality is very useful in constructing inverses or complements. The complement

of the union of certain instances is the union of the complementary instances. In particular,
the complement of X, {= j} = X {j,j + 1, ..., my }is X, {< j} = X, {0,1, ...,j — 1}.

An upper value of X {0 <j <my}:

The value X, {= 0} is identically 1. The set X {= j} for {1 <j < my]} is neither
independent nor disjoint, and hence it is difficult to be handled mathematically, but it is
very convenient for translating the verbal or map/tabular description of a coherent
component into a mathematical form when viewing component success at level j. The
complement of X; {= j} is

X{<j}=X{0,1,..,j -1} =X, {0}vX {1} .. vX, -1} =X {k < (-1} (4
A lower value of X, {0 <j <m;}:

X {<j}=X%A0,1,...j - 1,j} = V{ZO X di} = X {0} v X {1} ..vX i — 1} v X (i} (5
The value X; {< m, } is identically 1. The set X, {< j} for {0 < j < (in, — 1)} is neither
independent nor disjoint, and hence it is not convenient for mathematical manipulation

though it is suitable for expressing component failure at level (j + 1). Instances, upper
values and lower values are related by

XU =X%=3X<+ D} =X X0+ D) =X X > G- 1}
= X {< 3 X< G- D} (6)
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S A multivalued output variable representing the system, where
Sse{0,1,.., M}, (7)
and M > 1 is the highest value attained by the system. The system is called
homogeneous if M = m; = m, = --- = m,,. The function S(X) is usually called the
system success or the structure function. It is conveniently represented by a Multi-
Valued Karnaugh Map (MVKM) [30-34, 48, 57]. Its complement S(X) is called
system failure, and is also a multivalued variable of (M + 1) values. The sum (S(X) +
S(X)) is identically equal to M.
S{} A binary variable representing instant j of S
Sy =X =/} ®)
ie,S{j} =1if S(X) =j,and S(X) = 0if S(X) # j. The instances S{j} for {0 < j <
M3} form an orthonormal set, i.e.
Vito S} =1, €)
S{1} S{jz} = 0 for ji # j,, (10)
which means that one, and only one, of the (M + 1) instances of S has the value 1, while
the other instances are all 0's.
S{=j} Anupper value of S
M
S(=/}=SU,j+1,.., M} = \/S{i}. a1
i=j
S{<j} Alower value of
J
S{<j} = 5{0,1, .., j} = \/s{z}. (12)
i=0
Instances, upper values and lower values of S are related by
SUy=S{z3S{<(G+D}=Sz3S{z(G+D}=S{£j}S>G-D}  (13)
2.3 Nomenclature 2.3.2 An upper vector for level j > 0
2.3.1 A vector X: e A particular value of X such that S(X) >
e A specific value of the input arguments JU=12..,M}
X=[X; X;--X,]" of the multi-valued e A true vector for S{= j},i.e., a vector
structure function S; suchthat S{=j} =1,{j = 1,2, ..., M};
o A particular cell of the MV Karnaugh map ¢ A map cell for system success at level
of S or the binary Karnaugh map of any of L {=12,..,M}.

its instances S{j}, upper values S{= j} or
lower values S{< j}.

2.3.3. A minimal upper vector (MUV) at level
j > 0, denoted 6;;

An upper vector X for level j such that
SY)<j, {j=1,2,..,M} for any vector Y <
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X. Such a vector is a member of the set of MUV's
at level j > 0, denoted by 6(j).

2.3.4 An upper prime implicant at level j > 0,
denoted P;;

e The set of upper vectors X for level
j {1 <j < M} such that

0, <X<U.

e The loop in the S{= j} map whose cells

are not lower than 6;;;

Pi= [\ Xz 0,000, (s

k=1
sz =\/ B (15)

2.3.5 The all-highest vector U

The vector where each input argument
attains its highest value

U=[my my - my]T,

The vector belongs to upper prime
implicants at all levels, i.e. to P;; for all i and all
j > 0. Due to causality, the structure function
must attain its maximum when X =
Ui.e S(U)=M.

2.3.6 A lower vector for level j < M

e A particular value of X such that S(X) <
L{i=01,..,(M—-1)}

e A true vector for S{< j},i. e., a vector such
thatS{< j}=1,{{=0,1,..,(M — D};

e A false vector for S{> j} = S{= (j +
1}j=01,..,(M -1}

e A map cell for system failure at level
j{i=12,.., M}
2.3.7 A maximal lower vector (MLV) at level
j < M, denoted a;

A lower vector X for level j such that S{Y} > j,
{i =1,2,..,M} for any vector ¥ > X. Such a

vector is a member of the set of MLVs at level
Jj < M, denoted by a(j).

2.3.8 A lower prime implicant at level j < M,
denoted Q;

e The set of lower vectors X for level
j{0 <j < (M — 1)} such that

e The loop in the S{< j} map whose cells
are not higher than o7;;

Qi = [\ xl= )}, (16)
k=1
st<py=\/ @ (7)

2.3.9 The all-lowest vector L

The vector where each input argument
attains its lowest value

L=[0o o - o] (18)
This vector belongs to all lower prime

implicants at all levels, i.e. to Qj; for all i and

allj {j < M}. Due to causality, the structure
function attains its minimum when X =
Li.e.,S(L)=0.
2.3.10 The expected value of a certain instance
SU3
The expected value of a certain instance
S{j}ofs,{j=0,1,.., M}

E{s(i}} = E{s{z }} - E{s{= G + D} =
E{S{<j}} - E{s{< (G - D}}, (19a)

where

E{S{=M+1)}} =0, (19b)
E{s{i=(-D}} =0, (19¢)
E{s{=0}} =1, (19d)
E{S{x M}} =1. (19e)
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The availability of two formulas for
E{S{j}} allows us to select the formula that is
better in some sense (easier to derive, more
compact to express, etc.). Otherwise, we might
evaluate both formulas and check that they agree.
Both sets of formulas {(19a), (19b), (19d)}
and formulas {(19a), (19¢), (19e)} confirm the
arithmetic normality property

Y B =1 (20)
=0

2.3.11 The probability transform

The expectation E{..} of any logic
expression (binary or multi-valued) might be
obtained through a probability-transform
operation 1% % An expression for E{S} is a
multi-affine function in its arguments (an
algebraic function depicting a straight line
relation in each of the arguments), and this
expression has the same “truth table” as that of
the logic function S ). Figure 1 illustrates the
probability-transform operation for a system of
two three-valued components. Despite the
different mathematical natures of S and E{S},
they are both of a multi-affine structure, and they
have ‘truth tables’ of exactly the same entries.

2.3.12 Various Relations between Two
Component State Vectors X and Y

e A vector X is larger than another vector Y
(denoted X >Y) if every element of X is
at least as large as the corresponding
element of Y, and at least one element of X
is larger than the corresponding element of
Y. If X > Y then certainly S(X) = S(Y),
and occasionally S(X) > S(Y), as aresult
of coherence.

e A vector X is equivalent to another vector
Y (denoted X & Y) if S(X) = S(Y), ie.,
both are equal to j,{j =0,1,2,..,M}.
Therefore, the set of input vectors X is

partitioned into (M + 1) equivalence
classes.

e A vector X dominates another vector Y if it
is larger than it (X > Y), or it is larger than
a vector Z in the same equivalence class as
Y (X >Z)A(S(Z) =S(Y)) e,

2.3.13 A Binary-Imaged Multi-State System

A binary-imaged multi-state system is a
system whose success at level j is a function
only of component successes at the same level
(S{=j} is a function of X{=j}only), or
equivalently, it is a system whose failure at
level j is a function only of component failures
at the same level (S{< (j — 1)} is a function of
X{< (j — D}only) Y. For a binary-imaged
system, elements of the set of MUVs 6(j) are
vectors of j or 0 components only, and elements
of the set of MLVs o (j) are vectors of j or M
components only P4, Figure 2 shows Multi-
valued Karnaugh maps (MVKMs) representing
the structure functions of three small coherent
three-state systems of two three-valued
components, the first of which is binary
imaged, while the remaining two are not binary
imaged.

2.3.14 A Dominant Multi-State System

A dominant multi-state system is a
coherent multi-state system, in which S(X) >
S(Y) implies vector X dominates vector Y. In a
dominant system, every vector of state j > 0
must be larger than at least one vector of a
smaller state value. A non-dominant system
cannot be binary imaged [°). Figure 2 shows (a)
a system that is both dominant and binary
imaged, (b) a dominant system that is not binary
imaged, and (c) a system that is non-dominant
and hence non binary imaged. Note that the
system in Fig. 2(c) is non-dominant since its
vector (2, 0) of state 2 is not larger any vector
of state 1.
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2.3.15 Multi-State Interpretation of Binary
Systems

For a binary system (M = 1), there is a
single level other than level 0, namely level 1.
In this case, success at level 1 is S{= 1} =
S{1}, while failure at level 1 is S{< 1} = S{0}.
In the binary case, there is no need to refer to
level 1 since it is the only non-zero level and is
implicitly understood by default, and we simply
refer to system success S and system failure S
instead of S{1} and S{0}.

3. Boolean Quotients

The concept of a Boolean quotient is an
important switching-algebraic concept that can
be conveniently viewed in a multi-valued context
B Given a two-valued Boolean function (a
switching function) f and a term t, the Boolean
quotient of f with respect to t, denoted by (f /t),
is defined to be the function formed from f by
imposing the constraint {t =1} explicitly [*% ¢,
namely

fre= [fle=1 (21)

The Boolean quotient is also known as a
ratio, a sub-function, or a restriction. Brown [60]
and Rushdi & Rushdi % list several useful
properties of Boolean quotients. In the multi-
valued context, the term t is a product (ANDing)
of literals. Each of the multi-valued variables is
either absent or present in the form of a particular
literal, which might be a single instance or the
ORing of several instances '],

A fundamental property of the Boolean
quotient states that a term ANDed with a function
is equal to the term ANDed with the Boolean
quotient of the function with respect to the term,
namely.

tAf =t A (f/t). (22)
If the term ¢ is a factor of the function f (i.e., =

t A g, tAf =), then (22) takes the simpler
form

f =t A F/t). (23)

In this paper, we denote a Boolean quotient
by an inclined slash (f/t). However, it is
possible to denote it by a vertical bar (f|t) to
stress the equivalent meaning (borrowed from
conditional probability) of f conditioned by t or
f given t P,

4. Probability-Ready Expressions

The concept of a probability-ready
expression (RRE) is well-known in the two-
valued logical domain 1> 61-6¢] and it is still valid
for the multi-valued logical domain %34 A
Probability-Ready Expression is a random
expression that can be directly transformed, on a
one-to-one basis, to its statistical expectation (its
probability of being equal to 1) by replacing all
logic variables by their statistical expectations,
and also replacing logical multiplication and
addition (ANDing and ORing) by their
arithmetic counterparts. A logic expression is a
PRE if:

a) all ORed products (terms formed by
ANDing) are disjoint (mutually exclusive), and

b) all ANDed sums (alterms formed via
ORing) are statistically independent.

Condition (a) is satisfied if for every pair
of ORed terms, there is at least a single
opposition, i.e., there is at least one variable that
appears with a certain set of instances in one
term and appears with a complementary set of
instances in the other. Condition (b) is satisfied
if for every pair of ANDed alterms (sums of
disjunctions of literals), one alterm involves
variables describing a certain set of
components, while the other alterm depends on
variables describing a set of different
components (under the assumption of
independence of components) [3! 3% 61.62.66]

While there are many methods to introduce
characteristic (a) of orthogonality (disjointness)
into a Boolean expression -7, there is no way
to induce characteristic (b) of statistical
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independence. The best that one can do is to
observe statistical independence when it exists,
and then be careful not to destroy or spoil it and
take advantage of it. Since one has the freedom
of handling a problem from a success or a failure
perspective, a choice should be made as to which
of the two perspectives can more readily produce
a PRE form. It is better to look at success for a
system of no or poor redundancy (a series or
almost-series system), and to view failure for a
system of full or significant redundancy (a

parallel or almost- parallel system) [5% 61661

The introduction of orthogonality might be
achieved as follows. If neither of the two terms A
and B in the sum (A V B) subsumes the other
(AVB # A and AV B # B) and the two terms
are not disjoint (A A B # 0), then B can be
disjointed with A by factoring out any common
factor (using (23)) and then applying the
Reflection Law, namely

avs=c(Qv)=¢(@)OE)-

av(%)s. (24)

In (24), the symbol C denotes the common
factor of A and B, and the Boolean quotient
(A/C) might be viewed as the term A with its
part common with B removed. Note that (24)
leaves the term A intact and replaces the term B
by an expression that is disjoint with A. The
quotient (A/C) is a product of e entities
Y (1<k<e), so that m might be
expressed via De Morgan’s Law as a disjunction
of the form

@ = \/ ve. (25)
k=1

Note that each Y stands for a disjunction
of certain instances of some variable
Xi( and hence Y, is a disjunction of the
complementary instances of the same variable. If
we combine (24) with (25), we realize that the

term B is replaced by e terms (e = 1), which are
each disjoint with the term A, but are not
necessarily  disjoint among  themselves.
Therefore, we replace the De Morgan’s Law in
(25) by a disjoint version of it ! namely

(AQ)=Yvhhvhhhv. vy .. Y. .Y

Y-
=hvylvndy.. v(¥._,vY,_, ) ‘"))(26)

When (26) is combined with (24), the first
term A still remains intact, while the second term
B is replaced by e terms which are each disjoint
with A and are also disjoint among themselves.
This means that one has a choice of either
disjointing B with A in A V B, or disjointing A
with B in B V A. The usual practice that is likely
to yield good results is to order the terms in a
given disjunction so that those with fewer literals
appear earlier.

Rushdi ! presented a simple example of
the procedure above by considering the
following expression

5{0} = X;{0} v X,{0} v X5{0} v X,{0}, (27)

which is not a PRE, since it has ORed quantities
that are not disjoint. A PRE version of it might
be obtained by using the afore-mentioned
disjointing procedure, namely

5{0} = X,{0} v X,{0} (X,{0} v X,{0}
(X5{0} v X5{0} X,{0})). (28)

However, a much simpler PRE is
obtained by simply complementing (27),
namely

s{0} = X,{0} X,{0} X5{0} X,{0}. (29)

The expression in (29) is a PRE since
ANDed quantities in it are statistically
independent. This example illustrates that
attaining PRE form is possible not only via the
implementation of a disjointing procedure, but
also through effective utilization of statistical
independence, which might be manifested in a
particular form of the function and lacking in its
complementary form.
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5. The Boole-Shannon Expansion

The most effective way for converting a
Boolean formula into a PRE form is the Boole-
Shannon Expansion, which takes the following
form in the two-valued case [59-61, 64, 66, 75]

fX) = (X A FX100) v (Xi A £(X]19)), (30)

This Boole-Shannon Expansion expresses
a (two-valued) Boolean function f(X) in terms
of its two subfunctions f(X]|0;) and f(X|1;).
These subfunctions are equal to the Boolean
quotients f(X)/X; and f(X)/X;, and hence are
obtained by restricting X; in the expression of
f(X) to 0 and 1, respectively. If f(X) is a sum-
of-products (sop) expression of n variables, the
two sub-functions f(X|0;) and f(X|1;) are
functions of at most (n — 1) variables. A multi-
valued extension of (30) is

SX) =X{0} A(SX)/X;{0}) v X;{1} A
SX)/X{1}) v X {2} A(SX)/Xi{2}) Vv

X3} ASX)/X:{3}) V.. v Xi{m;} A
SX)/Xi{m;}). (31

A formal proof of (31) is achieved by
“perfect induction,” that is, by considering the
(m; + 1) exhaustive cases, namely: {X;{0} =
1}, xf{1} =1}, {x,{2} =1}, {X{3} =1},
..., and {X;{m;} = 1}. In the first case, for
example, {X;{0} =1}, and consequently
X{1} = xi{2} = X, {3} == Xi{m;} =
0}. Therefore,

The L.H.S. of (31) = the R.H.S. of (31)
=S(X)|(X;{0} = 1) = S(X)/X;{0}. (32)

The other m; cases can be handled in a
similar fashion. The expansion (31) serves our
purposes very well. Once the sub-functions in
(31) are expressed by PRE expressions, S(X)
will be also in PRE form, thanks to the
combination of the following two facts:

(a) The RH.S. of (31) has (m; + 1)
disjoint terms, each of which containing one of
the (m;+1) disjoint instances

XL{O}!XL{]-}ﬂXl{Z}J Xl{3}’ (EEY) and Xi{mi} of
the variable X;,

(b) Each of these (m; +1) terms is a
product of two statistically-independent entities,
since any sub-function S(X)/X;{j} (0<j <
m;) does not involve any instance of the (m; +
1)-valued variable X;, since its X;{j} instance
is set to 1, while all its other instances are set to
0.

The expansion (31) might be viewed as a
justification of the construction of the multi-
valued Karnaugh map used extensively herein
[30-34, 48]. This expansion transforms directly,
on a one-to-one basis, to the probability domain
as

E{S(X)} = E{X;{0}} x E{S(X)/X;{0}} +

EX {1}« E(SX)/X{1}} + E{X;{2}} *
E{S(X)/Xi{2}} + E{X;{3}}  E{S(X)/X;{3}} +
-~ + E{Xi{m}} = E{S(X)/X;{m;}}. (33)

Equation (33) might be viewed as a
restatement of the Total Probability Theorem,
provided we interpret the expectation of a
Boolean quotient as a conditional probability [59,
76, 77]. It is the basis of multi-valued decision
diagrams (MDDs), that are optimally employed
for the reliability analysis of multi-state systems
[23-25], and that constitute the multi-valued
counterpart of the Binary decision diagrams [75].

6. A Non-homogeneous non Binary-Imaged
Two-Variable Example

This example is taken from one of the
best available textbooks on multistate reliability
151" wherein the example is solved via
techniques borrowed from the theory of discrete
functions [**. The solution in [15] handles
discrete functions reasonably, but then seeks
probability expressions through effectively
using the Inclusion-Exclusion (IE) Principle,
which is notorious for its poor computational
complexity and its production of prohibitively
long reliability expressions that result in
exaggerated round-off errors (6% 70 78 71 The
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solution presented herein avoid the IE
shortcomings through the derivation of a PRE
while still in the Boolean domain. Not only is
the solution procedure much simpler and more
intuitive than any standard solution, such as the
one in [15], but the final expressions obtained
are much more compact as well. Though the
current system lacks a binary image, most of its
analysis herein deals solely with binary entities
such as S{= j}, S{< j}, and S{j}. The ultimate
goal of the analysis is to obtain E{S{j}} for j =
0,1,...,M, which might be conveniently
obtained through the analysis of S{=j} and
S{< j}. It is only towards the end of this section
that we deal explicitly with the multi-valued S
rather than with its binary instances.

The system considered in this example is
a non-homogeneous one specified by the
function table of its structure or success
function S(X)

s$:{0,1,2,3,4} x {0,1,2,3} - {0,1,2,3}. (34)

This function table is shown in Fig. 3, and
is conveniently identified to be in the form of a
multi-valued Karnaugh map (MVKM). All
entries of this map are explicitly given, but this
is a superfluous representation of this coherent
structure function, since it suffices to specify
either (a) the bold entries in the cells with blue
color (the minimal upper vectors (MUV5s)), or
(b) the bold entries in the cells with red color
(the maximal lower vectors (MLVs)), where the
cell (0, 3) belongs to both sets in (a) and (b).

The following set of equations is a
complete non-binary-image characterization of
the system under study. They are obtained from
Fig. 4(a), 5(a), and 6(a), respectively, and they
give each binary function S{=j} (forj =
3,2 and 1), as a function of X in general (and
not necessarily in terms of X{> j} (forj =
3,2 and 1) alone) Here, S{= j} depicts system
success at level j (upper states) in a minimal
sum-of-products form

S{=3}=X,{= 3} X,{= 3} (35a)
S{=2}=x,> 13X, 23 v, =3} x>
1} v X, {= 4} X,{= 0}, (35b)
S(>1}=X{=2}V X,{=3}vX{>
1} X,{> 2}. (35¢)

The minimal upper vectors (MUVs) at
levels j {j = 3,2,and 1} can be observed (as
minimal cells of upper loops) from Fig. 4(a),
5(a), and 6(a), respectively, or deduced, through
immediate inspection, from equations (35) as

6(3) ={@3,3)}, (36a)
6(2) ={(1,2),(3,1),(4,0)}, (36b)
6(1) = {(2,0),(0,3),(1,2))}- (36¢)

We reiterate that there exists a subtle
difference between a minimal upper vector
(MUV) at a certain level and a corresponding
prime implicant of success (minimal path) at
that level, despite the existence of a one-to-one
relation between them. In fact, a minimal path
constitutes all the upper vectors extending
(inclusively) from a particular MUV to the all-
highest vector. For example, Success at level 1
has three prime implicants, the first of which is

X {=2}=X,{= 2} X,{= 0} =

X1{2,3,4} X,{0,1,2,3} = X, {2} X,{0} v
X1{2} X, {1} v X1 {2} X,{2} v X {2} X,{3} v
X1{3} X,{0} v X;{3} X,{1} v X, {3} X,{2} v
X1{3} X»{3} v X1{4} X,{0} v X {4} X,{1} v
X1{4} Xo{2} v X,{4} X,{3}, (37)

comprises 12 vectors (or Karnaugh map cells,
as shown in Fig. 6(a)), with its lowest vector
being the MUV X, {2} X,{0} (abbreviated as an
ordered set (2, 0) in (36¢)), and with its highest
vector being the all-highest vector X; {4} X,{3}.
The fact that this system is non-binary-imaged
is reflected in that the set 6(j) contains
members with elements other than j and 0.

Similarly, the following set of equations
is another complete non-binary-image
characterization of the system under study.
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They are obtained either from Fig. 4(b), 5(b),
and 6(b), respectively, or by complementation
and application of De Morgan’s rules to the
former equations (35). The new equations give
each binary function S{< (j — 1)} (forj =
3,2 and 1), as a function of X in general (and
not necessarily in terms of X{< (j-—
1)} (for j = 3,2 and 1) alone) Here, S{< j} =
S{< (j — 1)} depicts system failure at level j
(lower states), again in a minimal sum-of-
products form:

S{<3}=S{<2} =X, {<2} vV X,{< 2}, (38a)
S{< 2} = S{< 1} = X, {< 0} V X, {< 2}X,{<

1}V X,{< 3} X,{< O}, (38b)
S{< 1} = S{< 0} = X,{< 0}X,{< 2}V
X (< 13X,{< 1} (38¢)

The maximal lower vectors (MLVs) at
level j{j = 2,1,and 0} can be observed (as
maximal cells of lower loops) from Fig. 4(b),
5(b), and 6(b), respectively, or deduced,
through immediate inspection, from equations
(38) as

0(2) ={(2,3),(4,2)}. (39a)
a(1) ={(0,3),(2,1),(3,0)} (39b)
a(0) = {(0,2), (1, 1D}. (39¢)

We observe that there exists also a minor
difference between a maximal lower vector
(MLV) at a certain level and a corresponding
prime implicant of failure (minimal cutset) at
that level, despite the fact that each of them
uniquely specifies the other. In fact, a minimal
cutset constitutes all the lower vectors
extending (inclusively) from the all-0 vector to
the corresponding MLV. The fact that this
system is non-binary-imaged is reflected in that
the set o(j) contains members with elements
other than j and the maximal elements m; = 4
and m, = 3.

Now, we replace the success expressions
by probability-ready expressions (PREs) by
using the algebraic procedure in Sec. 4, or by

replacing the loops in Fig. 4(a), 5(a), and 6(a),
respectively, with non-overlapping loops.
These PREs can be readily converted (on a one-
to-one basis) into expected values by replacing
the logical ORing and ANDing by arithmetic
counterparts of addition and multiplication and
replacing component instances by their
expected values (see Table 1).

Spre{= 3} = X1{= 3} X,{= 3}, (40a)

Spre{= 2} = X1 {= 4} v X (< 43 (X1 {=
1}1X,{= 2} v (X1 {< 1} VX {= 1}X,{<
2PX1{= 3} Xo{= 1}) = X, {4} v

X1{1,2,3} X,{= 2} v X; {3} X, {1}, (40b)

Spre{= 1} = X1{= 2} v X1 {< 2}(X{= 3} v
X2{< 3}X1{2 1}X2{2 2}) = Xl{Z Z}V
X {< 2}X,{= 3} v X, {1}X,{2}. (40c)

Next, we replace the failure expressions
by probability-ready expressions (PREs) by
using the algebraic procedure in Sec. 4, or by
replacing the loops in Fig. 4(b), 5(b), and 6(b),
respectively, with non-overlapping loops.
Again, these PREs can be readily converted (on
a one-to-one basis) into expected values by
replacing the logical ORing and ANDing by
arithmetic counterparts of addition and
multiplication and replacing component
instances by their expected values (see Table 1).

Spret= 2} = X1{< 2} v X, {> 2} X,{< 2}, (41a)

Spre{=< 1} = X1 {0} v X, {> 0}(X1 {< 2}X,{<
1} v (X1 {> 2} v X {< 21X, {> 1) X {<
31X,{<0}) =X,{0}VvX{12}X,{<1}V
X1{3}X2{0}, (41b)

SPRE{S 0} = X1{S 1}X2{S 1} \% (X1{> 1} \%
X {< 13X,{> 1DX{< 0}X,{< 2} = X, {<
13X,{< 1} v X,{0}X, (2). (41c)

The PRE expressions (40) and (41) might
be directly converted (on a one-to-one basis) to
their expected values by replacing the AND and
OR operators with the multiplication and
addition operators and replacing variable
instances by their expectations, namely
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E{X:{(j}} = pi;- (42)

E{X{=j}} =pij + Digjeny + -+ Pim;
=1—(pio + pir + - + Pi¢j-1))- (43)

E{X{<j}} = pio +Pir + - + 1y}
= 1= (Pig+1) + Pig+2) + -
+ Dim,)- (44)

We obtain expectations E{S{j}} for j =
0,1,..,M, of various instances of the multi-
valued system success S, by taking differences
of appropriate expectations of the forms of
E{S{=j}} and E{S{<j}}. Table 1
demonstrates the two possible alternatives for
achieving this purpose. Of course, the more
compact alternative is preferable.

An alternative approach is to deal with the
various instances of the multi-valued system
success S directly in the Boolean domain. For
example, we might obtain the instance S{2} as

s{2}=S{=2}s{< 2}

= (X, {= 1} X.{= 2} v X, {= 3} Xo{= 1} v
Xi{z 4} X,{2 0}) (Xi{S 2}V Xp{<2})

=X,{1,2} X, {= 2} v X,{= 1} X, {2} Vv
X {= 3} X,{1,2} v X;{= 4} X,{0,1,2}. (45)

This expression can be converted to a PRE via
the procedure in Sec. 4, or by covering the 2-
entries in Fig. 3 by non-overlapping loops. The
result is

Spre{2} = X1{1, 2} X,{= 2} v X1 {= 3} X,{1,2} v
X, {4} X,{0}. (46)

Equation (46) transforms to the following
expectation, which is equivalent to the two
corresponding results in Table 1.

E{S{Z}} = (P11 + P12) (P22 + D23) + (P13 +
P14) (P21 + P22) + P14P20- 47)

To close this section, we note that we
have so far used binary representations only to
deal with the discrete multi-valued function
S(X). According to discrete-function theory
[15, 35], this function should be expressed in a
minimal sum-of-products form as

S=0S{=0}viS{=1}v 2S{=2}v3s{>
3}=1S{=1}v 2S{=2}v3S{>3} (48)

where (A V B) denotes the maximum value of
A and B, and the binary expressions S{= 1},
S{= 2}, and S{= 3} are given by their minimal
sum-of-products forms in (35). The overall
minimality in (48) relies in the inclusion
relations among these expressions

S{=1} > S{=2} > S{=3}. (49)

To see that Equation (48) is appropriate,
let us consider, for example, the case when S =
2, for then S{=1}=S{=2}=1, and S{=
3} =0, so that the R.H.S. of (49) becomes
1(1)v2@1)v3iO@)=1v2vo=
max (1,2,0) = 2, as expected. Despite the
convenience of minimality offered by (48), it is
not adequate for producing an expectation,
since it has non-disjoint terms. A simpler and
more convenient expression for S(X) is the
pseudo-Boolean expression [¥7> 75 80-82]

S=1S{1}+ 2S{2} +3S(3}, (50)

which has the corresponding expected value
(thanks to the fact that expectation of an
arithmetic sum is the arithmetic sum of
expectations)

E{S} = 1 E{S{1}} + 2 E{S{2}} + 3E{S(3}}. (5)
The expected value of S lies in the
interval [0, M] = [0, 3], and is a weighted sum

of the expectations of its instances, which, in
turn, are expressed as in Table 1.
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X1 0 1 2 1 P10 P11 P12
0 0 1 0 0 1 Dao
0 1 2 1 1 2 D1
1 2 2 2 1 2 2 Doz
X, P2
Probability
@@ s —» (b) E{s}
Transform

Fig. 1. The structure function (success) of a small multi-state system of two three-valued components, shown in (a) with the
probability transform being applied to obtain its expectation in (b). Note that the expectation function is a multi-affine
function that possesses the same ‘truth table’ or MVKM as the logic success function. The cells with bold entries are
either minimal upper vectors (MUVs) or maximal lower vectors (MLVs). The 1 entries are both MUVs and MLVs.

X1 0 1 2
0 1 1 0
1 1 1 1
1 1 2 2
X,
(a) S,
Xi 0 1 2
0 1 1 0
1 1 2 1
1 2 2 2
X,
b)) Sp
X, 0 1 2
0 0 2 0
0 1 2 1
2 2 2 2
X,
(c) S

Fig. 2. Multi-valued Karnaugh maps (MVKMs) representing the structure functions of three small coherent three-state systems
of two three-valued components, which are (a) a system that is both dominant and binary imaged, (b) a dominant system
that is not binary imaged, and (c) a system that is non-dominant and hence non binary imaged.
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Xy 0 1 2 3 4
0 0 1 1 2 0
0 0 1 2 2 1
0 2 2 2 2 2
1 2 2 3 3 3
X5
S(XI'XZ)

Fig. 3. Multi-valued Karnaugh map (MVKM) representing the structure function of the coherent multistate system of Section
6. The function is completely specified by either (a) the cells with blue bold entries (called minimal upper vectors), or
(b) the cells with red bold entries (called maximal lower vectors). Note that the cell (0, 3) belongs to both sets in (a) and
(b), and hence it is distinguished in violet (i.e., a mixture of blue and red).

X, 0 1 2 3 4
0
1
I 2
1 1" 3
S E— X
X, A=t e e - R == = = ==
L A== =-r=-r-rT, 1 1 " 0
L1 1 1" 1 L 1
st L1 1 v [ 1 [ 1) 2
S S T 3
X,

(b) S{< 3} = 5{0,1,2} = S{0} v S{1} v S{2} == S{< 2} =X, {< 2} V X,{< 2}

Fig. 4. Conventional Karnaugh maps (CKMs) for (a) success at level 3, and (b) failure at level 3 for the system of Section 6.
Cells of bold entries denote the minimal upper vector at level 3: 0(3) = {(3, 3)} and the maximal lower vectors at level

2:0(2) ={(2,3),(4,2)}.
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X, 0 1 2 3 4
- LT ™ 0
a1 1,1 1
"1 1 ! L 15 2
[ R T N S T LA 3
X,

(@) S{=2}= S{2,3} = S{2} v S{3}

X, 0 1 2 3 4
T T 3T R 0
e L L 1) 1
, 1 2
I 1 1 3
X,

(b) S{<2}=S{<1}= 5{0,1} = S{0} v S{1}
= X {S 0}V X, {< 2} X,{< 1}V X, {< 3} X,{< 0}

Fig. 5. Conventional Karnaugh maps (CKMs) for (a) success at level 2, and (b) failure at level 2. Cells of bold entries in (a)
denote the minimal upper vectors at level 2: 6(2) = {(1,2),(3,1), (4,0)}, and those in (b) depict the maximal lower

vectors at level 1: (1) = {(0,3),(2,1), (3,0)}.

X, 0 1 2 3 4
i i -1 0
I 1 1 1 ! 1
RN . iy i T my A g 2
L1 L R [ ) T — . % 3
X,

(@) S{=1}= 5{1,2,3} = S{1} v S{2} v 5{3}
=X,{=2}v X, (=3} vX, (= 1}X,{=> 2}

X, 0 1 2 3 4
(1 ) 1 0
1 1 1
1 2
3
X,

(b) S{<1}= S{<0} = X, {< 0} X,{< 2}V X (<1} X,{< 1}

Fig. 6. Conventional Karnaugh maps (CKMs) for (a) success at level 1, and (b) failure at level 1. Cells of bold entries denote
the minimal upper vectors at level 1: 6(1) = {(2,0), (0,3),(1,2)} and the maximal lower vectors at level 0: (0) =
{(0,2),(1,1)}. The vectors (1, 2) is a minimal upper vector for both levels 1 and 2.
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Table 1. Expectation of Success instances of the system in example 1 via two different methods.

Expectation of an instance | Calculated via minimal upper vectors Calculated via maximal lower vectors
E{s{3}} E{S{= 3}} = (D13 + P14)P23 E{s{< 3}} - E{s{< 2}}
=1= (P10 + P11+ P12
+ (P13 + P14) P20 + D21
+ p22)
E{S{2}} E{s{= 2}} - E{s{= 3}} E{s{< 2}} - E{s{< 1}}
= P14 = (P10 + P11 T P12)
+ (P11 + P12 + P13) (P22 + (P13 + P14) (P20 + P21
+ P23) + P13P21 + P22) — (P10
= (P13 + P14)D23 + (P11 + P12) (P20
= p1a + (P11 + P12 + P13)D22 + P21) + P13D20)
+ (P11 + P12 — P14)P23
+ P13P21
E{s{1}} E{s{= 1}} - E{s{= 2}} E{s{< 13} - E{s{< 0}
= (P12 + P13 + P14) = P1o
+ (P10 t P11)P23 + P11D22 + (P11 + P12) (P20
= (P14 + P21) + P13P20
+ (P11 + P12 + P13) (P22 - ((Pw + p11) (P20
+ P23) + P13P21) +pyq) + mezz)
= (P12 + P13)P20
+ P12P21 + P10P23
E{s{0o}} E{S{Z 0}} - E{S{Z 1}} E{S{S 0}} = (P10 + P11) @20 + P21)
=1— ((p12 + P13 + P14) + P1oD22
+ (P10 t P11)P23 + P11D22

7. A Homogenous Binary-Imaged Three-
Variable Example

In this example, we revisit example 3 of
Wood 1. A four-valued coherent system consists
of three four-valued components. The system has
the following verbal description, which implies
that the system has a binary image

1. A series system (A 3-out-of-3: G system,
i.e., a 1-out-of-3: F system) at level 3.

2. A 2-out-of-3: G system (A 2-out-of-3: F
system) at level 2.

3. A parallel system (A 1-out-of-3: G system,
i.e., a 3-out-of-3: F system) at level 1.

This verbal description translates to the
algebraic description of system successes at the

respective levels, which constitutes an up binary
image of the system

S{= 3}
= X,{= 3}X,{= 3}X;{= 3},

S{= 2}
= X, {= 21X, {= 2} v X, {= 2}X.{= 2}
VX, {= 2}X.{> 2},

S{=1}
=X, (> 1}V X,{> 1}
v X:{> 1. (52¢)

The verbal description can also be
converted to the following algebraic description
of system failure at the respective levels, which
constitutes a down binary image of the system

(52a)

(52b)
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S{< 3}
=X, {<3}VvX,{<3}
v X3{< 3},

S{< 2}
= X {< 2}X,{< 2} v X, {< 2}X;{< 2}
VX{< 2}X5{< 2},

S{< 1}
= X {< 1}X,{< 2}X3{< 1}. (53¢)

Equations (53) can be also obtained
through complementation of equations (52).
Equations (52) can be rewritten in terms of the
minimal upper vectors (MUVs)

(53a)

(53b)

6(3)
={(3,3,3)}, (54a)
6(2)
=1{(2,2,0),(2,0,2),(0,2,2)}, (54b)
(1)
={(1,0,0),(0,1,0),(0,0,1)}. (54c)

Note that a prime implicant of the form
X.1{= 2}X,{= 2} (in which the variable X; is
absent) is equivalent to X;{= 2} X,{= 2} X5{=
0} and hence it lead to the MUV (2,2,0). For
this binary-imaged system, elements of 8(j) are
vectors of j or 0 components only.

Equations (53) might be rewritten with the
symbols {< 3},{< 2} and {< 1} replaced by
{< 2},{< 1} and {< 0}, namely

S{< 2} = X, {< 2}V X,{< 2}

v X5{< 2}, (55a)
S{< 1}
= X, {< 1IX,{< 1)V X, (< 1)X,(< 1)
vV Xo{< 1}X5{< 1}, (55b)
S{< 0} = X,{< 0}X,{< 0} X;{< 0}.  (55a)

Now, equations (55) (with the < notation)
tells us that the maximal lower vectors (MLVs)
are

0(2) ={(2,3,3),(3,2,3),(3,3,2)},
(1) =1{(1,1,3),(1,3,1),(3,1,1)},

(56a)
(56b)

0(0) = {(0,0,0)}. (56¢)

By contrast to the case of the MUVs in
which an absent variable X; stands for X;{= 0}
and is expressed by 0 in the MUV, the present
case of MLUs has an absent variable X; standing
for X;{< 3} and being expressed by 3 in the
MLU. For this binary-imaged system, elements
of ¢(j) are vectors of j or 3 components only.

Figure 7 displays a multi-valued
Karnaugh map (MVKM) representing the
structure function of the present coherent
multistate system. The function is completely
specified by either (a) the cells with bold blue
entries, which are the minimal upper vectors of
(54), or (b) the cells with bold red entries, which
are the maximal lower vectors of (56). Figure 8
displays three conventional Karnaugh maps
(CKMs) for the binary successes at levels 3, 2,
and 1, while Fig. 9 shows CKMs for the binary
failures at levels 1, 2, and 3. Equations (52) can
be converted to PREs via the procedure in Sec. 4

Spre{= 3}
= X, {= 3}X,{= 3}X3{= 3}, (57a)

Spret= 2} = X1 {= 2} X,{= 2} v X1 {= 2} X,{<
2} X3{= 2} v X, {< 2} X, {= 2}X53{= 2}, (57b)
Spret=z 1} =X {= 1} v X {< 1} (X,{= 1}

vV X,{< 1} X3{= 1}). (57¢)

Likewise, equations (55) can be converted
to PREs via the procedure in Sec. 4

Spre{=< 2}
=X {<2}v X, {> 2}(Xx{< 2}
v X,{> 2} X3{< 2}), (58a)

Spre{< 1} = Xi{S BX{= 1} v X, {= 1} X, (>

D X< 1V X, (> 1 X< UXa{< 1), (58b)
Spre{= 0}

Equations (57b) and (58b) are
demonstrated by the blue and red non-
overlapping loops in Fig. 10, respectively.



18

8. The Issue of Duality

Reliability analysis inherits the meta-
mathematical principle of duality from Boolean
algebra. We call two systems dual if they have
dual structure functions. The dual of a multi-
valued function S(X) is labelled S%(X) and
given by

Sd(Xl,Xz, ...,Xn) = 5()?1, Xz, ...,Xn),

where complementation of the output
variable S to S means the replacement of every
value j of it by (M — j), and complementation
of an input variable X, to X, means the
replacement of every value j of it by (m; — j).
Therefore, the dual function S¢ can be written

(59)

as [9, 82-86]
SAX) = M — S(m — X). (60)
where m-—X-= ((m1 - Xl)l (mz -

X3), o, (Mg — X)), ..., (M, — X;,)). Since the
S(X) function can be given by a generalization
of (48) as

Ali Muhammad Rushdi and Fares Ahmad Ghaleb

SUX) = Vil M = ) S{= M - )}m—X).(62)

The multi-valued Karnaugh map
(MVKM) used herein offers a handy means for
obtaining the dual of the structure function of a
multi-state system. Both map indices (inputs)
and entries (output) of the MVKM of the dual
function are obtained via complementation of
those of the MVKM of the original function.
Figures 11 and 12 offer MVKM representations
of the systems dual to the ones discussed in
Sections 6 and 7, respectively. The figures
verify the observation made earlier in [9, 84]
that a vector X is an MUV (MLV) of a certain
level j for the original function if and only if the
complementary vector (m — X) is an MLV
(MUYV) of the complementary level (M — j) for
the dual function. A comparison of the MVKMs
in Fig. 7 and 12 reveals that they represent the
same structure function. This means that the
system in Sec. 7 (with the structure function of
Fig. 7) is a self-dual one. This fact should have
been anticipated, since this system has three
levels with (a) dual systems (series and parallel)

S(X) = V?'/I=1 j S{=j}(X), (61) at the complementary levels 1 and 3, and (b) a
Then, its dual S%(X) is given by self-dual system at the intermediate level 2.
X 0 1 2 3
X, ol 1] 2]3lo]1]2]3]oJ1]2]3]o]1]2]3
o a1 alalalalalalalal2]2]1]1]2]27o0o
1 [ 1 [ a1 a1l alalal 22112271
1 1] 2211222221212 ]1212]272
1 1] 2211221222121 2]12121]13]S:3
X
S(X1,X2,X3)

Fig. 7. A multi-valued Karnaugh map (MVKM) representing the structure function of the coherent multistate system of Section
7. The function is completely specified by either (a) the cells with blue bold entries (the minimal upper vectors), or (b)
the cells with red bold entries (the maximal lower vectors).
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Fig. 8. Conventional Karnaugh maps (CKMs) for the binary successes at levels 3, 2, and 1 for the system of Section 7.

S{=1} = 5{1,2,3}

X, 0 1 2 3
X, ol 123 lo]1]2]3]o[1]2]3]o0of]1]2]3
0
1
2
1| 3
X3
(a) S{=3}=S5(3}
X, 0 1 2 3
X, o123 o123 ]o]1]2]3]of1]2]3
1|1 1] 1] o0
1|1 1|1 ] 1
1|1 1 1 a 1111121 ]1]2
1| 1 1|1 |11 1221 ]1]1]3
bt
(b) S{=2}=S5{2,3}
X, 0 1 2 3
X, o123 lo]1]2]3]o[1]2]3[o]1]2]3
1 |1 |12l 21]1]1]1]o0
1 |11 a2l a2 ]21]21]1]1
1|11 a1 11l a1l ]21]21]1]2
1111111111221 ]21]1]3
X3

Fig. 9. Conventional Karnaugh maps (CKMy) for the binary failures at levels 1, 2, and 3 for the system of Section 7.

S{< 3} = ${< 2} = §{0,1, 2}

X 0 1 2 3
X, ol 1 2]3lo]1]2]3]oJ1]2]3]o]1]2]3
1 0
1
2
3
X3
S{< 1} = 5{< 0} = 5{0}
X 0 1 2 3
X, JoJ1[2]3lo]J1]2]3]oJ1]2]3[o]1]2]3
111111121 ]1]1 1] 1 0
1 |11 11111 ]1]1 1| 1 1
1| 1 1| 1 2
1| 1 1| 1 3
X3
S{< 2} = 5{< 1} = 5{0, 1}
X, 0 1 2 3
X, o123 lo]1]2]3]o[1]2]3]o]1]2]3
1111111l a1l 1]1[1]1]o0
1| 1|1 12122l a2 ]21]21]1]1
1|1 |11l a2 ]21]1]1] 2
111111111112 1]1]1 3
X3
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Fig. 10. A conventional Karnaugh maps (CKMs) with non-overlapping loops comprising PRE representations for the binary
success (blue) and binary failure (red) at level 2 for the system of Section 7.

| X, 4 3 2 1 0
3 3 2 2 1 3
3 3 2 1 1 2
3 1 1 1 1 1
2 1 1 0 0 0
X,

Sd(Xp Xy) = 5:()?1:)?2)

Fig. 11. A Multi-value Karnaugh map representing the structure function of the system that is dual to the one in Section 6 (Fig.
3). Both map indices (input) and entries (output) are obtained via complementation of those in Fig. 3. Again the function
is completely specified by either its minimal upper vectors (blue) or maximal lower vectors (red). Note that, for this
particular map arrangement, the MUVs and the MLVs of a certain level for the original function are replaced by MLVs
and MUYVs of the complementary level for the dual function.

X, 3 2 1 0
X, | 3] 2]1Jo|3]2]1]Jo|3]2]1]o[3]2]1]o0
322222222211 ]2]2]1]1]:3
2 | 22222222211 ]2]2]1]1]2
2 |21l r 22111 af]1]af1]a1]1]1
2 2112211111 ]a]la1]1]1]o]o
X3

Sd(XLXz' X3) = 5:()?1:)?2' X3)

Fig. 12. A Multi-value Karnaugh map representing the structure function of the system that is dual to the one in Section 7 (Fig.
7). Both map indices (input) and entries (output) are obtained via complementation of those in Fig. 7. Again the function
is completely specified by either its minimal upper vectors (blue) or maximal lower vectors (red). Note that, for this
particular map arrangement, the MUVs and the MLVs of a certain level for the original function are replaced by MLVs
and MUYVs of the complementary level for the dual function. Comparison of Fig. 7 and 12 asserts that this multi-state
system is self-dual.
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9. Conclusions

This paper utilizes algebraic and map
tools for the reliability characterization and
analysis of general multi-state coherent
systems, which are interpreted herein to be non-
repairable systems with independent non-
identical components. The paper presents
switching-algebraic expressions of both system
success and system failure at each non-zero
level. These expressions are given as minimal
sum-of-products formulas or as probability—
ready expressions. The paper also utilizes a
convenient map representation via the multi-
valued Karnaugh map for the system structure
function S, or via M maps of binary entries and
multi-valued  inputs  representing  the
success/failure at every non-zero level of the
system. Further system characterizations are
also given in terms of minimal upper vectors or
maximal lower vectors. Great emphasis is
placed on making a minimal departure from
binary concepts and techniques, while taking
care to clarify novel issues that emerged due to
generalizations introduced by the multi-state
model.
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