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Abstract. This paper is devoted to the Boolean-based analysis of non-repairable coherent multi-state 
systems with independent non-identical multi-state components. We adapt several binary concepts 
and tools such as probability-ready expressions, Boolean quotients, the Boole-Shannon expansion, 
and the Karnaugh map to the multi-state case. The paper utilizes algebraic techniques of multiple-
valued logic to evaluate each of the multiple levels of the system output as a binary or propositional 
function of the system multi-valued inputs. The formula of each of these levels is then written as a 
probability–ready expression, thereby allowing its immediate conversion, on a one-to-one basis, into 
a probability or expected value. The symbolic reliability analysis of two small systems (which serve 
as standard gold examples of coherent multi-state systems) is completed successfully herein, yielding 
results that have been checked symbolically, and are also shown to agree numerically with those 
obtained earlier. The algebraic techniques used are supplemented by illustrative visualization via 
multi-valued Karnaugh maps. Emphasis is placed on the generalization of concepts of coherent 
binary systems to those of coherent multi-state ones, rather than innovating new unfamiliar stand-
alone concepts for these latter systems.  
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1. Introduction 

The reliability literature deals mainly with 
binary or dichotomous systems, in which both 
a system and its components have two states 
(i.e., either operational or failed). However, in 
many practical situations, there are multiple 
levels of system capacity or performance and/or 
different component performance levels and 
multiple component failure modes having 
different impacts on the system performance [1-

5]. These systems are modeled as multi-state 
systems (MSSs), which might be coherent or 
non-coherent [6-16]. This paper deals with the 
prominent class of non-repairable coherent 

MSSs with independent non-identical multi-
state components. The main contribution of the 
paper is to demonstrate that, similarly to 
coherent binary systems, coherent multi-state 
systems can be conveniently analyzed with the 
aid of switching-algebraic techniques and tools. 

The literature abounds with standard 
research techniques for the reliability analysis 
of MSSs [17-34]. Most of these standard 
techniques rely on the utilization of discrete 
non-binary functions [35-37] or multiple-valued 
logic [38-56]. The main theme of this paper is that 
instead of tightening or narrowing the 
paradigms of discrete functions or multi-valued 
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logic to fit the multi-state reliability problem, 
one could generalize or enlarge the switching-
algebraic reliability analysis to suit the multi-
state case. The starting point in our scheme 
pertains to reliability per se, and hence the 
adaptation to the multi-state case is 
straightforward. By contrast, the starting point 
in the standard analysis does not relate directly 
to reliability, or even to probability, and has to 
augment its course of action with some 
probability techniques, which might be lacking 
in efficiency.   

This paper extends algebraic techniques 
and tools of switching algebra or binary logic to 
ones of multiple-valued logic, so as to evaluate 
each of the multiple levels of the system output 
as an individual binary or propositional function 
of the system multi-valued inputs. The formula 
of each of these levels is then written as a 
probability–ready expression, thereby allowing 
its immediate conversion, on a one-to-one basis, 
into a probability or expected value. The analysis 
will be seen to be particularly simple when the 
multi-state system is binary-imaged, i.e., when its 
success at each specific level is dependent only 
on component successes at the same level [8, 9, 16, 

30-34]. The paper strives to provide a 
pedagogically-oriented treatment that establishes 
a clear and insightful interrelationship between 
binary modeling and MSS modeling by stressing 
that multi-valued concepts are natural and simple 
extensions of two-valued ones. Visual insight 
secured through the use of Karnaugh maps aids 
in the comprehension of coherent-system 
concepts, whether they are binary and multi state. 
A notable achievement for the multi-state case is 
the clarification of the subtle relation between a 
minimal upper vector (MUV) at a certain level 
and a prime implicant of success (minimal path) 
at that level, or the dual relation between a 
maximal lower vector (MLV) at a certain level 
and a prime implicant of failure (minimal cutsets) 
at that level. Many authors (see, e.g., [9, 15]) 
consider that the MUVs and MLVs play the role 

of (or are synonymous to) minimal paths and 
minimal cutsets, respectively. However, a 
minimal path constitutes all the upper vectors 
extending (inclusively) from a particular MUV to 
the all-highest vector, while a minimal cutset 
comprises all the lower vectors extending 
(inclusively) from the all-0 vector to a particular 
MLV. 

The organization of the remainder of this 
paper is as follows. Section 2 presents important 
assumptions, notation and nomenclature. 
Section 3 introduces the concept of Boolean 
quotient in a multi-valued context. Section 4 
extends the concept of a probability-ready 
expression (PRE) from the binary to the multi-
state case. Section 5 provides a quick review of 
the concept of the Boole-Shannon expansion, 
again with an emphasis on its interpretation in a 
multi-valued sense. In Sections 6 and 7, the 
paper makes its main point through the multi-
valued analysis of two specific (albeit standard) 
multi-state systems. Section 6 deals with a 
nonhomogeneous two-component system, while 
Section 7 handles a homogenous binary-imaged 
three-component system. Section 8 explores the 
issue of duality, which is rooted in the theory of 
switching and discrete functions, wherein it 
spreads to binary and multi-state reliability. 
Section 9 concludes the paper. 

2. Assumptions, Notation and Nomenclature 

2.1 Assumptions 

 The model considered is one of a multi-
state system with multistate components [1, 

6], specified by the structure or success 
function 𝑆 𝑿  [15]  

𝑆: 0, 1, ⋯ , 𝑚 0, 1, ⋯ , 𝑚 … 
0, 1, ⋯ , 𝑚

→ 0, 1, ⋯ , 𝑀 .                                       1  

 The system is generally non-homogeneous, 
i.e., the number of system states 𝑀 1  
and the numbers of component states 
𝑚 1 , 𝑚 1 , ⋯ , 𝑚 1  might 
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differ. When these numbers have a 
common value, the system reduces to a 
homogeneous one. 

 The system is a non-repairable one with 
statistically independent non-identical 
(heterogeneous) components. 

 The system is a coherent one enjoying the 
properties of causality, monotonicity, and 
component relevancy [1, 2, 4, 31-34]. 

The system is not necessarily binary-
imaged or dominant [16]. 

 

2.2 Notation  

Symbol  Description 

𝑋  A multivalued input variable representing component 𝑘 1 𝑘 𝑛 , where 𝑋 ∈
0, 1, … , 𝑚 , and  𝑚 1 is the highest value of 𝑋 . 

𝑋 𝑗  A binary variable representing instant 𝑗 of 𝑋  

𝑋 𝑗 𝑋 𝑗 ,  

i.e., 𝑋 𝑗 1 if 𝑋 𝑗 and 𝑋 𝑗 0 if 𝑋 𝑗. The instances 𝑋 𝑗  for  0 𝑗
𝑚  form an orthonormal set, namely, for 1 𝑘 𝑛  

⋁  𝑋 𝑗 1,                                                                                   (2a) 

𝑋 𝑗  𝑋 𝑗 0  for  𝑗 𝑗  .                                                             (2b) 

Orthonormality is very useful in constructing inverses or complements. The complement 
of the union of certain instances is the union of the complementary instances. In particular, 
the complement of 𝑋 𝑗 𝑋 𝑗, 𝑗 1, … , 𝑚  is 𝑋 𝑗 𝑋 0, 1, … , 𝑗 1 . 

𝑋 𝑗  An upper value of  𝑋  0 𝑗 𝑚  : 

𝑋 𝑗 𝑋 𝑗, 𝑗 1, … , 𝑚 ⋁ 𝑋 𝑖 𝑋 𝑗 ∨ 𝑋 𝑗 1 ∨ … ∨ 𝑋 𝑚 .  (3) 

The value 𝑋 0  is identically 1. The set 𝑋 𝑗  for 1 𝑗 𝑚  is neither 
independent nor disjoint, and hence it is difficult to be handled mathematically, but it is 
very convenient for translating the verbal or map/tabular description of a coherent 
component into a mathematical form when viewing component success at level 𝑗. The 
complement of 𝑋 𝑗  is  

𝑋 𝑗 𝑋 0, 1, … , 𝑗 1 𝑋 0 ∨ 𝑋 1 … ∨ 𝑋 𝑗 1 𝑋 𝑘 𝑗 1 .  (4) 

𝑋𝒌 𝑗  A lower value of  𝑋  0 𝑗 𝑚 :   

𝑋 𝑗 𝑋 0, 1, … , 𝑗 1, 𝑗 ⋁ 𝑋 𝑖 𝑋 0 ∨ 𝑋 1 … ∨ 𝑋 𝑗 1 ∨ 𝑋 𝑗 .      (5) 

The value 𝑋 𝑚  is identically 1. The set 𝑋 𝑗   for  0 𝑗 𝑚 1  is neither 
independent nor disjoint, and hence it is not convenient for mathematical manipulation 
though it is suitable for expressing component failure at level 𝑗 1 . Instances, upper 
values and lower values are related by 

𝑋 𝑗 𝑋 𝑗  𝑋 𝑗 1 𝑋 𝑗  𝑋 𝑗 1 𝑋 𝑗  𝑋 𝑗 1  

𝑋 𝑗 𝑋 𝑗 1 .                                                 (6) 



4                                          Ali Muhammad Rushdi and Fares Ahmad Ghaleb 

 

𝑆 A multivalued output variable representing the system, where 

𝑆 ∈ 0, 1, … , 𝑀 ,                                                                           (7) 

and 𝑀 1 is the highest value attained by the system. The system is called 
homogeneous if 𝑀 𝑚 𝑚 ⋯ 𝑚 . The function 𝑆 𝑿  is usually called the 
system success or the structure function. It is conveniently represented by a Multi-
Valued Karnaugh Map (MVKM) [30-34, 48, 57]. Its complement  𝑆̅ 𝑿  is called 
system failure, and is also a multivalued variable of 𝑀 1  values.  The sum 𝑆 𝑿  
𝑆̅ 𝑿 ) is identically equal to 𝑀. 

𝑆 𝑗  A binary variable representing instant 𝑗 of 𝑆  

𝑆 𝑗 𝑆 𝑿 𝑗 ,                                                                     (8) 

i.e., 𝑆 𝑗 1 if  𝑆 𝑿 𝑗, and 𝑆 𝑿 0 if 𝑆 𝑿 𝑗. The instances 𝑆 𝑗  for 0 𝑗
𝑀  form an orthonormal set, i.e. 

⋁  𝑆 𝑗 1,                                                                          (9) 

𝑆 𝑗  𝑆 𝑗 0  for  𝑗 𝑗 ,                                                        (10) 

which means that one, and only one, of the 𝑀 1  instances of 𝑆 has the value 1, while 
the other instances are all 0′𝑠.   

𝑆 𝑗  An upper value of 𝑆  

𝑆 𝑗 𝑆 𝑗, 𝑗 1, … , 𝑀 𝑆 𝑖 .                           11

𝑆 𝑗  A lower value of 𝑆 

𝑆 𝑗 𝑆 0, 1, … , 𝑗 𝑆 𝑖 .                                                          12  

Instances, upper values and lower values of 𝑆 are related by 

𝑆 𝑗 𝑆 𝑗  𝑆 𝑗 1 𝑆 𝑗 𝑆̅ 𝑗 1 𝑆 𝑗 𝑆 𝑗 1 .         (13) 
 

2.3 Nomenclature  

2.3.1 A vector X:  

 A specific value of the input arguments  
𝑿 𝑋 𝑋 ⋯ 𝑋  of the multi-valued 
structure function 𝑆;  

 A particular cell of the MV Karnaugh map 
of 𝑆 or the binary Karnaugh map of any of 
its instances 𝑆 𝑗 , upper values 𝑆 𝑗  or 
lower values 𝑆 𝑗 .  

 

 

2.3.2 An upper vector for level 𝑗 0 

 A particular value of 𝑿 such that 𝑆 𝑿
𝑗, 𝑗 1, 2, … , 𝑀 ; 

 A true vector for 𝑆 𝑗 , 𝑖. 𝑒., a vector 
such that 𝑆 𝑗 1, 𝑗 1, 2, … , 𝑀 ; 

 A map cell for system success at level 
𝑗, 𝑗 1, 2, … , 𝑀 . 

2.3.3. A minimal upper vector (MUV) at level 
𝑗 0, denoted 𝜃   

An upper vector 𝑿 for level 𝑗 such that  
𝑆 𝒀 𝑗, 𝑗 1, 2, … , 𝑴  for any vector 𝒀
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𝑿. Such a vector is a member of the set of MUVs 
at level  𝑗 0, denoted by 𝜃 𝑗 . 

2.3.4 An upper prime implicant at level 𝑗 0, 
denoted 𝑃  

 The set of upper vectors 𝑿 for level 
𝑗 1 𝑗 𝑀  such that  

𝜽 𝑿 𝑼. 

 The loop in the 𝑆 𝑗  map whose cells 
are not lower than 𝜽 ; 

𝑃 𝑋
𝟏

𝜃 𝑘 ,                       14  

𝑆 𝑗 𝑃
𝒊

.                                  15  

2.3.5 The all-highest vector 𝑈 

The vector where each input argument 
attains its highest value 

𝑼 𝑚 𝑚 ⋯ 𝑚 . 

The vector belongs to upper prime 
implicants at all levels, i.e. to 𝑃  for all 𝑖 and all 
𝑗 0. Due to causality, the structure function 
must attain its maximum when 𝑿
𝑼, 𝑖. 𝑒.  𝑆 𝑼 𝑀. 

2.3.6 A lower vector for level 𝑗 𝑀 

 A particular value of 𝑿 such that 𝑆 𝑿
𝑗, 𝑗 0, 1, … , 𝑀 1 ; 

 A true vector for 𝑆 𝑗 , 𝑖. 𝑒., a vector such 
that 𝑆 𝑗 1, 𝑗 0, 1, … , 𝑀 1 ; 

 A false vector for 𝑆 𝑗 𝑆 𝑗
1 , 𝑗 0, 1, … , 𝑀 1 ;  

 A map cell for system failure at level  
𝑗 𝑗 1, 2, … , 𝑀 . 

2.3.7 A maximal lower vector (MLV) at level 
𝑗 𝑀, denoted 𝜎  

A lower vector 𝑿 for level 𝑗 such that 𝑆 𝒀 𝑗,
𝑗 1, 2, … , 𝑀  for any vector 𝒀 𝑿. Such a 

vector is a member of the set of MLVs at level 
𝑗 𝑀, denoted by 𝝈 𝑗 . 

2.3.8 A lower prime implicant at level 𝑗 𝑀, 
denoted 𝑄   

 The set of lower vectors 𝑿 for level 
𝑗 0 𝑗 𝑀 1  such that  

𝑳 𝑿 𝝈 . 

 The loop in the 𝑆 𝑗  map whose cells 
are not higher than 𝝈 ;  

𝑄 𝑋 𝜎 𝑘 ,                            16  

𝑆 𝑗 𝑄 .                                           17  

2.3.9 The all-lowest vector 𝐿 

The vector where each input argument 
attains its lowest value  

𝑳 0 0 ⋯ 0                      18  

This vector belongs to all lower prime 
implicants at all levels, i.e. to 𝑄  for all 𝑖 and 
all 𝑗 𝑗 𝑀 . Due to causality, the structure 
function attains its minimum when 𝑿
𝑳, 𝑖. 𝑒. , 𝑆 𝑳 0.  

2.3.10 The expected value of a certain instance 
𝑆 𝑗  

The expected value of a certain instance 
𝑆 𝑗  of 𝑆, 𝑗 0, 1, … , 𝑀  

𝐸 𝑆 𝑗 𝐸 𝑆 𝑗 𝐸 𝑆 𝑗 1
𝐸 𝑆 𝑗 𝐸 𝑆 𝑗 1 ,              (19a) 

where 

 𝐸 𝑆 𝑀 1 0,                               19𝑏  

𝐸 𝑆 1 0,                               19𝑐  

𝐸 𝑆 0 1,                              19𝑑  

𝐸 𝑆 𝑀 1.                              19𝑒  
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The availability of two formulas for 
𝐸 𝑆 𝑗  allows us to select the formula that is 
better in some sense (easier to derive, more 
compact to express, etc.). Otherwise, we might 
evaluate both formulas and check that they agree. 
Both sets of formulas 19𝑎 , 19𝑏 , 19𝑑  
and formulas 19𝑎 , 19𝑐 , 19𝑒  confirm the 
arithmetic normality property  

𝐸 𝑆 𝑗 1.                                             20  

2.3.11 The probability transform 

The expectation 𝐸 . .  of any logic 
expression (binary or multi-valued) might be 
obtained through a probability-transform 
operation [58, 59]. An expression for 𝐸 𝑆  is a 
multi-affine function in its arguments (an 
algebraic function depicting a straight line 
relation in each of the arguments), and this 
expression has the same “truth table” as that of 
the logic function 𝑆 [59]. Figure 1 illustrates the 
probability-transform operation for a system of 
two three-valued components. Despite the 
different mathematical natures of 𝑆 and 𝐸 𝑆 , 
they are both of a multi-affine structure, and they 
have ‘truth tables’ of exactly the same entries. 

2.3.12 Various Relations between Two 
Component State Vectors 𝑋  and 𝑌 

 A vector 𝑿 is larger than another vector 𝒀 
(denoted 𝑿 𝒀) if every element of 𝑿 is 
at least as large as the corresponding 
element of 𝒀, and at least one element of 𝑿 
is larger than the corresponding element of 
𝒀. If 𝑿 𝒀 then certainly 𝑆 𝑿 𝑆 𝒀 , 
and occasionally  𝑆 𝑿 𝑆 𝒀 , as a result 
of coherence. 

 A vector 𝑿 is equivalent to another vector 
𝒀 (denoted 𝑿 ↔ 𝒀) if  𝑆 𝑿 𝑆 𝒀 , i.e., 
both are equal to 𝑗, 𝑗 0,1, 2, … , 𝑀 . 
Therefore, the set of input vectors 𝑿 is 

partitioned into 𝑀 1  equivalence 
classes. 

 A vector 𝑿 dominates another vector 𝒀 if it 
is larger than it (𝑿 𝒀), or it is larger than 
a vector 𝒁 in the same equivalence class as 
𝒀 ((𝑿 𝒁 ∧ 𝑆 𝒁 𝑆 𝒀  [16]. 

2.3.13 A Binary-Imaged Multi-State System 

A binary-imaged multi-state system is a 
system whose success at level 𝑗 is a function 
only of component successes at the same level 
(𝑆 𝑗  is a function of 𝑿 𝑗  only), or 
equivalently, it is a system whose failure at 
level 𝑗 is a function only of component failures 
at the same level (𝑆 𝑗 1  is a function of 
𝑿 𝑗 1  only) [34]. For a binary-imaged 
system, elements of the set of MUVs 𝜃 𝑗   are 
vectors of 𝑗 or 0 components only, and elements 
of the set of MLVs 𝜎 𝑗  are vectors of 𝑗 or 𝑀 
components only [34]. Figure 2 shows Multi-
valued Karnaugh maps (MVKMs) representing 
the structure functions of three small coherent 
three-state systems of two three-valued 
components, the first of which is binary 
imaged, while the remaining two are not binary 
imaged.  

2.3.14 A Dominant Multi-State System 

A dominant multi-state system is a 
coherent multi-state system, in which 𝑆 𝑿
𝑆 𝒀  implies vector 𝑿 dominates vector 𝒀. In a 
dominant system, every vector of state 𝑗 0 
must be larger than at least one vector of a 
smaller state value. A non-dominant system 
cannot be binary imaged [16]. Figure 2 shows (a) 
a system that is both dominant and binary 
imaged, (b) a dominant system that is not binary 
imaged, and (c) a system that is non-dominant 
and hence non binary imaged. Note that the 
system in Fig. 2(c) is non-dominant since its 
vector (2, 0) of state 2 is not larger any vector 
of state 1. 
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2.3.15 Multi-State Interpretation of Binary 
Systems 

For a binary system (𝑀 1 , there is a 
single level other than level 0, namely level 1. 
In this case, success at level 1 is 𝑆 1
𝑆 1 , while failure at level 1 is 𝑆 1 𝑆 0 . 
In the binary case, there is no need to refer to 
level 1 since it is the only non-zero level and is 
implicitly understood by default, and we simply 
refer to system success 𝑆 and system failure 𝑆̅ 
instead of 𝑆 1  and 𝑆 0 . 

3.  Boolean Quotients 

The concept of a Boolean quotient is an 
important switching-algebraic concept that can 
be conveniently viewed in a multi-valued context 
[31].  Given a two-valued Boolean function (a 
switching function) 𝑓 and a term 𝑡, the Boolean 
quotient of 𝑓 with respect to 𝑡, denoted by (𝑓/𝑡), 
is defined to be the function formed from 𝑓 by 
imposing the constraint {𝑡 =1} explicitly [59, 60],  
namely  

𝑓/𝑡  𝑓 ,                                      21  

The Boolean quotient is also known as a 
ratio, a sub-function, or a restriction. Brown [60] 
and Rushdi & Rushdi [59] list several useful 
properties of Boolean quotients. In the multi-
valued context, the term 𝑡 is a product (ANDing) 
of literals. Each of the multi-valued variables is 
either absent or present in the form of a particular 
literal, which might be a single instance or the 
ORing of several instances [31].  

A fundamental property of the Boolean 
quotient states that a term ANDed with a function 
is equal to the term ANDed with the Boolean 
quotient of the function with respect to the term, 
namely. 

𝑡 ∧ 𝑓  𝑡  ∧  𝑓/𝑡 .                               22  

If the term 𝑡 is a factor of the function 𝑓 (i.e.,   
𝑡 ∧  𝑔, 𝑡 ∧ 𝑓 𝑓), then (22) takes the simpler 
form  

𝑓  𝑡  ∧  𝑓/𝑡 .                                 (23) 

In this paper, we denote a Boolean quotient 
by an inclined slash 𝑓/𝑡 . However, it is 
possible to denote it by a vertical bar 𝑓|𝑡  to 
stress the equivalent meaning (borrowed from 
conditional probability) of  𝑓 conditioned by 𝑡 or 
𝑓 given 𝑡 [59].  

4. Probability-Ready Expressions 

The concept of a probability-ready 
expression (RRE) is well-known in the two-
valued logical domain [59, 61-66], and it is still valid 
for the multi-valued logical domain [30-34]. A 
Probability-Ready Expression is a random 
expression that can be directly transformed, on a 
one-to-one basis, to its statistical expectation (its 
probability of being equal to 1) by replacing all 
logic variables by their statistical expectations, 
and also replacing logical multiplication and 
addition (ANDing and ORing) by their 
arithmetic counterparts. A logic expression is a 
PRE if:  

a) all ORed products (terms formed by 
ANDing) are disjoint (mutually exclusive), and  

b) all ANDed sums (alterms formed via 
ORing) are statistically independent. 

Condition (a) is satisfied if for every pair 
of ORed terms, there is at least a single 
opposition, i.e., there is at least one variable that 
appears with a certain set of instances in one 
term and appears with a complementary set of 
instances in the other.  Condition (b) is satisfied 
if for every pair of ANDed alterms (sums of 
disjunctions of literals), one alterm involves 
variables describing a certain set of 
components, while the other alterm depends on 
variables describing a set of different 
components (under the assumption of 
independence of components) [31, 59, 61, 62, 66].  

While there are many methods to introduce 
characteristic (a) of orthogonality (disjointness) 
into a Boolean expression [67-74], there is no way 
to induce characteristic (b) of statistical 
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independence. The best that one can do is to 
observe statistical independence when it exists, 
and then be careful not to destroy or spoil it and 
take advantage of it. Since one has the freedom 
of handling a problem from a success or a failure 
perspective, a choice should be made as to which 
of the two perspectives can more readily produce 
a PRE form. It is better to look at success for a 
system of no or poor redundancy (a series or 
almost-series system), and to view failure for a 
system of full or significant redundancy (a 
parallel or almost- parallel system) [59, 61-66].  

The introduction of orthogonality might be 
achieved as follows. If neither of the two terms 𝐴 
and 𝐵 in the sum (𝐴 ∨ 𝐵) subsumes the other 
(𝐴 ∨ 𝐵 𝐴 and 𝐴 ∨ 𝐵 𝐵) and the two terms 
are not disjoint (𝐴 ∧ 𝐵 0), then 𝐵 can be 
disjointed with 𝐴 by factoring out any common 
factor (using (23)) and then applying the 
Reflection Law, namely 

𝐴 ∨ 𝐵 𝐶 ∨ 𝐶 ∨

𝐴 ∨ 𝐵.                                                                     (24) 

In (24), the symbol 𝐶 denotes the common 
factor of 𝐴 𝑎𝑛𝑑 𝐵, and the Boolean quotient 
𝐴/𝐶  might be viewed as the term 𝐴 with its 

part common with 𝐵 removed. Note that 24  
leaves the term 𝐴 intact and replaces the term 𝐵 
by an expression that is disjoint with A. The 
quotient 𝐴/𝐶  is a product of 𝑒 entities  
 𝑌   1 𝑘 𝑒 , so that 𝐴/𝐶  might be 
expressed via De Morgan’s Law as a disjunction 
of the form 

𝐴/𝐶 𝑌 .                              25  

Note that each  𝑌  stands for a disjunction 
of certain instances of some variable 
𝑋  𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑌  is a disjunction of the 
complementary instances of the same variable. If 
we combine (24) with (25), we realize that the 

term 𝐵 is replaced by 𝑒 terms 𝑒 1 , which are 
each disjoint with the term 𝐴, but are not 
necessarily disjoint among themselves. 
Therefore, we replace the De Morgan’s Law in 
(25) by a disjoint version of it [59]  namely 

(26) 

When (26) is combined with (24), the first 
term 𝐴 still remains intact, while the second term 
𝐵 is replaced by 𝑒 terms which are each disjoint 
with 𝐴 and are also disjoint among themselves. 
This means that one has a choice of either 
disjointing 𝐵 with 𝐴 in 𝐴 ∨ 𝐵, or disjointing 𝐴 
with 𝐵 in 𝐵 ∨ 𝐴. The usual practice that is likely 
to yield good results is to order the terms in a 
given disjunction so that those with fewer literals 
appear earlier.  

Rushdi [31] presented a simple example of 
the procedure above by considering the 
following expression  

𝑆 0   𝑋 0  ∨  𝑋 0  ∨ 𝑋 0   ∨  𝑋 0 ,  (27) 

which is not a PRE, since it has ORed quantities 
that are not disjoint. A PRE version of it might 
be obtained by using the afore-mentioned 
disjointing procedure, namely 

𝑆 0   𝑋 0  ∨ 𝑋 0  𝑋 0  ∨  𝑋 0  
𝑋 0   ∨ 𝑋 0  𝑋 0 .                            (28) 

However, a much simpler PRE is 
obtained by simply complementing (27), 
namely 

     S 0   𝑋 0   𝑋 0   𝑋 0   𝑋 0 .      (29) 

The expression in (29) is a PRE since 
ANDed quantities in it are statistically 
independent. This example illustrates that 
attaining PRE form is possible not only via the 
implementation of a disjointing procedure, but 
also through effective utilization of statistical 
independence, which might be manifested in a 
particular form of the function and lacking in its 
complementary form.  
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5.  The Boole-Shannon Expansion 

The most effective way for converting a 
Boolean formula into a PRE form is the Boole-
Shannon Expansion, which takes the following 
form in the two-valued case [59-61, 64, 66, 75] 

𝑓 𝑿   𝑋  ∧  𝑓 𝑿|0  ∨  𝑋  ∧  𝑓 𝐗|1 , (30) 

This Boole-Shannon Expansion expresses 
a (two-valued) Boolean function 𝑓 𝑿  in terms 
of its two subfunctions 𝑓 𝑿|0  and 𝑓 𝑿|1 . 
These subfunctions are equal to the Boolean 
quotients 𝑓 𝑿 /𝑋  and 𝑓 𝑿 /𝑋 , and hence are 
obtained by restricting X  in the expression of 
𝑓 𝑿  to 0 and 1, respectively. If 𝑓 𝑿  is a sum-
of-products (sop) expression of 𝑛 variables, the 
two sub-functions 𝑓 𝑿|0  and 𝑓 𝑿|1  are 
functions of at most 𝑛 1  variables.  A multi-
valued extension of (30) is 

 𝑆 𝑿  𝑋 0  ∧ 𝑆 𝑿 /𝑋 0  ∨   𝑋 1  ∧
𝑆 𝑿 /𝑋 1  ∨   𝑋 2  ∧ 𝑆 𝑿 /𝑋 2   ∨
  𝑋 3  ∧ 𝑆 𝑿 /𝑋 3  ∨ . ..   ∨   𝑋 𝑚  ∧
𝑆 𝑿 /𝑋 𝑚 .                                           (31) 

A formal proof of (31) is achieved by 
“perfect induction,” that is, by considering the 
𝑚 1  exhaustive cases, namely: {𝑋 0

1}, {𝑋 1 1}, {𝑋 2 1}, {𝑋 3 1}, 
…, and {𝑋 𝑚 1}. In the first case, for 
example, {𝑋 0 1}, and consequently 
𝑋 1  𝑋 2  𝑋 3 ⋯  𝑋 𝑚

0 . Therefore,  

The L.H.S. of (31) = the R.H.S. of (31) 
= 𝑆 𝑿 | 𝑋 0 1  𝑆 𝑿 /𝑋 0 .                 (32) 

The other 𝑚  cases can be handled in a 
similar fashion. The expansion (31) serves our 
purposes very well. Once the sub-functions in 
(31) are expressed by PRE expressions, 𝑆 𝐗  
will be also in PRE form, thanks to the 
combination of the following two facts:  

(a) The R.H.S. of (31) has 𝑚 1  
disjoint terms, each of which containing one of 
the 𝑚 1  disjoint instances  

𝑋 0 , 𝑋 1 , 𝑋 2 , 𝑋 3 , …, and 𝑋 𝑚  of 
the variable 𝑋 ,   

(b) Each of these 𝑚 1  terms is a 
product of two statistically-independent entities, 
since any sub-function 𝑆 𝑿 /𝑋 𝑗  (0 𝑗
 𝑚 ) does not involve any instance of the 𝑚
1 -valued variable 𝑋 , since its  𝑋 𝑗  instance 
is set to 1, while all its other instances are set to 
0.  

The expansion (31) might be viewed as a 
justification of the construction of the multi-
valued Karnaugh map used extensively herein 
[30-34, 48]. This expansion transforms directly, 
on a one-to-one basis, to the probability domain 
as 

𝐸 𝑆 𝑿 𝐸 𝑋 0 ∗ 𝐸 𝑆 𝑿 /𝑋 0  
  𝐸 𝑋 1 ∗ 𝐸 𝑆 𝑿 /𝑋 1    𝐸 𝑋 2 ∗
𝐸 𝑆 𝑿 /𝑋 2   𝐸 𝑋 3 ∗ 𝐸 𝑆 𝑿 /𝑋 3
⋯  𝐸 𝑋 𝑚 ∗ 𝐸 𝑆 𝑿 /𝑋 𝑚 .                 (33) 

Equation (33) might be viewed as a 
restatement of the Total Probability Theorem, 
provided we interpret the expectation of a 
Boolean quotient as a conditional probability [59, 
76, 77]. It is the basis of multi-valued decision 
diagrams (MDDs), that are optimally employed 
for the reliability analysis of multi-state systems 
[23-25], and that constitute the multi-valued 
counterpart of the Binary decision diagrams [75].   

6. A Non-homogeneous non Binary-Imaged 
Two-Variable Example 

This example is taken from one of the 
best available textbooks on multistate reliability 
[15], wherein the example is solved via 
techniques borrowed from the theory of discrete 
functions [35]. The solution in [15] handles 
discrete functions reasonably, but then seeks 
probability expressions through effectively 
using the Inclusion-Exclusion (IE) Principle, 
which is notorious for its poor computational 
complexity and its production of prohibitively 
long reliability expressions that result in 
exaggerated round-off errors [64, 70, 78, 79]. The 
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solution presented herein avoid the IE 
shortcomings through the derivation of a PRE 
while still in the Boolean domain. Not only is 
the solution procedure much simpler and more 
intuitive than any standard solution, such as the 
one in [15], but the final expressions obtained 
are much more compact as well. Though the 
current system lacks a binary image, most of its 
analysis herein deals solely with binary entities 
such as 𝑆 𝑗 , 𝑆 𝑗 , and 𝑆 𝑗 . The ultimate 
goal of the analysis is to obtain 𝐸 𝑆 𝑗  for 𝑗
𝑜, 1, … , 𝑀, which might be conveniently 
obtained through the analysis of 𝑆 𝑗  and 
𝑆 𝑗 . It is only towards the end of this section 
that we deal explicitly with the multi-valued 𝑆 
rather than with its binary instances.    

The system considered in this example is 
a non-homogeneous one specified by the 
function table of its structure or success 
function 𝑆 𝑿   

𝑆: 0, 1, 2,3,4 0, 1, 2, 3 → 0, 1, 2, 3 . 34  

This function table is shown in Fig. 3, and 
is conveniently identified to be in the form of a 
multi-valued Karnaugh map (MVKM). All 
entries of this map are explicitly given, but this 
is a superfluous representation of this coherent 
structure function, since it suffices to specify 
either (a) the bold entries in the cells with blue 
color (the minimal upper vectors (MUVs)), or 
(b) the bold entries in the cells with red color 
(the maximal lower vectors (MLVs)), where the 
cell (0, 3) belongs to both sets in (a) and (b).  

The following set of equations is a 
complete non-binary-image characterization of 
the system under study. They are obtained from 
Fig. 4(a), 5(a), and 6(a), respectively, and they 
give each binary function 𝑆 𝑗  for 𝑗
3, 2 𝑎𝑛𝑑 1 , as a function of 𝑿 in general (and 
not necessarily in terms of 𝑿 𝑗  for 𝑗
3, 2 𝑎𝑛𝑑 1  alone) Here, 𝑆 𝑗  depicts system 
success at level 𝑗 (upper states) in a minimal 
sum-of-products form 

 𝑆 3 𝑋 3  𝑋 3                   (35a) 

𝑆 2 𝑋 1  𝑋 2 ∨ 𝑋 3  𝑋
1 ∨ 𝑋 4  𝑋 0 ,                             (35b) 

𝑆 1 𝑋 2 ∨ 𝑋 3 ∨ 𝑋
1  𝑋 2 .                                               (35c) 

The minimal upper vectors (MUVs) at 
levels 𝑗 𝑗 3, 2, 𝑎𝑛𝑑 1  can be observed (as 
minimal cells of upper loops) from Fig. 4(a), 
5(a), and 6(a), respectively, or deduced, through 
immediate inspection, from equations (35) as  

 𝜃 3 3, 3 ,                                 (36a)    

𝜃 2 1, 2 , 3,1 , 4, 0 ,            (36b) 

𝜃 1 2, 0 , 0, 3 , 1,2 .            (36c) 

We reiterate that there exists a subtle 
difference between a minimal upper vector 
(MUV) at a certain level and a corresponding 
prime implicant of success (minimal path) at 
that level, despite the existence of a one-to-one 
relation between them. In fact, a minimal path 
constitutes all the upper vectors extending 
(inclusively) from a particular MUV to the all-
highest vector. For example, Success at level 1 
has three prime implicants, the first of which is 

𝑋 2 𝑋 2  𝑋 0  
𝑋 2, 3, 4  𝑋 0, 1, 2, 3 𝑋 2  𝑋 0 ∨
𝑋 2  𝑋 1  ∨ 𝑋 2  𝑋 2  ∨  𝑋 2  𝑋 3  ∨
 𝑋 3  𝑋 0  ∨  𝑋 3  𝑋 1  ∨ 𝑋 3  𝑋 2  ∨  
𝑋 3  𝑋 3  ∨ 𝑋 4  𝑋 0  ∨  𝑋 4  𝑋 1  ∨
 𝑋 4  𝑋 2  ∨  𝑋 4  𝑋 3 ,                    (37) 

comprises 12  vectors (or Karnaugh map cells, 
as shown in Fig. 6(a)), with its lowest vector 
being the MUV 𝑋 2  𝑋 0  (abbreviated as an 
ordered set 2, 0  in (36c)), and with its highest 
vector being the all-highest vector 𝑋 4  𝑋 3 . 
The fact that this system is non-binary-imaged 
is reflected in that the set 𝜃 𝑗  contains 
members with elements other than 𝑗 and 0. 

Similarly, the following set of equations 
is another complete non-binary-image 
characterization of the system under study. 
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They are obtained either from Fig. 4(b), 5(b), 
and 6(b), respectively, or by complementation 
and application of De Morgan’s rules to the 
former equations (35). The new equations give 
each binary function 𝑆 𝑗 1  for 𝑗
3, 2 𝑎𝑛𝑑 1 , as a function of 𝑿 in general (and 
not necessarily in terms of 𝑿 𝑗
1  for 𝑗 3, 2 𝑎𝑛𝑑 1  alone) Here, 𝑆 𝑗  
𝑆 𝑗 1  depicts system failure at level 𝑗 
(lower states), again in a minimal sum-of-
products form: 

𝑆 3 𝑆 2   𝑋 2  ∨  𝑋 2 ,   (38a) 

𝑆 2 𝑆 1 𝑋 0 ∨ 𝑋 2 𝑋
1 ∨ 𝑋 3  𝑋 0 ,                             (38b) 

𝑆 1 𝑆 0  𝑋 0 𝑋 2 ∨
𝑋 1 𝑋 1 .                                      (38c) 

The maximal lower vectors (MLVs) at 
level 𝑗 𝑗 2, 1, 𝑎𝑛𝑑 0  can be observed (as 
maximal cells of lower loops) from Fig. 4(b), 
5(b), and 6(b), respectively, or deduced, 
through immediate inspection, from equations 
(38) as   

 𝜎 2 2, 3 , 4, 2 .                (39a) 

 𝜎 1 0, 3 , 2,1 , 3, 0                 (39b) 

𝜎 0 0, 2 , 1,1 .                39𝑐  

We observe that there exists also a minor 
difference between a maximal lower vector 
(MLV) at a certain level and a corresponding 
prime implicant of failure (minimal cutset) at 
that level, despite the fact that each of them 
uniquely specifies the other. In fact, a minimal 
cutset constitutes all the lower vectors 
extending (inclusively) from the all-0 vector to 
the corresponding MLV. The fact that this 
system is non-binary-imaged is reflected in that 
the set 𝜎 𝑗  contains members with elements 
other than 𝑗 and the maximal elements 𝑚 4 
and 𝑚 3. 

Now, we replace the success expressions 
by probability-ready expressions (PREs) by 
using the algebraic procedure in Sec. 4, or by 

replacing the loops in Fig. 4(a), 5(a), and 6(a), 
respectively, with non-overlapping loops. 
These PREs can be readily converted (on a one-
to-one basis) into expected values by replacing 
the logical ORing and ANDing by arithmetic 
counterparts of addition and multiplication and 
replacing component instances by their 
expected values (see Table 1). 

𝑆 3 𝑋 3  𝑋 3 ,        (40a) 

𝑆 2 𝑋 4 ∨ 𝑋 4 𝑋
1 𝑋 2 ∨ 𝑋 1 ∨ 𝑋 1 𝑋
2 𝑋 3  𝑋 1 𝑋 4 ∨
𝑋 1, 2, 3  𝑋 2 ∨ 𝑋 3  𝑋 1 ,          (40b)  

 𝑆 1 𝑋 2 ∨ 𝑋 2 𝑋 3 ∨
𝑋 3 𝑋 1 𝑋 2  𝑋 2 ∨
𝑋 2 𝑋 3 ∨ 𝑋 1 𝑋 2 .               (40c) 

Next, we replace the failure expressions 
by probability-ready expressions (PREs) by 
using the algebraic procedure in Sec. 4, or by 
replacing the loops in Fig. 4(b), 5(b), and 6(b), 
respectively, with non-overlapping loops. 
Again, these PREs can be readily converted (on 
a one-to-one basis) into expected values by 
replacing the logical ORing and ANDing by 
arithmetic counterparts of addition and 
multiplication and replacing component 
instances by their expected values (see Table 1). 

𝑆 2   𝑋 2  ∨ 𝑋 2   𝑋 2 , (41a) 

𝑆 1 𝑋 0 ∨ 𝑋 0 𝑋 2 𝑋
1 ∨ 𝑋 2 ∨ 𝑋 2 𝑋 1 𝑋
3 𝑋 0  𝑋 0 ∨ 𝑋 1, 2 𝑋 1 ∨
𝑋 3 𝑋 0 ,                                              (41b) 

𝑆 0 𝑋 1 𝑋 1 ∨ 𝑋 1 ∨
𝑋 1 𝑋 1 𝑋 0 𝑋 2 𝑋
1 𝑋 1 ∨ 𝑋 0 𝑋 2 .                         (41c) 

The PRE expressions (40) and (41) might 
be directly converted (on a one-to-one basis) to 
their expected values by replacing the AND and 
OR operators with the multiplication and 
addition operators and replacing variable 
instances by their expectations, namely  
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𝐸 𝑋 𝑗 𝑝 .                          42   

𝐸 𝑋 𝑗 𝑝 𝑝 ⋯ 𝑝
1 𝑝 𝑝 ⋯ 𝑝 . 43  

𝐸 𝑋 𝑗 𝑝 𝑝 ⋯ 𝑝
1 𝑝 𝑝 ⋯
𝑝 .                                       44  

We obtain expectations 𝐸 𝑆 𝑗  for 𝑗
0,1, … , 𝑀, of various instances of the multi-
valued system success 𝑆, by taking differences 
of appropriate expectations of the forms of 
𝐸 𝑆 𝑗  and 𝐸 𝑆 𝑗 . Table 1 
demonstrates the two possible alternatives for 
achieving this purpose. Of course, the more 
compact alternative is preferable. 

An alternative approach is to deal with the 
various instances of the multi-valued system 
success 𝑆 directly in the Boolean domain. For 
example, we might obtain the instance 𝑆 2  as 

𝑆 2 𝑆 2  𝑆 2   

𝑋 1  𝑋 2 ∨ 𝑋 3  𝑋 1 ∨
𝑋 4  𝑋 0   𝑋 2  ∨  𝑋 2                                          

𝑋 1, 2  𝑋 2 ∨ 𝑋 1  𝑋 2 ∨
𝑋 3  𝑋 1, 2 ∨ 𝑋 4  𝑋 0, 1, 2 .  (45) 

This expression can be converted to a PRE via 
the procedure in Sec. 4, or by covering the 2-
entries in Fig. 3 by non-overlapping loops. The 
result is 

𝑆 2 𝑋 1, 2  𝑋 2 ∨ 𝑋 3  𝑋 1, 2 ∨
𝑋 4  𝑋 0 .                                                      (46) 

Equation (46) transforms to the following 
expectation, which is equivalent to the two 
corresponding results in Table 1. 

𝐸 𝑆 2 𝑝 𝑝 𝑝 𝑝 𝑝
𝑝 𝑝 𝑝 𝑝 𝑝 .                         (47) 

To close this section, we note that we 
have so far used binary representations only to 
deal with the discrete multi-valued function 
𝑆 𝑿 . According to discrete-function theory 
[15, 35], this function should be expressed in a 
minimal sum-of-products form as 

𝑆 0 𝑆 0 ∨ 1 𝑆 1 ∨  2 𝑆 2 ∨ 3 𝑆
3  = 1 𝑆 1 ∨  2 𝑆 2 ∨ 3 𝑆 3 ,             (48) 

where 𝐴 ∨ 𝐵  denotes the maximum value of 
𝐴 and 𝐵, and  the binary expressions 𝑆 1 , 
𝑆 2 , and 𝑆 3  are given by their minimal 
sum-of-products forms in (35). The overall 
minimality in (48) relies in the inclusion 
relations among these expressions 

𝑆 1  𝑆 2  𝑆 3 .               (49) 

To see that Equation (48) is appropriate, 
let us consider, for example, the case when 𝑆
2, for then 𝑆 1 𝑆 2 1, and 𝑆
3 0, so that the R.H.S. of (49) becomes 
1 1 ∨  2 1 ∨ 3 0  1 ∨  2 ∨ 0
max  1, 2, 0 2, as expected. Despite the 
convenience of minimality offered by (48), it is 
not adequate for producing an expectation, 
since it has non-disjoint terms. A simpler and 
more convenient expression for 𝑆 𝑿  is the 
pseudo-Boolean expression [57, 75, 80-82] 

𝑆 1 𝑆 1  2 𝑆 2 3 𝑆 3 ,       (50) 

which has the corresponding expected value 
(thanks to the fact that expectation of an 
arithmetic sum is  the arithmetic sum of 
expectations) 

𝐸 𝑆 1 𝐸 𝑆 1  2 𝐸 𝑆 2 3 𝐸 𝑆 3 .  (51) 

The expected value of 𝑆 lies in the 
interval 0, 𝑀 0, 3 , and is a weighted sum 
of the expectations of its instances, which, in 
turn, are expressed as in Table 1.
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Fig. 1. The structure function (success) of a small multi-state system of two three-valued components, shown in (a) with the 
probability transform being applied to obtain its expectation in (b).  Note that the expectation function is a multi-affine 
function that possesses the same ‘truth table’ or MVKM as the logic success function. The cells with bold entries are 
either minimal upper vectors (MUVs) or maximal lower vectors (MLVs). The 1 entries are both MUVs and MLVs. 
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Fig. 2. Multi-valued Karnaugh maps (MVKMs) representing the structure functions of three small coherent three-state systems 

of two three-valued components, which are (a) a system that is both dominant and binary imaged, (b) a dominant system 
that is not binary imaged, and (c) a system that is non-dominant and hence non binary imaged. 
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𝑋   0  1 2 3 4  

  0  0 𝟏 𝟏 𝟐 0 
0  𝟎 𝟏 𝟐 2 1 
𝟎  𝟐 2 2 𝟐 2 
𝟏  2 𝟐 𝟑 3 3 

𝑋  
𝑆 𝑋 , 𝑋  

Fig. 3. Multi-valued Karnaugh map (MVKM) representing the structure function of the coherent multistate system of Section 
6. The function is completely specified by either (a) the cells with blue bold entries (called minimal upper vectors), or 
(b) the cells with red bold entries (called maximal lower vectors). Note that the cell (0, 3) belongs to both sets in (a) and 
(b), and hence it is distinguished in violet (i.e., a mixture of blue and red). 

 

 

 

 

𝑋   0  1 2 3 4  

            0 
          1 
          2 
      𝟏 1 3 

𝑋  

 

𝑎  𝑆 3 𝑆 3   𝑋 3  𝑋 3  

 

𝑋   0  1 2 3 4  

  1  1 1 1 1 0 
1  1 1 1 1 1 
1  1 1 1 𝟏 2 
1  1 𝟏     3 

𝑋  

   
𝑏  𝑆 3 𝑆 0, 1, 2 𝑆 0 ∨ 𝑆 1 ∨ 𝑆 2 𝑆 2   𝑋 2  ∨  𝑋 2  

Fig. 4. Conventional Karnaugh maps (CKMs) for (a) success at level 3, and (b) failure at level 3 for the system of Section 6. 
Cells of bold entries denote the minimal upper vector at level 3:  𝜽 𝟑 𝟑, 𝟑  and the maximal lower vectors at level 
2: 𝝈 𝟐 𝟐, 𝟑 , 𝟒, 𝟐 . 
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𝑋   0  1 2 3 4  

          𝟏 0 
      𝟏 1 1 
  𝟏 1 1 1 2 
  1 1 1 1 3 

𝑋  
𝑎    𝑆 2  𝑆 2, 3 𝑆 2 ∨ 𝑆 3  

𝑋 1  𝑋 2 ∨ 𝑋 3  𝑋 1 ∨ 𝑋 4  𝑋 0  

𝑋   0  1 2 3 4  

  1  𝟏 𝟏 𝟏   0 
1  𝟏 𝟏     1 
1          2 
𝟏          3 

𝑋  
𝑏    𝑆 2 𝑆 1  𝑆 0, 1 𝑆 0 ∨ 𝑆 1  

𝑋 0 ∨ 𝑋 2  𝑋 1 ∨ 𝑋 3  𝑋 0  

Fig. 5. Conventional Karnaugh maps (CKMs) for (a) success at level 2, and (b) failure at level 2. Cells of bold entries in (a) 
denote the minimal upper vectors at level 2: 𝜽 𝟐 𝟏, 𝟐 , 𝟑, 𝟏 , 𝟒, 𝟎 , and those in (b) depict the maximal lower 

vectors at level 1: 𝝈 𝟏 𝟎, 𝟑 , 𝟐, 𝟏 , 𝟑, 𝟎 . 

 

 

𝑋   0  1 2 3 4  

      𝟏 1 1 0 
    1 1 1 1 
  𝟏 1 1 1 2 

𝟏  1 1 1 1 3 
𝑋  

𝑎    𝑆 1  𝑆 1, 2, 3 𝑆 1 ∨ 𝑆 2 ∨ 𝑆 3  

𝑋 2 ∨  𝑋 3 ∨ 𝑋 1 𝑋 2  

𝑋   0  1 2 3 4  

  1  1       0 
1  𝟏       1 
𝟏          2 

          3 
𝑋  

 

𝑏    𝑆 1   𝑆 0  𝑋 0  𝑋 2 ∨ 𝑋 1  𝑋 1 . 

Fig. 6. Conventional Karnaugh maps (CKMs)  for (a) success at level 1, and (b) failure at level 1. Cells of bold entries denote 
the minimal upper vectors at level 1: 𝜽 𝟏 𝟐, 𝟎 , 𝟎, 𝟑 , 𝟏, 𝟐  and the maximal lower vectors at level 0: 𝝈 𝟎

𝟎, 𝟐 , 𝟏, 𝟏 . The vectors 𝟏, 𝟐  is a minimal upper vector for both levels 1 and 2. 
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Table 1. Expectation of Success instances of the system in example 1 via two different methods. 

Expectation of an instance  Calculated via minimal upper vectors   Calculated via maximal lower vectors  

𝐸 𝑆 3   𝐸 𝑆 3 𝑝 𝑝 𝑝   𝐸 𝑆 3 𝐸 𝑆 2
1 𝑝 𝑝 𝑝
𝑝 𝑝 𝑝 𝑝

𝑝  

𝐸 𝑆 2   𝐸 𝑆 2 𝐸 𝑆 3
𝑝
𝑝 𝑝 𝑝 𝑝

𝑝 𝑝 𝑝
𝑝 𝑝 𝑝

𝑝 𝑝 𝑝 𝑝 𝑝
𝑝 𝑝 𝑝 𝑝

𝑝 𝑝  

𝐸 𝑆 2 𝐸 𝑆 1
𝑝 𝑝 𝑝
𝑝 𝑝 𝑝 𝑝

𝑝 𝑝
𝑝 𝑝 𝑝

𝑝 𝑝 𝑝  

𝐸 𝑆 1   𝐸 𝑆 1 𝐸 𝑆 2
𝑝 𝑝 𝑝
𝑝 𝑝 𝑝 𝑝 𝑝
𝑝
𝑝 𝑝 𝑝 𝑝

𝑝 𝑝 𝑝  

𝐸 𝑆 1 𝐸 𝑆 0
𝑝
𝑝 𝑝 𝑝

𝑝 𝑝 𝑝
𝑝 𝑝 𝑝

𝑝 𝑝 𝑝
𝑝 𝑝 𝑝

𝑝 𝑝 𝑝 𝑝23  

𝐸 𝑆 0   𝐸 𝑆 0 𝐸 𝑆 1
1 𝑝 𝑝 𝑝
𝑝 𝑝 𝑝 𝑝 𝑝  

𝐸 𝑆 0 𝑝 𝑝 𝑝 𝑝
𝑝 𝑝  

 

7. A Homogenous Binary-Imaged Three-
Variable Example 

In this example, we revisit example 3 of 
Wood [8]. A four-valued coherent system consists 
of three four-valued components. The system has 
the following verbal description, which implies 
that the system has a binary image  

1. A series system (A 3-out-of-3: G system, 
i.e., a 1-out-of-3: F system) at level 3. 

2. A 2-out-of-3: G system (A 2-out-of-3: F 
system) at level 2. 

3. A parallel system (A 1-out-of-3: G system, 
i.e., a 3-out-of-3: F system) at level 1. 

This verbal description translates to the 
algebraic description of system successes at the 

respective levels, which constitutes an up binary 
image of the system 

𝑆 3
𝑋 3 𝑋 3 𝑋 3 ,                     52𝑎  

𝑆 2
𝑋 2 𝑋 2 ∨ 𝑋 2 𝑋 2

∨ 𝑋 2 𝑋 2 ,                                     52𝑏  

𝑆 1
𝑋 1 ∨ 𝑋 1

∨ 𝑋 1 .                                                    52𝑐  

The verbal description can also be 
converted to the following algebraic description 
of system failure at the respective levels, which 
constitutes a down binary image of the system  



Boolean-Based Symbolic Analysis for the Reliability of Coherent Multi-State Systems of Heterogeneous Components                       17 

 

𝑆 3
𝑋 3 ∨ 𝑋 3

∨ 𝑋 3 ,                                                      53𝑎  

𝑆 2
𝑋 2 𝑋 2 ∨ 𝑋 2 𝑋 2

∨ 𝑋 2 𝑋 2 ,                                       53𝑏  

𝑆 1
𝑋 1 𝑋 2 𝑋 1 .                       53𝑐  

Equations (53) can be also obtained 
through complementation of equations (52). 
Equations (52) can be rewritten in terms of the 
minimal upper vectors (MUVs) 

𝜃 3
3, 3, 3 ,                                                   54𝑎  

𝜃 2
2, 2, 0 , 2, 0, 2 , 0, 2, 2 ,                  54𝑏  

𝜃 1
1, 0, 0 , 0, 1, 0 , 0, 0,1 .                    54𝑐  

Note that a prime implicant of the form 
𝑋 2 𝑋 2  (in which the variable 𝑋  is 
absent) is equivalent to 𝑋 2  𝑋 2  𝑋
0  and hence it lead to the 𝑀𝑈𝑉 2, 2, 0 . For 
this binary-imaged system, elements of 𝜃 𝑗   are 
vectors of 𝑗 or 0 components only. 

Equations (53) might be rewritten with the 
symbols 3 , 2  𝑎𝑛𝑑 1  replaced by 

2 , 1  𝑎𝑛𝑑 0 , namely  

𝑆 2 𝑋 2 ∨ 𝑋 2  
∨ 𝑋 2 ,                           55𝑎  

𝑆 1
𝑋 1 𝑋 1 ∨ 𝑋 1 𝑋 1

∨ 𝑋 1 𝑋 1 ,                                       55𝑏  

𝑆 0 𝑋 0 𝑋 0  𝑋 0 .       55𝑎  

Now, equations (55) (with the  notation) 
tells us that the maximal lower vectors (MLVs) 
are 

𝜎 2 2, 3 , 3 , 3, 2, 3 , 3, 3, 2 ,      56𝑎  

𝜎 1 1, 1, 3 , 1, 3, 1 , 3, 1, 1 ,       56𝑏  

𝜎 0 0, 0, 0 .                                        56𝑐  

By contrast to the case of the MUVs in 
which an absent variable 𝑋  stands for 𝑋 0  
and is expressed by 0 in the MUV, the present 
case of MLUs has an absent variable 𝑋  standing 
for 𝑋 3  and being expressed by 3 in the 
MLU. For this binary-imaged system, elements 
of 𝜎 𝑗   are vectors of 𝑗 or 3 components only. 

Figure 7 displays a multi-valued 
Karnaugh map (MVKM) representing the 
structure function of the present coherent 
multistate system. The function is completely 
specified by either (a) the cells with bold blue 
entries, which are the minimal upper vectors of 
(54), or (b) the cells with bold red entries, which 
are the maximal lower vectors of (56). Figure 8 
displays three conventional Karnaugh maps 
(CKMs) for the binary successes at levels 3, 2, 
and 1, while  Fig. 9 shows CKMs for the binary 
failures at levels 1, 2, and 3. Equations (52) can 
be converted to PREs via the procedure in Sec. 4  

𝑆 3
𝑋 3 𝑋 3 𝑋 3 ,                      57𝑎  

𝑆 2 𝑋 2  𝑋 2 ∨ 𝑋 2  𝑋
2  𝑋 2 ∨ 𝑋 2  𝑋 2 𝑋 2 ,        57𝑏  

𝑆 1 𝑋 1 ∨ 𝑋 1  𝑋 1
∨ 𝑋 1  𝑋 1 .              57𝑐  

Likewise, equations (55) can be converted 
to PREs via the procedure in Sec. 4  

𝑆 2
𝑋 2 ∨  𝑋 2 𝑋 2  

∨ 𝑋 2  𝑋 2 ,                                    58𝑎  

𝑆 1 𝑋 1 𝑋 1 ∨ 𝑋 1  𝑋
1  𝑋 1 ∨  𝑋 1  𝑋 1 𝑋 1 ,     58𝑏  

𝑆 0
𝑋 0 𝑋 0  𝑋 0 .                      58𝑐  

Equations (57b) and (58b) are 
demonstrated by the blue and red non-
overlapping loops in Fig. 10, respectively. 
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8. The Issue of Duality 

Reliability analysis inherits the meta-
mathematical principle of duality from Boolean 
algebra. We call two systems dual if they have 
dual structure functions. The dual of a multi-
valued function 𝑆 𝑿  is labelled 𝑆 𝑿  and 
given by 

𝑆 𝑋 , 𝑋 , … , 𝑋 𝑆̅ 𝑋 , 𝑋 , … , 𝑋 ,        (59) 

where  complementation  of  the  output 
variable 𝑆 to 𝑆̅ means the replacement of every 
value  𝑗 of it by  𝑀 𝑗 , and complementation 
of  an  input  variable  𝑋   to  𝑋   means  the 
replacement of every value 𝑗 of it by  𝑚 𝑗 . 
Therefore, the dual function 𝑆  can be written 
as  [9, 82-86] 

𝑆 𝑿 𝑀 𝑆 𝒎 𝑿 .                           (60) 

where 𝒎 𝑿   𝑚 𝑋 ,  𝑚
𝑋 , … , 𝑚 𝑋 , … , 𝑚 𝑋 .  Since  the 
𝑆 𝑿  function can be given by a generalization 
of (48) as 

  𝑆 𝑿 ⋁   𝑗   𝑆 𝑗 𝑿 ,                     (61)  

Then, its dual 𝑆 𝑿  is given by 

 𝑆 𝑿 ⋁  𝑀  𝑗    𝑆 𝑀 𝑗 𝒎 𝑿 . (62)  

The multi-valued Karnaugh map 
(MVKM) used herein offers a handy means for 
obtaining the dual of the structure function of a 
multi-state system. Both map indices (inputs) 
and entries (output) of the MVKM of the dual 
function are obtained via complementation of 
those of the MVKM of the original function. 
Figures 11 and 12 offer MVKM representations 
of the systems dual to the ones discussed in 
Sections 6 and 7, respectively. The figures 
verify the observation made earlier in [9, 84] 
that a vector 𝑿 is an MUV (MLV) of a certain 
level 𝑗 for the original function if and only if the 
complementary vector 𝒎 𝑿  is an MLV 
(MUV) of the complementary level 𝑀 𝑗  for 
the dual function. A comparison of the MVKMs 
in Fig. 7 and 12 reveals that they represent the 
same structure function. This means that the 
system in Sec. 7 (with the structure function of 
Fig. 7) is a self-dual one. This fact should have 
been anticipated, since this system has three 
levels with (a) dual systems (series and parallel) 
at the complementary levels 1 and 3, and (b) a 
self-dual system at the intermediate level 2. 

 

 

𝑋   0  1  2  3   

𝑋   0  1  2  3  0  1  2  3  0  1  2  3  0  1  2  3 

  0  1  1  1  1  1  1  1  1  1  2  2  1  1  2  2  0 

1  1  1  1  1  1  1  1  1  1  2  2  1  1  2  2  1 

1  1  2  2  1  1  2  2  2  2  2  2  2  2  2  2  2 

1  1  2  2  1  1  2  2  2  2  2  2  2  2  2  3  3 

𝑋
𝑆 𝑋 , 𝑋 , 𝑋  

 

Fig. 7. A multi-valued Karnaugh map (MVKM) representing the structure function of the coherent multistate system of Section 
7. The function is completely specified by either (a) the cells with blue bold entries (the minimal upper vectors), or (b) 
the cells with red bold entries (the maximal lower vectors).  
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𝑋   0  1  2  3   

𝑋   0  1  2  3  0  1  2  3  0  1  2  3  0  1  2  3 

                                  0 

                                1 

                                2 

                              1  3 

𝑋
(a) 𝑆 3 𝑆 3  

𝑋   0  1  2  3   

𝑋   0  1  2  3  0  1  2  3  0  1  2  3  0  1  2  3 

                      1  1      1  1  0 

                    1  1      1  1  1 

    1  1      1  1  1  1  1  1  1  1  1  1  2 

    1  1      1  1  1  1  1  1  1  1  1  1  3 

𝑋
(b) 𝑆 2 𝑆 2, 3  

𝑋   0  1  2  3   

𝑋   0  1  2  3  0  1  2  3  0  1  2  3  0  1  2  3 

    1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0 

1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 

1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  2 

1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  3 

𝑋
𝑆 1 𝑆 1, 2, 3  

Fig. 8. Conventional Karnaugh maps (CKMs) for the binary successes at levels 3, 2, and 1 for the system of Section 7. 

𝑋   0  1  2  3   

𝑋   0  1  2  3  0  1  2  3  0  1  2  3  0  1  2  3 

  1                                0 

                                1 

                                2 

                                3 

𝑋
𝑆 1 𝑆 0 𝑆 0  

𝑋   0  1  2  3   

𝑋   0  1  2  3  0  1  2  3  0  1  2  3  0  1  2  3 

  1  1  1  1  1  1  1  1  1  1      1  1      0 

1  1  1  1  1  1  1  1  1  1      1  1      1 

1  1      1  1                      2 

1  1      1  1                      3 

𝑋
𝑆 2 𝑆 1 𝑆 0, 1  

𝑋   0  1  2  3   

𝑋   0  1  2  3  0  1  2  3  0  1  2  3  0  1  2  3 

  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0 

1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 

1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  2 

1  1  1  1  1  1  1  1  1  1  1  1  1  1  1    3 

𝑋
𝑆 3 𝑆 2 𝑆 0, 1, 2  

Fig. 9. Conventional Karnaugh maps (CKMs) for the binary failures at levels 1, 2, and 3 for the system of Section 7. 
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𝑋   0  1 2 3   

𝑋   0  1  2  3  0  1 2 3 0 1 2 3 0 1  2  3 

                      1 1     1  1  0

                    1 1     1  1  1

    1  1      1 1 1 1 1 1 1 1  1  1  2

    1  1      1 1 1 1 1 1 1 1  1  1  3

𝑋

𝑺𝑷𝑹𝑬 𝟐 𝑿𝟏 𝟐  𝑿𝟐 𝟐 ∨ 𝑿𝟏 𝟐  𝑿𝟐 𝟐  𝑿𝟑 𝟐 ∨ 𝑿𝟏 𝟐  𝑿𝟐 𝟐 𝑿𝟑 𝟐  

𝑺𝑷𝑹𝑬 𝟏 𝑿𝟏 𝟏 𝑿𝟐 𝟏 ∨ 𝑿𝟏 𝟏  𝑿𝟐 𝟏  𝑿𝟑 𝟏 ∨  𝑿𝟏 𝟏  𝑿𝟐 𝟏 𝑿𝟑 𝟏   

Fig. 10. A conventional Karnaugh maps (CKMs) with non-overlapping loops comprising PRE representations for the binary 
success (blue) and binary failure (red) at level 2 for the system of Section 7. 

 

𝑋   4  3 2 1 0  

  3  3 𝟐 𝟐 𝟏 3 
3  𝟑 2 𝟏 1 2 
𝟑  𝟏 1 1 𝟏 1 
𝟐  1 𝟏 𝟎 0 0 

𝑋  

𝑆 𝑋 , 𝑋 𝑆̅ 𝑋 , 𝑋  

Fig. 11. A Multi-value Karnaugh map representing the structure function of the system that is dual to the one in Section 6 (Fig. 
3). Both map indices (input) and entries (output) are obtained via complementation of those in Fig. 3. Again the function 
is completely specified by either its minimal upper vectors (blue) or maximal lower vectors (red). Note that, for this 
particular map arrangement, the MUVs and the MLVs of a certain level for the original function are replaced by MLVs 
and MUVs of the complementary level for the dual function.  

 

𝑋   3  2  1  0   

𝑋   3  2  1  0  3  2  1  0  3  2  1  0  3  2  1  0 

  3  2  2  2  2  2  2  2  2  2  1  1  2  2  1  1  3 

2  2  2  2  2  2  2  2  2  2  1  1  2  2  1  1  2 

2  2  1  1  2  2  1  1  1  1  1  1  1  1  1  1  1 

2  2  1  1  2  2  1  1  1  1  1  1  1  1  1  0  0 

𝑋
𝑆 𝑋 , 𝑋 , 𝑋 𝑆̅ 𝑋 , 𝑋 , 𝑋  

Fig. 12. A Multi-value Karnaugh map representing the structure function of the system that is dual to the one in Section 7 (Fig. 
7). Both map indices (input) and entries (output) are obtained via complementation of those in Fig. 7. Again the function 
is completely specified by either its minimal upper vectors (blue) or maximal lower vectors (red). Note that, for this 
particular map arrangement, the MUVs and the MLVs of a certain level for the original function are replaced by MLVs 
and MUVs of the complementary level for the dual function. Comparison of Fig. 7 and 12 asserts that this multi-state 
system is self-dual. 
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9. Conclusions 

This paper utilizes algebraic and map 
tools for the reliability characterization and 
analysis of general multi-state coherent 
systems, which are interpreted herein to be non-
repairable systems with independent non-
identical components. The paper presents 
switching-algebraic expressions of both system 
success and system failure at each non-zero 
level. These expressions are given as minimal 
sum-of-products formulas or as probability–
ready expressions. The paper also utilizes a 
convenient map representation via the multi-
valued Karnaugh map for the system structure 
function 𝑆, or via 𝑀 maps of binary entries and 
multi-valued inputs representing the 
success/failure at every non-zero level of the 
system. Further system characterizations are 
also given in terms of minimal upper vectors or 
maximal lower vectors. Great emphasis is 
placed on making a minimal departure from 
binary concepts and techniques, while taking 
care to clarify novel issues that emerged due to 
generalizations introduced by the multi-state 
model.  
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الات ذات  دة ال ع قة م ة ال ال ل ع لاني ل ل رم م لل ال ل ت
ة ان ات غ ال   ال

  فارس أح م غال وعلي م علي رش 

، ل ع الع سة، جامعة ال ة اله ل ات،  اس سة ال ة وه ائ ه سة ال ة،  ق اله ة 21589ج ل ، ال
ة د ع ة ال   الع

arushdi@kau.edu.sa  

ل لاني. ال م ال إلى ال ال ل ال ل ال ه  قة ل ت ورقة ال ه ل ال
م  الات. نق دة ال ع قة وم ا قلة غ م اتها م ي م الات غ القابلة للإصلاح ال دة ال ع م
ة  ال، وخارج الق ل لاح اه لل ع ال ل ال ة م ائ فا والأدوات ال ی م ال ب الع

د ا ه وذل ع تع ارن ة  ن، وخ ل وشان ك ب ة، ومف لان رقة الأساال م ال الات. ت ل ل
ة  ل ة أو إخ ائ وال ث ام  ج ال دة ل ع ات ال ق ال د ال ل ع ة لل م ال
ع  ات  ه ال ل م ه اح ل غة ال ة ص ا ع ذل  . ی  دة ال ع ام م خلات ال ل

، عل ر لها الف ح ب ا  ال، م ل لاح ة جاه لل ال أو  ، إلى اح اح ى أساس واح ل
ار  ام ن م ا ن اره ام صغ ( اع م ل ة ال ل ع ل ال ل ا ت ل قعة. أك م
ل  ها  ق م ائج ت ال ا أسف ع ن اح، م رقة ب ه ال الات) في ه دة ال ع قة م لل ال

دًا مع ت اف ع ا ت أنها ت  ، ي ت الرم ائل ال ا ال قًا. أردف ها سا ة لا ل عل
ام اس مة  ا  ال ل ه . ی الع دة ال ع ه م ارن ائ  ة خ اس ي ب ض ر ال ال

دة  ع قة م ال ال اصة  قة إلى تل ال ة ال ائ أك وال على تع مفا ال ال ال
ا  لا م اب الات، ب ةال ه ال الأخ اتها له ة ب فة قائ ة غ مأل ی   .ع مفا ج

ة  اح ف ات ال ل الات،  :ال د ال ع ام م ال، ال ل لاح اه لل ع ال ، ال ة ال ل مع
ي ه الأدنى الأع ، ال ه الأعلى الأصغ ، ال د ال ع   .ال م
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