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Abstract. A coherent reliability system (CRS) is one that is causal, monotone and with relevant 
components. We restrict ourselves herein to the case of a two-state system with statistically 
independent two-state components. One of the most prominent methods to study the reliability of 
such a system is to characterize it via recursive relations together with boundary conditions. This 
paper presents recursive relations as well as boundary conditions for six entities pertaining to a 
CRS. These are (a) expressions of monoform literals for either system success or failure (b) 
probability-ready expressions for either system success or failure, and (c) all-additive formulas for 
either system reliability or unreliability. Each of the six entities considered is represented by an 
acyclic (loopless) Mason signal flow graph (SFG). The SFG for system success or failure is 
isomorphic to a Reduced Ordered Binary Decision Diagram (ROBDD) which is the optimal data 
structure for a Boolean function. The interrelations between the SFGs demonstrate optimal 
procedures for implementing (a) the probability (real) transform of a Boolean function, (b) 
inversion or complementation of a Boolean function, and (c) disjointing or orthogonalization of a 
sum-of-products expression of a Boolean function. The SFGs discussed herein reduce to elegant 
symmetric graphs for the special cases of a partially-redundant system (k-out-of-n system) and a 
threshold system (weighted k-out-of-n system). The results obtained suggest a renaissance of the 
use of signal flow graphs in the study of system reliability for both coherent and noncoherent 
systems and for particular classes thereof. 
Keywords: Coherent reliability system, Recursive relation, Boundary condition, Signal flow 

graph. 

1. Introduction 

This paper is intended for a revival of the 
utilization of signal flow graphs (SFGs) in the 
investigation of system reliability. A few 
papers handled this topic decades ago [1-7] and 
a very recent paper [8] dealt with it for the 
restricted class of 2-state coherent threshold 
systems of s-independent components. Our 
current paper extends the scope of the work in 
[8] by exploring SFG utility in a wider class of 
reliability systems, namely general coherent 2-
state systems of statistically independent 2-
state components. The extension of this 
representation to multi-state systems of multi-

state components is promising, indeed, but will 
be deferred to future work. 

This paper reviews recursive relations 
together with boundary conditions for six 
quantities characterizing a Coherent Reliability 
System (CRS). These are (a) unate expressions 
for system success and failure, with 
uncomplemented and complemented variables, 
respectively, and (b) probability-ready 
expressions for both system success and 
failure, and (c) all-additive formulas for 
system reliability and unreliability. Each of the 
six quantities treated herein is modeled by a 
loopless (acyclic) signal flow graph (SFG). 
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The SFG for system success or failure is 
isomorphic to a Reduced Ordered Binary 
Decision Diagram (ROBDD) [9-13], which has 
been developed to serve as an efficient data 
structure for switching functions. The 
interrelations between the SFG’s demonstrate 
efficient procedures realizing (a) the real 
(probability) transform of a switching 
function, (b) complementation (inversion) of a 
switching function, and (c) orthogonalization 
(disjointness) of a sop expression of a 
switching function. The SFGs discussed herein 
for a CRS reduce to regular graphs for the 
special case of a k-out-of-n system (partially-
redundant system) [11-18]. They also reduce to 
elegant graphs for the non-symmetric cases of 
a threshold system (weighted k-out-of-n 
system) [8, 19, 20], a double-threshold system [21], 
or a k-to-l-out-of-n system [22, 23].  

Work in this paper is a natural extension 
for our earlier work dealing with coherent 
threshold systems [8]. However, the systems 
considered herein are only coherent and not 
necessarily threshold. This means that the 
SFGs obtained in the current case for system 
success or failure cannot be immediately used 
to enumerate minimal pathsets or minimal 
cutsets, by directly computing the complete 
sum for system success or failure. However, 
such an enumeration is still possible, albeit 
with an extra step. The SFG for a coherent 
system success or failure directly produces a 
general syllogistic formula for success or 
failure, which is not necessarily absorptive and 
has to be converted into an absorptive form by 
absorbing any term that subsumes another. 
The resulting absorptive formula is a canonical 
one representing the complete sum for success 
(disjunction of all minimal pathset) or the 
complete sum for failure (disjunction of all 
minimal cutsets). 

The organization of the remainder of this 
paper is as follows. Section 2 presents some 
useful nomenclature necessary for 

understanding the rest of the paper. Section 3 
points out the existence of useful expansions 
for general switching (Boolean) functions, and 
stresses the utility of these expansions for 
monotonically non-decreasing and 
monotonically non-increasing switching 
functions. Section 3 then develops the 
aforementioned expansions to ones for the 
success, failure, reliability, and unreliability of 
a CRS and translates them (together with 
boundary conditions) into appropriate Signal 
Flow Graphs (SFGs). This is followed by a 
detailed discussion in Sec. 4 on the merits and 
interrelations of the SFGs presented in Section 
3. Section 5 adds a few concluding remarks. 

2. Nomenclature 

2.1 Coherent Reliability System (CRS) 

A CRS is a reliability system 
characterized by three features in the Boolean 
domain concerning its success S as a function 
S(X) of component successes X [8, 12, 20]  

(a)  causal  

S(0) = 0, S(1) = 1.                          (1) 

(b)  monotonically  increasing, i.e., 

{X ≥ Y} implies {S(X) ≥ S(Y)}.             (2) 

(c)  of relevant (non-dummy) components, i.e.,  

  
𝛛 𝐒

𝛛 𝐗𝐢
  = S(X│Xi=0) ⊕ S(X│Xi=1),        (3)   

is not identically 0. 

2.2 Probability-Ready Expression (PRE)  

A PRE is a switching formula that can 
be directly converted, on a one-to-one basis, to 
a probability expression called the probability 
or real transform [12, 24-28]. In a probability-
ready formula 

(a)  Any sum-of-products (sop) sub-formula 
has products that are mutually exclusive 
(disjoint or non-overlapping).  
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(b)  Any product-of-sums (pos) sub-formula 
has statistically-independent sums. 

The transition from a PRE to a 
probability formula is attained by replacing 
switching variables  𝑋௜ and 𝑋௜ by the 
probabilities of their being equal to 1, i.e., by  

𝒑𝒊 ≡ 𝐏𝐫ሼ𝑿𝒊 ൌ 𝟏 ሽ ൌ 𝑬ሼ𝑿𝒊ሽ,  𝒒𝒊 ≡ 𝐏𝐫൛𝑿𝒊 ൌ 𝟏ൟ ൌ
𝐄ሼ𝑿𝒊ሽ ൌ 𝟏 െ 𝒑𝒊,  

and substituting arithmetic addition and 
multiplication for their logical counterparts 
(disjunction and conjunction operations).  

2.3 Linear Signal Flow Graph 

A linear signal flow graph (SFG) [29-42], 
is a specialized directed graph whose nodes 
represent certain variables, and whose 
branches represent transmittances between 
pairs of nodes. A branch outgoing from a 
certain node and incident on a (not necessarily 
different) node adds to the value of the latter 
node the value of the former node weighted 
(multiplied) by the transmittance carried by 
this branch. There are two main closely-related 
types of an SFG [34], namely Mason SFG [29], 
and Coates SFG [30]. We confine ourselves 
herein to the SFG type that is prominent in 
Electrical Engineering applications, namely 
the Mason SFG. This is an SFG in which the 
value of any specified non-source node equals 
the weighted sum of nodes that influence the 
specified node (i.e., the sum of the values of 
the influencing nodes, each multiplied by the 
transmittance on the edge originating at the 
influencing node and incident on the specified 
node). Good tutorial expositions on SFG’s are 
available in textbooks on automatic control 
such as [37].  

2.4 The Complete Sum of a Boolean 
Function CS (f) 

The complete sum of a switching 
function is an ORing of all the prime 
implicants of the function, and nothing else [43, 

44]. When the function f is the system success 
S, the prime implicants are called the minimal 
pathsets of the system [20, 45], and when f is the 
system failure S, the prime implicants are 
called the minimal cutsets of the system [20, 45].  
Work in this paper is confined to a coherent 
system, exemplified by source-to-terminal 
connectivity in a probabilistic network. In this 
case, the pathsets and cutsets have geometric 
as well as logical interpretations. Moreover, 
coherency dictates that the complete sum (for 
both system success and system failure) be the 
sole irredundant-disjunctive form of the 
pertinent function, and hence it coincides with 
its minimal sum. Coherence is also manifested 
in the condition that the prime implicants 
involve uncomplemented literals only for 
system success and complemented literals only 
for system failure.  

2.5 A Syllogistic Formula for a Boolean 
Function 

A syllogistic formula for a switching 
function f is a possibly non-absorptive sop 
formula for the function, i.e., it is a disjunction 
of products, none of which can be absorbed by 
(any disjunction of) other products in the 
formula. Therefore, a syllogistic formula 
includes all the prime implicants (and possibly 
some non-prime implicants) of the function [43, 

44]. The compete sum is a special syllogistic 
formula that is both minimal and canonical. 

3. Six SFGs for a Typical Coherent System 

Figure 1 presents a 5-node 7-element 
source-to-terminal (st) network, taken from 
[45], which can be conveniently called a 
double-bridge network. This network serves as 
a typical example for a general coherent 
system. Table 1 lists the six quantities to be 
studied herein, which are 

(1) Sminimal = S = System success (in 
minimal form as the disjunction of all minimal 
pathsets), 
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(2) Sminimal ൌ  S ൌ System failure (in 
minimal form as the disjunction of all minimal 
cutsets), 

(3) SPRE = System success in a probability-
ready-form, 

(4) SPRE = System failure in a probability-
ready-form, 

(5) R = System reliability, obtained as 
E{SPRE} by replacing component 
successes/failures by their expectations and 
substituting arithmetic addition and 
multiplication for ORing and ANDing (on a 
one-to-one basis), and 

(6) U = System unreliability, obtained as 
E{SPRE} by replacing component 
successes/failures by their expectations and 
substituting arithmetic addition and 
multiplication for ORing and ANDing (on a 
one-to-one basis). 

Rushdi and Alturki [8] based their SFG 
representation on the Boole-Shannon 
expansion of a Boolean function f(X) = f(X1, 
X2, …, Xi–1, Xi, Xi +1, …, Xn), namely 

  f(𝐗) =  𝐗i  f0  ˅  𝐗i f1                        (4) 

where f0 and f1 are restrictions, subfunctions, 
ratios, quotients, or cofactors of f(X) given by  

f0 = f(X|0i) = f(X1, X2, …,  Xi –1, 0, Xi+1, …, Xn),      (5) 

f1 = f(X|1i) = f(X1, X2, …, Xi –1, 1, Xi+1, …, Xn),       (6) 

Note that equation (4) uses ANDing and 
ORing, which are usually designated as logical 
multiplication and addition. 

Equations (4-6) can be transformed from 
the Boolean domain to the probability domain 
[8, 12] by taking the expectations of both sides 
of each equation. When f stands for system 
success, the result is  

  R = E{S(X)} = qi R0 + pi R1,                 (7)   

R1 = E{S(X|0i)} = R(p1, p2, …, pi –1, 0, pi +1, …, pn),  (8) 

R2 = E{S(X|1i)} = R(p1, p2, …, pi –1, 1, pi +1, …, pn),   (9)  

Now, we construct an SFG for each of 
the quantities defined in Table 1. In any of 
these SFGs, the value of each specified node is 
the weighted sum of nodes from which arrows 
incident on this specified node originate, 
where the weighting of any of these nodes is 
through multiplication with the transmittance 
on the edge emanating from it towards the 
specified node. We utilize the Boole-Shannon 
expansion in the Boolean domain (4) to 
construct SFGs for SPRE and SPRE in Fig. 4 and 
5, respectively, and likewise employ the same 
expansion in the probability domain (7) to 
construct SFGs for R and U in Fig. 6 and 7, 
respectively. In retrospect, we construct SFGs 
in Fig 2 and 3, respectively for S and S, in 
monoform representation. Figure 2 is exactly 
Fig. 4, but with each complemented literal Xi 

being replaced by 1, while Fig. 3 is a replica of 
Fig. 5 with each uncomplemented literal Xi 
being replaced by 1. While Fig. 4 and 5 
contain a mixture of uncomplemented and 
complemented component literals, Fig. 2 has 
only uncomplemented literals and Fig. 3 has 
only complemented literals. Logical addition 
and multiplication (ORing and ANDing) are 
implicitly assumed in Fig. 2-5, while usual 
arithmetic addition and multiplication are 
assumed in Fig. 6 and 7. Other similarities and 
distinctions among Fig. 2-7 are noted below.                       

4. Features and Interrelations of the Six SFGs 

The six SFGs in Fig. 2-7 are very similar 
with possible differences in their 
transmittances, nature of source nodes, and 
nature of addition/multiplication operations 
(logical or arithmetic). The six quantities 
represented by the SFGs in Fig. 2-7 are 
expressed by the formulas of Table 1. It can be 
easily verified that  

      S ˄  𝐒 = 0,                             (10) 

        S ˅  𝐒 = 1,                            (11) 
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           SPRE = S,                             (12) 

         𝐒 PRE = 𝐒,                           (13)  

        R + U = 1.0,                          (14) 

It should be noted that each of S and S is 
given in a complete–sum form, which (due to 
coherency) happens to be also a minimal-sum 
form. Neither of the two expressions for SPRE 
and SPRE is in minimal form. If all 
complemented literals in SPRE and 
uncomplemented literals in SPRE disappear 
(through being replaced by 1), the original 
formulas reduce to the non-absorptive syllogistic 
formulas for S and S that might be read from 
Fig. 2 and 3. A non-absorptive syllogistic 
formula for S contains non-minimal paths (non-
prime implicants) besides the minimal paths 
(prime implicants). Similarly, a syllogistic 
formula for S contains non-minimal cutsets 
(non-prime implicants) as well as minimal 
cutsets (prime implicants). The complete sum for 
S (or S) is an absorptive version of the resulting 
syllogistic formula, in which non-prime 
implicants are absorbed and only prime 
implicants are retained. The six SFGs in Fig. 2-7 
are of beneficial pedagogical values. They 
provide immediate visual insight, and they 
constitute pictorial proofs for several important 
results that we explore in the following 
subsections. 

4.1 The Functions S and 𝑺 for a CRS System 
are Unate  

A function is called unate if it is possible 
to express it using only non-complemented 
literals or complemented ones. In the former 
case, the function is said to be a monotonically 
non-decreasing function in its variables, while 
in the latter case it is said to be a 
monotonically non-increasing function in its 
variables. The SFG in Fig. 2 is a pictorial 
proof that the success S of the CRS considered 
is a monotonically non-decreasing function in 

its arguments. Note that no edge transmittance 
in Fig. 2 is a complemented variable (Each 
edge transmittance is either 1 or Xi). Similarly, 
Fig. 3 is a pictorial proof that the failure S of 
the CRS considered is a monotonically non-
increasing function in its arguments. This is 
due to the fact that no edge transmittance in 
Fig. 3 is an uncomplemented literal (each edge 
transmittance is either 1 or Xi).  

4.2 The Expressions for S and 𝑺ഥ Syllogistic 
Formulas 

Each of the expressions for S and Sത is a 
syllogistic formula (a sum-of-products formula 
that contains all the prime implicants of the 
pertinent function [43, 44]), but not necessarily 
an absorptive formula (one that has no term 
that can be absorbed by others [43]). Hence, 
each of the expressions ABS(S) and ABS(Sത) is 
a complete sum or a Blake Canonical Form (a 
disjunction of all prime implicants, and 
nothing else), where the symbol ABS(f) 
denotes an absorptive formula for f, i.e., a 
formula in which any term absorbable in 
others is deleted. Since the complete sum and 
minimal sum are identical for a unate function 
[46], the expressions of ABS(S) and ABS(Sത) are 
also the minimal expressions for the unate 
functions S and Sത.  

4.3. The Expressions for S and 𝑺ഥ are 
Generally not Shellable 

A Boolean function in sop form is 
shellable if its terms can be disjointed without 
an increase in their number. Threshold 
Boolean functions are known to be shellable [8, 

47]. However, general Boolean functions are 
not necessarily shellable. The present formulas 
for S and Sത are obviously not shellable, a fact 
associated with that of their being non 
absorptive, which results from the nature of 
their SFGs that lacks regularities possessed by 
the SFGs of threshold functions. 
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4.4. The SFGs of S and 𝑺ഥ are Essentially 
ROBDDs 

The Reduced Ordered Binary Decision 
Diagram (ROBDD) is a data structure for 
general switching functions, and has extensive 
applications in reliability [48, 49]. The SFGs for 
S in Fig. 2 and Sത in Fig. 3 are, in fact, 
implementations of the ROBDD for the class 
of unate switching functions. Apart from the 
unateness restriction, these SFGs have the 
same characteristics as the ROBDD [11-13, 49].  

4.5 Efficient Inverse Algorithms 

Availability of complementary SFGs 
allows for a pedagogical understanding of 
many existing complementation or inversion 
procedures [50-52], both for the Boolean and 
probability domains. For example, one can 
start from the sink node of SPRE in Fig. 4, use 
expansion until the leaf nodes are reached, 
complement the value of each leaf (source) 
node (replace 0 by 1 and 1 by 0), thereby 
effectively transferring to Fig. 5, and finally go 
back to the sink of Fig. 5 which is SതPRE. Other 
ways for complementation are possible. One 
can perform the converse operation of going 
from Sത PRE to SPRE (expand in Fig. 5, 
complement leaves (sources), transfer to Fig. 4 
and go to its sink). One can also achieve 
disjoint complementation by going from S 
(Fig. 2) to SതPRE (Figure 5). Complementation is 
also possible in the probability domain by 
going from R (Fig. 6) to U (Fig. 7) or vice 
versa. 

5. Conclusions 

A Coherent Reliability System (CRS) is 
the most prominent reliability model. Many of 
its features, probabilities, and algorithms are 
studied herein in terms of various recursive 
relations and boundary conditions, which are 
pictorially displayed in terms of various 
loopless Signal Flow Graphs. The success and 
failure of a CRS are shown to be unate 
Boolean functions whose minimal and 
complete sum expressions are identical. 
Interrelations among the SFGs demonstrate 
optimal procedures for mutual 
complementation among S and Sത, for 
disjointing S and Sത to obtain PRE expressions 
SPRE and SതPRE. The probability or real 
transforms of SPRE and SതPRE (namely, the 
reliability R and unreliability U) are obtained 
by replacing logical variables by their 
expectations and replacing ANDing and 
ORing operations by arithmetic multiplication 
and addition. The probability transforms of S 
and Sത are exactly the same as those of SPRE and 
SതPRE and can be obtained in a two-step fashion 
by first converting S and Sത to SPRE and SതPRE 

and then transforming them [52]. These 
transforms are also obtained directly via the 
conventional Inclusion-Exclusion principle or 
via a recursive version of it [45]. The graph 
complexity of each of the SFG’s encountered 
herein is exponential in the worst case. 

 

  

Table 1. Algebraic expressions for six entities to be expressed via SFGs. 

 Expression   Entity  Case 

6X5X4X1˅ X 7X4X3X2X˅7 X5X3X1˅ X7X5X2X˅6 X3X1˅ X7X4X1˅ X6X2X  Sminimal 1 

X1X2  ˅ X6X7  ˅ X2X3X4˅ X1X3X5X6 ˅ X2X3X5X7˅ X4X5X6 minimalS  2 

 ˅7X6X4X3X2X1X ˅ 7X6X5X4X3X2X1X˅7X6X5X3X2X1X˅7X6X5X4X3X2X1X˅7X6X5X2X ˅ 6X2X
7X6X5X4X2X1X ˅7X6X5X4X2X1X ˅ 7     X6X5X4X2X1X˅ 7X6X4X2X1X˅ 7X6X5X4X2X1X˅7X6X5X4X3X2X1X  

PRES  3 

˅7X6X5X4X3X2X1X ˅7X6X4X3X2X1X˅ 7X6X5X4X3X2X1X˅7X6X5X3X2X1X˅7X6X5X4X3X2X1X ˅7 X6X2XS PRE 4 
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˅  7X6X2X1X ˅7 X6X5X 2X1X ˅7         X6X5X2X1X ˅7X6X5X4X2X1X˅7 X6X5X4X2X1X˅ 7X6X5X4X2X1X
7X6X2X ˅7 X6X5X2X1X ˅7X6X5X2X1X  

+7p6p4q3p2q1p +                      7q6p5p4q3p2q1p+7 q6p5q3p2q1p+7 p6q5q4p3p2p1q+ 7p6q5p2p + 6p2p 
7p6q5q4p2q1p +7 p6q5q4p2p1p + 7     p6q5p4p2q1p+ 7p6p4p2q1p+ 7q6p5p4p2q1p+7p6q5p4q3p2q1p  

R  5 

p2q6q7 + q1p2q3p4q5q6p 7 + p1q2q3q5p6q7 + p1q2q3q4p5p6q7 + p1q2q3q4p6p 7                  + p1q2q3q4p5q6p7

+ q1p2q4q5q6p7 + p1p2q4q5q6p 7 + p1q2q4q5q6p 7  + q1q2q5p6q7     + q1q2p5p6q7 + q1q2p6p 7 + 
q1q2p5q6p7  + q1q2q5q6p 7 + q2q6q7 

U  6 

 
Fig. 1. A general 5-node 7-element st reliability network. 

t 

2X 

1X 

4X 

7X 

6X 

3X 5X s 
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Fig. 2. A Signal Flow Graph representing system success. Logical addition and multiplication (Oring and ANDing) are 

implicitly assumed. For convenience, multiple copies of each of the two source nodes of 0 and 1 are used. In addition 
to the seven minimal paths comprising Sminimal in Table 1, the graph produces five non-minimal paths: X1X3X5X6, 
X1X3X6X7, X1X2X4X7, X1X4X6X7 and X1X4X5X7 .   
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Fig. 3. A Signal Flow Graph representing system failure. Logical addition and multiplication (Oring and ANDing) are 

implicitly assumed. In addition to the six minimal cutsets comprising 𝐒minimal in Table 1, the graph produces nine non-

minimal cutsets: 𝐗2𝐗3𝐗4𝐗7, 𝐗2𝐗3𝐗4𝐗6, 𝐗1𝐗4𝐗5𝐗6, 𝐗2𝐗4𝐗5𝐗6, 𝐗1𝐗2𝐗5𝐗7, 𝐗1𝐗2𝐗7, 𝐗1𝐗2𝐗6, 𝐗1𝐗2𝐗5𝐗6 and 𝐗2𝐗6𝐗7. 
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Fig. 4. A Signal Flow Graph representing a probability-ready expression for system success. Logical addition and 
multiplication (Oring and ANDing) are implicitly assumed. 
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Fig. 5. A Signal Flow Graph representing a probability-ready expression for system failure. Logical addition and 
multiplication (Oring and ANDing) are implicitly assumed. 
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Fig. 6. A Signal Flow Graph representing system reliability. Usual arithmetic addition and multiplication are implicitly 
assumed.  
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Fig. 7. A Signal Flow Graph representing system unreliability. Usual arithmetic addition and multiplication are implicitly 
assumed. 
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  تʺʽʲل نʦʤ الʺعʨلॽة الʺʶʱقة بʨاسʢة رسʨم سȄʛان الإشارات
ȏʗعلي رش ʗʸʲيو ،علي م ʙؕʯال ʗʸʲعلاء م  

الʺʺلؔة العॽȃʛة  جامعة الʺلʥ عʙʰ العʜȄʜ، جʙة، قʦʶ الهʙʻسة الؔهȃʛائॽة وهʙʻسة الʴاسॼات، ؗلॽة الهʙʻسة،
  الʶعʨدǽة

arushdi@kau.edu.sa 

ʟلʵʱʶʺاد  .الʺʱة ذو اعʛʽتʨال ȑي أحادʰʰام سʤأنه نǼ (ن ع و) Șʶʱʺة الॽلʨام الʺعʤف نʛعǽ
 ʅॽصʨام تʤʻا الʚل هʲʺة لॽلʨدراسة الʺع Șائʛʡ ʦأه ʧه. ومʛاصʻع ʧم ʛʸʻقي على ؗل عॽʁح
هʚه الʺعʨلॽة Ǽاسʙʵʱام علاقات معاودة یʛتȌॼ بها شʛوȋ حǽʙة. تقʙم ورقة الʘʴॼ هʚه العلاقات 

 ȋوʛʷنات هي (أ) الʺعاودة والʨʻʽؔه الʚوه .Șʶʱʺة الॽلʨام الʺعʤʻب Șعلʱنات تʨʻʽؗ ʗʶة لǽʙʴال
صॽغʱان تʙʵʱʶمان أحʛفا أحادǽة الॽʸغة تعʛʰان عʧ نʳاح الʤʻام وفʷله، (ب) صॽغʱان 
جاهʜتان للȄʨʴʱل إلى احʱʺالʧʽ تعʛʰان عʧ نʳاح الʤʻام وفʷله أǽʹا، (ج) صॽغʱان مقʛʸʱتان 

ʨلॽة ولامعʨلॽة الʤʻام. یʦʱ تʺʽʲل ؗل مʧ هʚه الʨʻʽؔنات الʗʶ على الʳʺع فʖʶʴ تعʛʰان عʧ مع
بʨاسʢة رسʦ لȄʛʶان الإشارات غʛʽ دوراني (عʦǽʙ الʴلقات). یʱʺاثل رسʦ سȄʛان الإشارات لؔل 
مʧ نʳاح الʤʻام وفʷله مع مȌʢʵ القʛار الʻʲائي الʺʛتʖ الʺʜʱʵل (خ ق ث ر خ) الʲʺǽ ȑʚل 

ॽلانʨالة بʙل لʲانات الأمॽʰل الȞॽʂ ةʳاتʻان الإشارات الȄʛم سʨرس Ȍȃʛي تʱة الॽʻʽʰة. إن العلاقات ال
 ʝȞة، (ب) عॽلانʨالة بʙل (قيॽʁʴل الȄʨʴʱال) اليʺʱل الاحȄʨʴʱ(أ) ال ʚʽفʻʱلى لʲاءات مʛضح إجʨت
أو تؔʺلة دالة بʨلانॽة، (ج) تʴقȘʽ الʺʻافاة أو الʱعامǽʙة بʧʽ الʙʴود في صॽغة مʨʺʳع مʹʛوȃات 

رسʨم سȄʛان الإشارة الʺʙروسة هʻا إلى مʢʢʵات أنॽقة للʴالات الʵاصة  لʙالة بʨلانॽة. تʕول
للʦʤʻ الʨافʛة جʜئॽا (نʦʤ ك مʧ بʧʽ ن) وللʦʤʻ الǽʙʴة (نʦʤ ك مʧ بʧʽ ن الʺʨزونة). تʨحي 
نʱائج هʚا الʛʹǼ ʘʴॼورة Ǽعʘ وȂحॽاء اسʙʵʱام رسʨم سȄʛان الإشارة في دراسة معʨلॽة الʦʤʻ لؔل 

ʚلʥ للʴالات الʵاصة مʻهاالʦʤʻ العامة الʺʶʱقة    .وغʛʽ الʺʶʱقة وؗ

 .نʤام الʺعʨلॽة لإشارات، شȋʛ حȑʙ، علاقة معاودة،رسʦ سȄʛان ا :كلʺات مفʱاحॽة
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