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Abstract. A coherent reliability system (CRS) is one that is causal, monotone and with relevant
components. We restrict ourselves herein to the case of a two-state system with statistically
independent two-state components. One of the most prominent methods to study the reliability of
such a system is to characterize it via recursive relations together with boundary conditions. This
paper presents recursive relations as well as boundary conditions for six entities pertaining to a
CRS. These are (a) expressions of monoform literals for either system success or failure (b)
probability-ready expressions for either system success or failure, and (c) all-additive formulas for
either system reliability or unreliability. Each of the six entities considered is represented by an
acyclic (loopless) Mason signal flow graph (SFG). The SFG for system success or failure is
isomorphic to a Reduced Ordered Binary Decision Diagram (ROBDD) which is the optimal data
structure for a Boolean function. The interrelations between the SFGs demonstrate optimal
procedures for implementing (a) the probability (real) transform of a Boolean function, (b)
inversion or complementation of a Boolean function, and (c) disjointing or orthogonalization of a
sum-of-products expression of a Boolean function. The SFGs discussed herein reduce to elegant
symmetric graphs for the special cases of a partially-redundant system (k-out-of-n system) and a
threshold system (weighted k-out-of-n system). The results obtained suggest a renaissance of the
use of signal flow graphs in the study of system reliability for both coherent and noncoherent
systems and for particular classes thereof.

Keywords: Coherent reliability system, Recursive relation, Boundary condition, Signal flow
graph.

1. Introduction

This paper is intended for a revival of the
utilization of signal flow graphs (SFGs) in the
investigation of system reliability. A few
papers handled this topic decades ago " and
a very recent paper [¥ dealt with it for the
restricted class of 2-state coherent threshold
systems of s-independent components. Our
current paper extends the scope of the work in
8 by exploring SFG utility in a wider class of
reliability systems, namely general coherent 2-
state systems of statistically independent 2-
state components. The extension of this
representation to multi-state systems of multi-

state components is promising, indeed, but will
be deferred to future work.

This paper reviews recursive relations
together with boundary conditions for six
quantities characterizing a Coherent Reliability
System (CRS). These are (a) unate expressions
for system success and failure, with
uncomplemented and complemented variables,
respectively, and (b) probability-ready
expressions for both system success and
failure, and (c) all-additive formulas for
system reliability and unreliability. Each of the
six quantities treated herein is modeled by a
loopless (acyclic) signal flow graph (SFG).
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The SFG for system success or failure is
isomorphic to a Reduced Ordered Binary
Decision Diagram (ROBDD) P-131 which has
been developed to serve as an efficient data
structure  for switching functions. The
interrelations between the SFG’s demonstrate
efficient procedures realizing (a) the real
(probability) transform of a switching
function, (b) complementation (inversion) of a
switching function, and (c) orthogonalization
(disjointness) of a sop expression of a
switching function. The SFGs discussed herein
for a CRS reduce to regular graphs for the
special case of a k-out-of-n system (partially-
redundant system) [''"!®] They also reduce to
elegant graphs for the non-symmetric cases of
a threshold system (weighted k-out-of-n
system) [% 192013 double-threshold system 12!,
or a k-to-l-out-of-n system [2% 23,

Work in this paper is a natural extension
for our earlier work dealing with coherent
threshold systems 81 However, the systems
considered herein are only coherent and not
necessarily threshold. This means that the
SFGs obtained in the current case for system
success or failure cannot be immediately used
to enumerate minimal pathsets or minimal
cutsets, by directly computing the complete
sum for system success or failure. However,
such an enumeration is still possible, albeit
with an extra step. The SFG for a coherent
system success or failure directly produces a
general syllogistic formula for success or
failure, which is not necessarily absorptive and
has to be converted into an absorptive form by
absorbing any term that subsumes another.
The resulting absorptive formula is a canonical
one representing the complete sum for success
(disjunction of all minimal pathset) or the
complete sum for failure (disjunction of all
minimal cutsets).

The organization of the remainder of this
paper is as follows. Section 2 presents some
useful nomenclature necessary for

understanding the rest of the paper. Section 3
points out the existence of useful expansions
for general switching (Boolean) functions, and
stresses the utility of these expansions for

monotonically non-decreasing and
monotonically  non-increasing  switching
functions. Section 3 then develops the

aforementioned expansions to ones for the
success, failure, reliability, and unreliability of
a CRS and translates them (together with
boundary conditions) into appropriate Signal
Flow Graphs (SFGs). This is followed by a
detailed discussion in Sec. 4 on the merits and
interrelations of the SFGs presented in Section
3. Section 5 adds a few concluding remarks.

2. Nomenclature
2.1 Coherent Reliability System (CRS)

A CRS is a reliability system
characterized by three features in the Boolean
domain concerning its success S as a function
S(X) of component successes X [& 12:201

(a) causal
S(0)=0,S(1)=1. (1)

(b) monotonically increasing, i.e.,

{X > Y} implies {S(X) > S(Y)}. )
(c) of relevant (non-dummy) components, i.€.,

2= =SX|X=0) @ SX | XD, (3)

is not identically 0.
2.2 Probability-Ready Expression (PRE)

A PRE is a switching formula that can
be directly converted, on a one-to-one basis, to
a probability expression called the probability
or real transform U2 24281 In a probability-
ready formula

(a) Any sum-of-products (sop) sub-formula
has products that are mutually exclusive
(disjoint or non-overlapping).
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(b) Any product-of-sums (pos) sub-formula
has statistically-independent sums.

The transition from a PRE to a
probability formula is attained by replacing

switching variables X; and X; by the
probabilities of their being equal to 1, i.e., by

pi=Pr{X;=1}=E{X;}, q; =Pr{X, =1} =
E{X;}=1-p,;

and substituting arithmetic addition and
multiplication for their logical counterparts
(disjunction and conjunction operations).

2.3 Linear Signal Flow Graph

A linear signal flow graph (SFG) 242,

is a specialized directed graph whose nodes
represent certain variables, and whose
branches represent transmittances between
pairs of nodes. A branch outgoing from a
certain node and incident on a (not necessarily
different) node adds to the value of the latter
node the value of the former node weighted
(multiplied) by the transmittance carried by
this branch. There are two main closely-related
types of an SFG P4 namely Mason SFG %,
and Coates SFG % We confine ourselves
herein to the SFG type that is prominent in
Electrical Engineering applications, namely
the Mason SFG. This is an SFG in which the
value of any specified non-source node equals
the weighted sum of nodes that influence the
specified node (i.e., the sum of the values of
the influencing nodes, each multiplied by the
transmittance on the edge originating at the
influencing node and incident on the specified
node). Good tutorial expositions on SFG’s are
available in textbooks on automatic control
such as [37].

2.4 The Complete Sum of a Boolean
Function CS (f)

The complete sum of a switching
function is an ORing of all the prime
implicants of the function, and nothing else [**

4] When the function f is the system success
S, the prime implicants are called the minimal
pathsets of the system 2> %3] and when f is the

system failure S, the prime implicants are
called the minimal cutsets of the system [2% %3],
Work in this paper is confined to a coherent
system, exemplified by source-to-terminal
connectivity in a probabilistic network. In this
case, the pathsets and cutsets have geometric
as well as logical interpretations. Moreover,
coherency dictates that the complete sum (for
both system success and system failure) be the
sole irredundant-disjunctive form of the
pertinent function, and hence it coincides with
its minimal sum. Coherence is also manifested
in the condition that the prime implicants
involve uncomplemented literals only for
system success and complemented literals only
for system failure.

25 A Syllogistic Formula for a Boolean
Function

A syllogistic formula for a switching
function f is a possibly non-absorptive sop
formula for the function, i.e., it is a disjunction
of products, none of which can be absorbed by
(any disjunction of) other products in the
formula. Therefore, a syllogistic formula
includes all the prime implicants (and possibly
some non-prime implicants) of the function 3
4] The compete sum is a special syllogistic
formula that is both minimal and canonical.

3. Six SFGs for a Typical Coherent System

Figure 1 presents a 5-node 7-element
source-to-terminal (st) network, taken from
(45 which can be conveniently called a
double-bridge network. This network serves as
a typical example for a general coherent
system. Table 1 lists the six quantities to be
studied herein, which are

(1) Sminimar = S = System success (in
minimal form as the disjunction of all minimal
pathsets),
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(2) Sminima = S= System failure (in
minimal form as the disjunction of all minimal
cutsets),

(3) Sere = System success in a probability-
ready-form,

(4) Sere = System failure in a probability-
ready-form,

(5) R = System reliability, obtained as
E{Srre} by replacing component
successes/failures by their expectations and
substituting arithmetic addition and
multiplication for ORing and ANDing (on a
one-to-one basis), and

(6) U = System unreliability, obtained as
E{SprE} by replacing component
successes/failures by their expectations and
substituting arithmetic addition and
multiplication for ORing and ANDing (on a
one-to-one basis).

Rushdi and Alturki ! based their SFG
representation on  the  Boole-Shannon
expansion of a Boolean function f(X) = (X1,
X2, .vy Xic1, Xi, Xi+1, ..., Xn), namely

fX)= Xi fo vV Xifi 4)
where fo and f1 are restrictions, subfunctions,
ratios, quotients, or cofactors of f(X) given by

fo = £(X]0) = f(X1, X2, +vey Xict, 0, Xitty ooy Xu),  (5)
fi = f(X|1i) = (X1, X2, «vey Xi-1, 1, Xit1, ovey Xn), (6)

Note that equation (4) uses ANDing and
ORing, which are usually designated as logical
multiplication and addition.

Equations (4-6) can be transformed from
the Boolean domain to the probability domain
8. 12] by taking the expectations of both sides
of each equation. When f stands for system
success, the result is

R=E{S(X)} =qiRo+ pi Ry, (7)

Ri = E{S(X|0:)} = R(p1, P2, -+ +, Pi-1, 0, Pi+1y -e5 )y (8)

Rz = E{S(X|1i)} = R(P1, P2, -++5 Pi-1, 1, Piiy «ees pn)y  (9)

Now, we construct an SFG for each of
the quantities defined in Table 1. In any of
these SFGs, the value of each specified node is
the weighted sum of nodes from which arrows
incident on this specified node originate,
where the weighting of any of these nodes is
through multiplication with the transmittance
on the edge emanating from it towards the
specified node. We utilize the Boole-Shannon
expansion in the Boolean domain (4) to

construct SFGs for Sere and Sere in Fig. 4 and
5, respectively, and likewise employ the same
expansion in the probability domain (7) to
construct SFGs for R and U in Fig. 6 and 7,
respectively. In retrospect, we construct SFGs

in Fig 2 and 3, respectively for S and S, in
monoform representation. Figure 2 is exactly
Fig. 4, but with each complemented literal Xi
being replaced by 1, while Fig. 3 is a replica of
Fig. 5 with each uncomplemented literal Xj
being replaced by 1. While Fig. 4 and 5
contain a mixture of uncomplemented and
complemented component literals, Fig. 2 has
only uncomplemented literals and Fig. 3 has
only complemented literals. Logical addition
and multiplication (ORing and ANDing) are
implicitly assumed in Fig. 2-5, while usual
arithmetic addition and multiplication are
assumed in Fig. 6 and 7. Other similarities and
distinctions among Fig. 2-7 are noted below.

4. Features and Interrelations of the Six SFGs

The six SFGs in Fig. 2-7 are very similar
with  possible  differences in  their
transmittances, nature of source nodes, and
nature of addition/multiplication operations
(logical or arithmetic). The six quantities
represented by the SFGs in Fig. 2-7 are
expressed by the formulas of Table 1. It can be
easily verified that

SA S=0, (10)
Sv§=1, (11)
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Sere = S, (12)
Sere =S, (13)
R+U=1.0, (14)

It should be noted that each of S and S is
given in a complete—sum form, which (due to
coherency) happens to be also a minimal-sum
form. Neither of the two expressions for Spre

If all
literals in SPRE and

and Spre is in minimal form.
complemented

uncomplemented literals in Sere  disappear
(through being replaced by 1), the original
formulas reduce to the non-absorptive syllogistic

formulas for S and S that might be read from
Fig. 2 and 3. A non-absorptive syllogistic
formula for S contains non-minimal paths (non-
prime implicants) besides the minimal paths
(prime implicants). Similarly, a syllogistic
formula for S contains non-minimal cutsets
(non-prime implicants) as well as minimal
cutsets (prime implicants). The complete sum for

S (or S) is an absorptive version of the resulting
syllogistic formula, in which non-prime
implicants are absorbed and only prime
implicants are retained. The six SFGs in Fig. 2-7
are of beneficial pedagogical values. They
provide immediate visual insight, and they
constitute pictorial proofs for several important
results that we explore in the following
subsections.

4.1 The Functions S and S for a CRS System
are Unate

A function is called unate if it is possible
to express it using only non-complemented
literals or complemented ones. In the former
case, the function is said to be a monotonically
non-decreasing function in its variables, while
in the latter case it is said to be a
monotonically non-increasing function in its
variables. The SFG in Fig. 2 is a pictorial
proof that the success S of the CRS considered
is a monotonically non-decreasing function in

its arguments. Note that no edge transmittance
in Fig. 2 is a complemented variable (Each
edge transmittance is either 1 or Xi). Similarly,

Fig. 3 is a pictorial proof that the failure S of
the CRS considered is a monotonically non-
increasing function in its arguments. This is
due to the fact that no edge transmittance in
Fig. 3 is an uncomplemented literal (each edge

transmittance is either 1 or Xi).

4.2 The Expressions for S and S Syllogistic
Formulas

Each of the expressions for S and S is a
syllogistic formula (a sum-of-products formula
that contains all the prime implicants of the
pertinent function > *4), but not necessarily
an absorptive formula (one that has no term
that can be absorbed by others ). Hence,
each of the expressions ABS(S) and ABS(S) is
a complete sum or a Blake Canonical Form (a
disjunction of all prime implicants, and
nothing else), where the symbol ABS(f)
denotes an absorptive formula for f, i.e., a
formula in which any term absorbable in
others is deleted. Since the complete sum and
minimal sum are identical for a unate function
[46] the expressions of ABS(S) and ABS(S) are
also the minimal expressions for the unate
functions S and S.

4.3. The Expressions for S and S are
Generally not Shellable

A Boolean function in sop form is
shellable if its terms can be disjointed without
an increase in their number. Threshold
Boolean functions are known to be shellable [*
471 However, general Boolean functions are
not necessarily shellable. The present formulas
for S and S are obviously not shellable, a fact
associated with that of their being non
absorptive, which results from the nature of
their SFGs that lacks regularities possessed by
the SFGs of threshold functions.
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4.4. The SFGs of S and S are Essentially
ROBDDs

The Reduced Ordered Binary Decision
Diagram (ROBDD) is a data structure for
general switching functions, and has extensive
applications in reliability % 4’1, The SFGs for
S in Fig. 2 and S in Fig. 3 are, in fact,
implementations of the ROBDD for the class
of unate switching functions. Apart from the
unateness restriction, these SFGs have the
same characteristics as the ROBDD [11-13: 491,

4.5 Efficient Inverse Algorithms

Availability of complementary SFGs
allows for a pedagogical understanding of
many existing complementation or inversion
procedures 2] both for the Boolean and
probability domains. For example, one can
start from the sink node of Sere in Fig. 4, use
expansion until the leaf nodes are reached,
complement the value of each leaf (source)
node (replace 0 by 1 and 1 by 0), thereby
effectively transferring to Fig. 5, and finally go
back to the sink of Fig. 5 which is Spre. Other
ways for complementation are possible. One
can perform the converse operation of going
from S pre to Spre (expand in Fig. 3,
complement leaves (sources), transfer to Fig. 4
and go to its sink). One can also achieve
disjoint complementation by going from S
(Fig. 2) to Sere (Figure 5). Complementation is
also possible in the probability domain by
going from R (Fig. 6) to U (Fig. 7) or vice
versa.

5. Conclusions

A Coherent Reliability System (CRS) is
the most prominent reliability model. Many of
its features, probabilities, and algorithms are
studied herein in terms of various recursive
relations and boundary conditions, which are
pictorially displayed in terms of various
loopless Signal Flow Graphs. The success and
failure of a CRS are shown to be unate
Boolean functions whose minimal and
complete sum expressions are identical.
Interrelations among the SFGs demonstrate
optimal procedures for mutual
complementation among S and S, for
disjointing S and S to obtain PRE expressions
Sere and Sere. The probability or real
transforms of Spre and Spre (namely, the
reliability R and unreliability U) are obtained
by replacing logical variables by their
expectations and replacing ANDing and
ORing operations by arithmetic multiplication
and addition. The probability transforms of S
and S are exactly the same as those of Spre and
Sere and can be obtained in a two-step fashion
by first converting S and S to Spre and Sere
and then transforming them 02, These
transforms are also obtained directly via the
conventional Inclusion-Exclusion principle or
via a recursive version of it 3. The graph
complexity of each of the SFG’s encountered
herein is exponential in the worst case.

Table 1. Algebraic expressions for six entities to be expressed via SFGs.

Case Entity Expression
1 Sminimal X2X6 v X1X4X7 v X1X3X6 v X2X5X7 v X1X3X5X7 v X2X3X4X7 v X1X4X5X6
2 Srminimal XiXa V XeX7 V XoX3X4V XiXaX5Xs V XoX3X5X7V XaXsX6
3 Spre B XZEG \ §2X5i6X7_V ileX3§4§5§6§7V X1X2X 3§5§6§7V X_1§2X3§4X5X6§7 v §1§2X3§4§6X7_ v
X1X2X3X4X5X6X7 V X1X2X4X5X6X7 V X1X2X4X6X7 V X1X2XaX5X6X7  V X1X2X4X5X6X7V X1X2X4X5X6X7
4 S pRE X2X6X7 V X1X2X3XaX5X6X7V X1X2X3X5X6X7 V X1X2X3X4X5X6X7 V X1X2X3X4XeX7V X1X2X3X4XsX6X7 V




Representations of a Coherent Reliability System via Signal Flow Graphs 9

X1X2XaX5X6X 7 V X1X2XaX5X6X7 V X1X2XaXsX6X7V X1X2XsX6X7 Vv X1X2 X5X6X7 V X1X2X6X7 V

X1X2XsX6X7V X1X2X5X6X7 V X2X6X7

P2P6 + P2Ppsqsp7 + q1p2p3p4qsqeP7 + P1q2p3qspeqz + P1q2p3q4Pspeqr + P1Q2p3q4psp7 +
P1q2P3q4Ps5qsp7 + P1q2p4pspeq7 + P1qzp4pepP7 + P1qz2p4psqep7  + P1p2p4qsqspP7 + P1q2p4qsqep?

P296q7 + q1p2q3p4qsqep 7 + p1q2q3qspeq7 + p1q293q4pspeqz + p1q2q3q4pep 7 + Pp1q2q394psqep7
+ q1p2q4qsqsp7 + p1p2q4qsqep 7 + pP1q2q49sqep 7 + q1q2qspeqz + qi1qzpspeq7 + q1qzpep 7 +
q1qz2psgep7 + q1q2q9s5qep 7 + q2qe6q7

X4

X, X7

S% X3 Xs .t

X2 X6

Fig. 1. A general 5-node 7-element st reliability network.
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e

ILI

Fig. 2. A Signal Flow Graph representing system success. Logical addition and multiplication (Oring and ANDing) are
implicitly assumed. For convenience, multiple copies of each of the two source nodes of 0 and 1 are used. In addition
to the seven minimal paths comprising Sminimai in Table 1, the graph produces five non-minimal paths: X1X3XsXe,
X1X3X6X7, X1X2X4X7, X1X4X6X7 and X1X4XsX7.



Representations of a Coherent Reliability System via Signal Flow Graphs 11

0

=]

P

Fig. 3. A Signal Flow Graph representing system failure. Logical addition and multiplication (Oring and ANDing) are

implicitly assumed. In addition to the six minimal cutsets comprising Suinimat in Table 1, the graph produces nine non-
minimal cutsets: X2X3X4X7, X2X3X4X6, X1X4X5X6, X2X4X5X6, X1X2X5X7, X1X2X7, X1X2X6, X1X2X5Xs and X2XcX7.
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Fig. 4. A Signal Flow Graph representing a probability-ready expression for system success. Logical addition and
multiplication (Oring and ANDing) are implicitly assumed.
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Fig. 5. A Signal Flow Graph representing a probability-ready expression for system failure. Logical addition and
multiplication (Oring and ANDing) are implicitly assumed.
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/

1
e
(1]

e

0

Fig. 6. A Signal Flow Graph representing system reliability. Usual arithmetic addition and multiplication are implicitly
assumed.
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Fig. 7. A Signal Flow Graph representing system unreliability. Usual arithmetic addition and multiplication are implicitly
assumed.
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