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MODELING OF FLUID FLOW AND HEAT TRANSFER IN DIRECT CONTACT
MEMBRANE DISTILLATION

Bandar Abdulwahab Majeed

Abstract

Direct contact membrane distillation (DCMD) is a comparatively modern method, which is being
adopted and explored internationally since it is inexpensive and energy efficient compared to
existing desalination techniques. This technique of (DCMD) in both sides of membrane in direct
connection with hot feed water side and cold permeate side. Vapour passes through the
hydrophobic porous membrane due to the variation in temperature, which leads to a difference
in vapour pressure (the driving force).

In this study, we consider single spacer geometry and adopt a numerical approach using
computational fluid dynamics (CFD) in OpenFOAM software to focus on a feed channel filled
with spacers of the same diameter. The distances between the spacers are fixed in two
dimensions under different conditions. These are characterized by heat transfer coefficient

AP
(HTC) and pressure gradient (E) and mathematical modeling is used to solve the governing

equations (Navier—Stokes and heat transport) subject to appropriate boundary conditions to
obtain velocity and temperature fields, before a post-process is undertaken to achieve the

AP
desired quantities (HTC and E)'

The purpose of using spacers to enhance convective heat transfer is that they increase velocity
and decrease temperature polarization, maintaining the value of the driving force and
enhancing the vapour flux process of the DCMD modules. This can, furthermore, result in raising
the efficiency of energy utilization for the separation process. DCMD modules use different
boundary conditions of constant heat flux with a uniform inlet temperature profile and other
boundary conditions (such as constant heat flux - variable heat flux with conduction only -
variable heat flux with latent heat) with a fully developed inlet temperature profile. The
objective of this study is to verify the impacts of the spacers’ geometrical characteristics and
boundary conditions on HTC and pressure gradient.

a



The HTC is significantly higher in the developing boundary layer region than it is in the fully
developed region. In an analysis of a fully developed temperature profile as the inlet boundary
conditions, much more reasonable values for the HTC were obtained, which is consistent with
fully developed laminar convection in a plain channel between two infinite parallel plates with
uniform heat flux boundary conditions. The slightly higher value obtained can be attributed to
the presence of the spacers. Cases simulating both vaporization and heat conduction through
the walls showed much more variation in the temperature field than in all the other cases. The
heat flux associated with water vaporization is much higher than in previous cases, and
increases further with the Reynolds number are compared of the cases of conduction only. This
means that a higher heat flux is generated as the Reynolds number increases. The pressure drop
data for the three temperatures considered collapse into one curve, confirming that the power
number depends only on the Reynolds number. The results show that flow hydrodynamics are
not temperature dependent.






