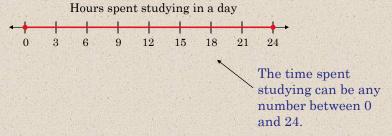
Chapter 5

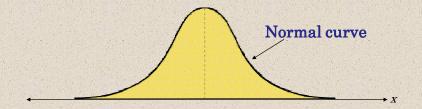

Normal Probability Distributions

§ 5.1

Introduction to
Normal Distributions
and the Standard
Distribution

Properties of Normal Distributions

A continuous random variable has an infinite number of possible values that can be represented by an interval on the number line.


The probability distribution of a continuous random variable is called a **continuous probability distribution**.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

-

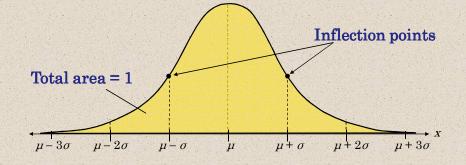
Properties of Normal Distributions

The most important probability distribution in statistics is the **normal distribution**.

A normal distribution is a continuous probability distribution for a random variable, x. The graph of a normal distribution is called the **normal curve**.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

Properties of Normal Distributions


Properties of a Normal Distribution

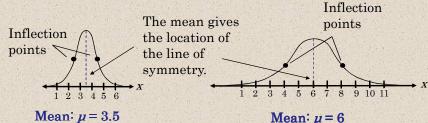
- 1. The mean, median, and mode are equal.
- 2. The normal curve is bell-shaped and symmetric about the mean.
- 3. The total area under the curve is equal to one.
- 4. The normal curve approaches, but never touches the *x*-axis as it extends farther and farther away from the mean.
- 5. Between $\mu \sigma$ and $\mu + \sigma$ (in the center of the curve), the graph curves downward. The graph curves upward to the left of $\mu \sigma$ and to the right of $\mu + \sigma$. The points at which the curve changes from curving upward to curving downward are called the *inflection points*.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

_

Properties of Normal Distributions

If x is a continuous random variable having a normal distribution with mean μ and standard deviation σ , you can graph a normal curve with the equation


$$y = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$
. $e = 2.178 \ \pi = 3.14$

Larson & Farber, Elementary Statistics: Picturing the World, 3e

:

Means and Standard Deviations

A normal distribution can have any mean and any positive standard deviation.

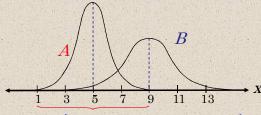
Standard

deviation: $\sigma \approx 1.3$

Mean: $\mu = 6$

Standard

deviation: $\sigma \approx 1.9$


The standard deviation describes the spread of the data.

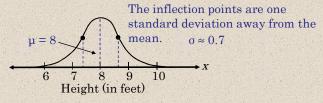
Larson & Farber, Elementary Statistics: Picturing the World, 30

Means and Standard Deviations

Example:

- 1. Which curve has the greater mean?
- 2. Which curve has the greater standard deviation?

The line of symmetry of curve A occurs at x = 5. The line of symmetry of curve B occurs at x = 9. Curve B has the greater mean.

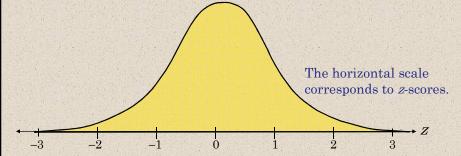

Curve B is more spread out than curve A, so curve B has the greater standard deviation.

Larson & Farber, Elementary Statistics: Picturing the World

Interpreting Graphs

Example:

The heights of fully grown magnolia bushes are normally distributed. The curve represents the distribution. What is the mean height of a fully grown magnolia bush? Estimate the standard deviation.

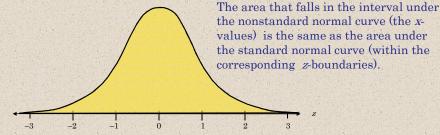

The heights of the magnolia bushes are normally distributed with a mean height of about 8 feet and a standard deviation of about 0.7 feet.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

.

The Standard Normal Distribution

The **standard normal distribution** is a normal distribution with a mean of 0 and a standard deviation of 1.


Any value can be transformed into a z-score by using the

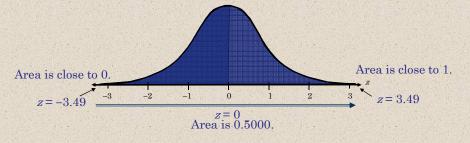
formula
$$z = \frac{\text{Value - Mean}}{\text{Standard deviation}} = \frac{x - \mu}{\sigma}$$
.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

The Standard Normal Distribution

If each data value of a normally distributed random variable *x* is transformed into a *z*-score, the result will be the standard normal distribution.

After the formula is used to transform an *x*-value into a *z*-score, the Standard Normal Table in Appendix B is used to find the cumulative area under the curve.


Larson & Farber, Elementary Statistics: Picturing the World, 3e

-11

The Standard Normal Table

Properties of the Standard Normal Distribution

- 1. The cumulative area is close to 0 for *z*-scores close to z = -3.49.
- 2. The cumulative area increases as the z-scores increase.
- 3. The cumulative area for z = 0 is 0.5000.
- 4. The cumulative area is close to 1 for z-scores close to z = 3.49

Larson & Farber, Elementary Statistics: Picturing the World, 3e

The Standard Normal Table

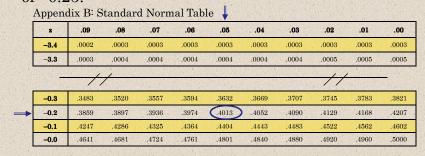
Example:

Find the cumulative area that corresponds to a *z*-score of 2.71.

			Appe	ndix E	: Stan	dard N	Vormal	Table		
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
	//	8 16					(8 Jan)	//		
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981

Find the area by finding 2.7 in the left hand column, and then moving across the row to the column under 0.01.

The area to the left of z = 2.71 is 0.9966.


Larson & Farber, Elementary Statistics: Picturing the World, 3e

-13

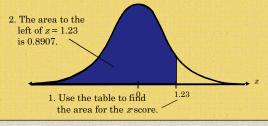
The Standard Normal Table

Example:

Find the cumulative area that corresponds to a *z*-score of -0.25.

Find the area by finding -0.2 in the left hand column, and then moving across the row to the column under 0.05.

The area to the left of z = -0.25 is 0.4013

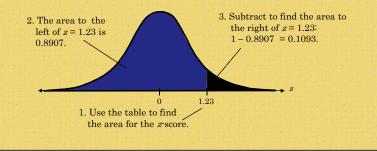

Larson & Farber, *Elementary Statistics: Picturing the World*, 3e

. 4

Guidelines for Finding Areas

Finding Areas Under the Standard Normal Curve

- 1. Sketch the standard normal curve and shade the appropriate area under the curve.
- 2. Find the area by following the directions for each case shown.
 - a. To find the area to the *left* of *z*, find the area that corresponds to *z* in the Standard Normal Table.

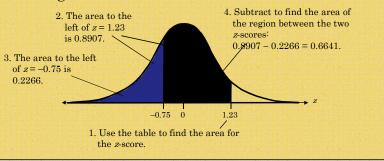

Larson & Farber, Elementary Statistics: Picturing the World, 3e

15

Guidelines for Finding Areas

Finding Areas Under the Standard Normal Curve

b. To find the area to the *right* of *z*, use the Standard Normal Table to find the area that corresponds to *z*. Then subtract the area from 1.

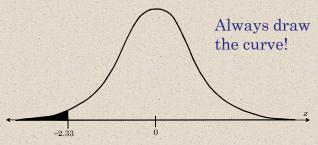


I arean & Farhar Flomentary Statistics: Picturing the World 20

Guidelines for Finding Areas

Finding Areas Under the Standard Normal Curve

c. To find the area *between* two *z*-scores, find the area corresponding to each *z*-score in the Standard Normal Table. Then subtract the smaller area from the larger area.

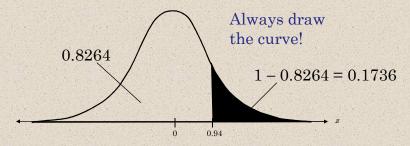

Larson & Farber, Elementary Statistics: Picturing the World, 3e

17

Guidelines for Finding Areas

Example:

Find the area under the standard normal curve to the left of z = -2.33.


From the Standard Normal Table, the area is equal to 0.0099.

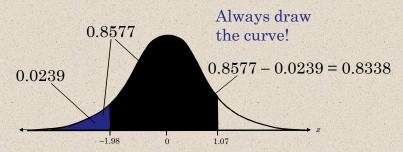
Larson & Farber, Elementary Statistics: Picturing the World, 3e

Guidelines for Finding Areas

Example:

Find the area under the standard normal curve to the right of z = 0.94.

From the Standard Normal Table, the area is equal to 0.1736.


Larson & Farber, Elementary Statistics: Picturing the World, 3e

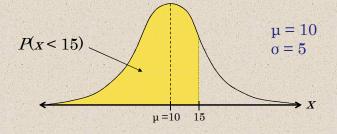
10

Guidelines for Finding Areas

Example:

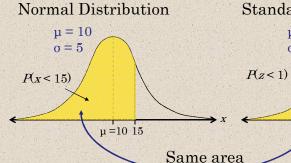
Find the area under the standard normal curve between z = -1.98 and z = 1.07.

From the Standard Normal Table, the area is equal to 0.8338.

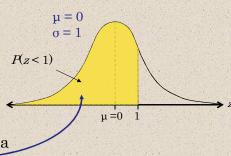

Larson & Farber, Elementary Statistics: Picturing the World, 3e

§ 5.2

Normal Distributions: Finding Probabilities


Probability and Normal Distributions

If a random variable, *x*, is normally distributed, you can find the probability that *x* will fall in a given interval by calculating the area under the normal curve for that interval.

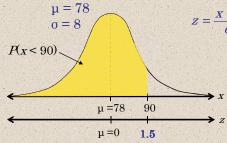


Larson & Farber, *Elementary Statistics: Picturing the World*, 3

Probability and Normal Distributions

Standard Normal Distribution

P(x < 15) = P(z < 1) = Shaded area under the curve = 0.8413


Larson & Farber, Elementary Statistics: Picturing the World, 3e

9

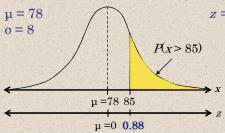
Probability and Normal Distributions

Example:

The average on a statistics test was 78 with a standard deviation of 8. If the test scores are normally distributed, find the probability that a student receives a test score less than 90.

 $z = \frac{x - \mu}{\sigma} = \frac{90.78}{8}$ = 1.5

The probability that a student receives a test score less than 90 is 0.9332.


P(x < 90) = P(z < 1.5) = 0.9332

Larson & Farber, *Elementary Statistics: Picturing the World*, 3

Probability and Normal Distributions

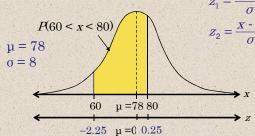
Example:

The average on a statistics test was 78 with a standard deviation of 8. If the test scores are normally distributed, find the probability that a student receives a test score greater than than 85.

$$z = \frac{x - \mu}{\sigma} = \frac{85 - 78}{8}$$
$$= 0.875 \approx 0.88$$

The probability that a student receives a test score greater than 85 is 0.1894.

$$P(x > 85) = P(z > 0.88) = 1 - P(z < 0.88) = 1 - 0.8106 = 0.1894$$


Larson & Farber, Elementary Statistics: Picturing the World, 3e

0

Probability and Normal Distributions

Example:

The average on a statistics test was 78 with a standard deviation of 8. If the test scores are normally distributed, find the probability that a student receives a test score between 60 and 80. $z_1 = \frac{x - \mu}{\sigma} = \frac{60 - 78}{8} = -2.25$

 $z_2 = \frac{x - \mu}{\sigma} = \frac{80 - 78}{8} = 0.25$

The probability that a student receives a test score between 60 and 80 is 0.5865.

$$P(60 < x < 80) = P(-2.25 < z < 0.25) = P(z < 0.25) - P(z < -2.25)$$

= 0.5987 - 0.0122 = 0.5865

Larson & Farber, Elementary Statistics: Picturing the World, 3

§ 5.3

Normal Distributions: Finding Values

Finding z-Scores

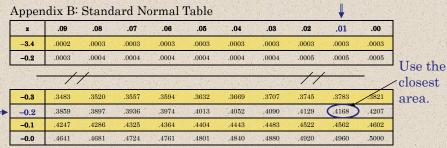
Example:

Find the z-score that corresponds to a cumulative area of 0.9973.

Appendix B: Standard Normal Table

			101 200		100	Children of the control of the contr	10	The state of the s		124
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
11 6	-//			75				//	2000	67
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981

Find the z-score by locating 0.9973 in the body of the Standard Normal Table. The values at the beginning of the corresponding row and at the top of the column give the z-score.


The z-score is 2.78.

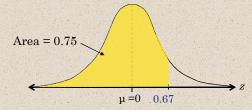
Larson & Farber, Elementary Statistics: Picturing the World, 3e

Example:

Find the *z*-score that corresponds to a cumulative area of 0.4170.

Find the *z*-score by locating 0.4170 in the body of the Standard Normal Table. Use the value closest to 0.4170.

The z-score is -0.21.


Larson & Farber, Elementary Statistics: Picturing the World, 3e

- 00

Finding a z-Score Given a Percentile

Example:

Find the z-score that corresponds to P_{75} .

The z-score that corresponds to P_{75} is the same z-score that corresponds to an area of 0.75.

The z-score is 0.67.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

Transforming a z-Score to an x-Score

To transform a standard z-score to a data value, x, in a given population, use the formula

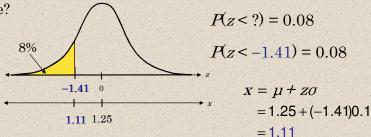
$$x = \mu + z\sigma$$
.

Example:

The monthly electric bills in a city are normally distributed with a mean of \$120 and a standard deviation of \$16. Find the *x*-value corresponding to a *z*-score of 1.60.

$$x = \mu + zo$$
= 120 + 1.60(16)
= 145.6

We can conclude that an electric bill of \$145.60 is 1.6 standard deviations above the mean.

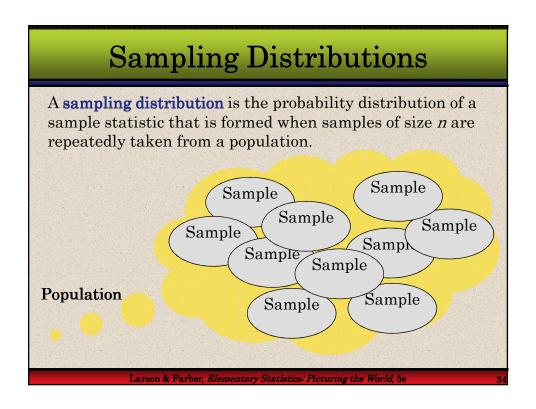

Larson & Farber, Elementary Statistics: Picturing the World, 3e

.

Finding a Specific Data Value

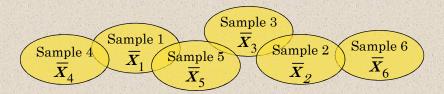
Example:

The weights of bags of chips for a vending machine are normally distributed with a mean of 1.25 ounces and a standard deviation of 0.1 ounce. Bags that have weights in the lower 8% are too light and will not work in the machine. What is the least a bag of chips can weigh and still work in the machine?



The least a bag can weigh and still work in the machine is 1.11 ounces.

Larson & Farber, Elementary Statistics: Picturing the World, 3e


§ 5.4

Sampling Distributions and the Central Limit Theorem

Sampling Distributions

If the sample statistic is the sample mean, then the distribution is the **sampling distribution of sample means**.

The sampling distribution consists of the values of the sample means, $\overline{X}_1, \overline{X}_2, \overline{X}_3, \overline{X}_4, \overline{X}_5, \overline{X}_6$.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

35

Properties of Sampling Distributions

Properties of Sampling Distributions of Sample Means

1. The mean of the sample means, $\mu_{\overline{x}}$, is equal to the population mean.

 $\mu_{\bar{x}} = \mu$

2. The standard deviation of the sample means, $\sigma_{\overline{x}}$, is equal to the population standard deviation, $\sigma_{\overline{x}}$ divided by the square root of n.

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

The standard deviation of the sampling distribution of the sample means is called the **standard error of the mean**.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

Sampling Distribution of Sample Means

Example:

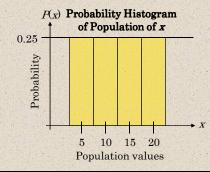
The population values {5, 10, 15, 20} are written on slips of paper and put in a hat. Two slips are randomly selected, with replacement.

a. Find the mean, standard deviation, and variance of the population.

Population	$\mu = 12.5$
5	$\mu-12.0$
10	$\sigma = 5.59$
15	0 0.00
20	$\sigma^2 = 31.25$

Continued.

Larson & Farber, Elementary Statistics: Picturing the World, 3e


27

Sampling Distribution of Sample Means

Example continued:

The population values {5, 10, 15, 20} are written on slips of paper and put in a hat. Two slips are randomly selected, with replacement.

b. Graph the probability histogram for the population values.

This uniform distribution shows that all values have the same probability of being selected.

Continued.

Larson & Farber, *Elementary Statistics: Picturing the World*, 3e

Sampling Distribution of Sample Means

Example continued:

The population values {5, 10, 15, 20} are written on slips of paper and put in a hat. Two slips are randomly selected, with replacement.

c. List all the possible samples of size n = 2 and calculate the mean of each.

Sample	Sample mean, \bar{x}
5, 5	5
5, 10	7.5
5, 15	10
5, 20	12.5
10, 5	7.5
10, 10	10
10, 15	12.5
10, 20	15

Sample	Sample mean, \bar{x}
15, 5	10
15, 10	12.5
15, 15	15
15, 20	17.5
20, 5	12.5
20, 10	15
20, 15	17.5
20, 20	20

These means form the sampling distribution of the sample means.

Continued.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

-39

Sampling Distribution of Sample Means

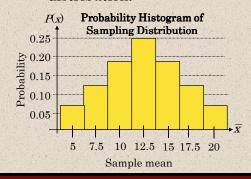
Example continued:

The population values {5, 10, 15, 20} are written on slips of paper and put in a hat. Two slips are randomly selected, with replacement.

d. Create the probability distribution of the sample means.

\bar{x}	\boldsymbol{f}	Probability
5	1	0.0625
7.5	2	0.1250
10	3	0.1875
12.5	4	0.2500
15	3	0.1875
17.5	2	0.1250
20	1	0.0625
1. T. T. (1)	1000	

Probability Distribution of Sample Means

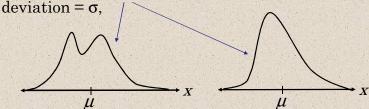

Larson & Farber, *Elementary Statistics: Picturing the World*, 3e

Sampling Distribution of Sample Means

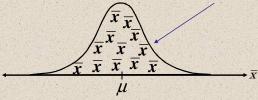
Example continued:

The population values {5, 10, 15, 20} are written on slips of paper and put in a hat. Two slips are randomly selected, with replacement.

e. Graph the probability histogram for the sampling distribution.

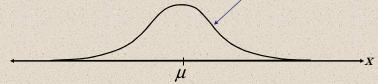

The shape of the graph is symmetric and bell shaped. It approximates a normal distribution.

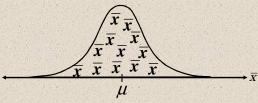
Larson & Farber, Elementary Statistics: Picturing the World, 3e


41

The Central Limit Theorem

If a sample of size $n \ge 30$ is taken from a population with **any type of distribution** that has a mean = μ and standard


the sample means will have a normal distribution.


Larson & Farber, Elementary Statistics: Picturing the World, 3e

The Central Limit Theorem

If the population itself is *normally distributed*, with mean = μ and standard deviation = σ ,

the *sample means* will have a **normal distribution** for *any* sample size *n*.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

43

The Central Limit Theorem

In either case, the sampling distribution of sample means has a mean equal to the population mean.

$$\mu_{\overline{X}} = \mu$$
 Mean of the sample means

The sampling distribution of sample means has a standard deviation equal to the population standard deviation divided by the square root of *n*.

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$
 Standard deviation of the sample means

This is also called the standard error of the mean.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

The Mean and Standard Error

Example:

The heights of fully grown magnolia bushes have a mean height of 8 feet and a standard deviation of 0.7 feet. 38 bushes are randomly selected from the population, and the mean of each sample is determined. Find the mean and standard error of the mean of the sampling distribution.

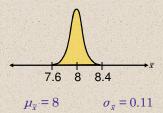
Mean (standard deviation)
$$\mu_{\overline{x}} = \mu \qquad \sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

$$= 8$$

$$= \frac{0.7}{\sqrt{38}} = 0.11$$

Larson & Farber, Elementary Statistics: Picturing the World, 3e

Continued.


Interpreting the Central Limit Theorem

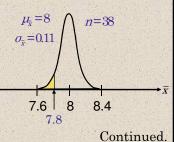
Example continued:

The heights of fully grown magnolia bushes have a mean height of 8 feet and a standard deviation of 0.7 feet. 38 bushes are randomly selected from the population, and the mean of each sample is determined.

The mean of the sampling distribution is 8 feet ,and the standard error of the sampling distribution is 0.11 feet.

From the Central Limit Theorem, because the sample size is greater than 30, the sampling distribution can be approximated by the normal distribution.

Larson & Farber, *Elementary Statistics: Picturing the World*, 3e

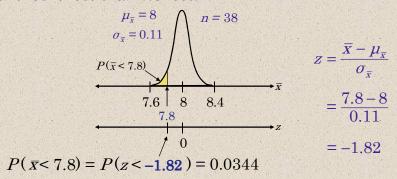

Finding Probabilities

Example:

The heights of fully grown magnolia bushes have a mean height of 8 feet and a standard deviation of 0.7 feet. 38 bushes are randomly selected from the population, and the mean of each sample is determined.

The mean of the sampling distribution is 8 feet, and the standard error of the sampling distribution is 0.11 feet.

Find the probability that the mean height of the 38 bushes is less than 7.8 feet.

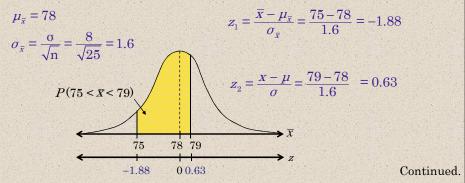

Larson & Farber, Elementary Statistics: Picturing the World, 3e

4

Finding Probabilities

Example continued:

Find the probability that the mean height of the 38 bushes is less than 7.8 feet.


The probability that the mean height of the 38 bushes is less than 7.8 feet is 0.0344.

I arean & Farhar Flomentary Statistics: Picturing the World 20

Probability and Normal Distributions

Example:

The average on a statistics test was 78 with a standard deviation of 8. If the test scores are normally distributed, find the probability that the mean score of 25 randomly selected students is between 75 and 79.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

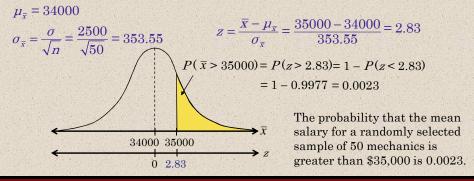
- 40

Probability and Normal Distributions

Example continued:

$$P(75 < \bar{x} < 79) = P(-1.88 < z < 0.63) = P(z < 0.63) - P(z < -1.88)$$

= 0.7357 - 0.0301 = 0.7056


Approximately 70.56% of the 25 students will have a mean score between 75 and 79.

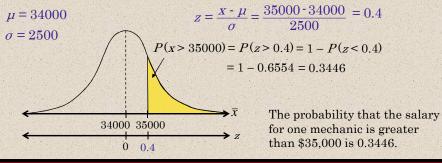
I arean & Farhar Flomentary Statistics: Picturing the World 3a

Probabilities of x and \bar{x}

Example:

The population mean salary for auto mechanics is $\mu = \$34,000$ with a standard deviation of $\sigma = \$2,500$. Find the probability that the <u>mean</u> salary for a randomly selected <u>sample of 50</u> mechanics is greater than \$35,000.

Larson & Farber, Elementary Statistics: Picturing the World, 3e


51

Probabilities of x and \bar{x}

Example:

The population mean salary for auto mechanics is $\mu = \$34,000$ with a standard deviation of $\sigma = \$2,500$. Find the probability that the salary for <u>one</u> randomly selected mechanic is greater than \$35,000.

(Notice that the Central Limit Theorem does not apply.)

Larson & Farber, *Elementary Statistics: Picturing the World*, 3e

Probabilities of x and \bar{x}

Example:

The probability that the salary for <u>one</u> randomly selected mechanic is greater than \$35,000 is 0.3446. In a group of 50 mechanics, approximately how many would have a salary greater than \$35,000?

P(x > 35000) = 0.3446

This also means that 34.46% of mechanics have a salary greater than \$35,000.

34.46% of $50 = 0.3446 \times 50 = 17.23$

You would expect about 17 mechanics out of the group of 50 to have a salary greater than \$35,000.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

53

§ 5.5

Normal Approximations to Binomial Distributions

Normal Approximation

The normal distribution is used to approximate the binomial distribution when it would be impractical to use the binomial distribution to find a probability.

Normal Approximation to a Binomial Distribution

If $np \ge 5$ and $nq \ge 5$, then the binomial random variable x is approximately normally distributed with mean

$$\mu = np$$

and standard deviation

$$\sigma = \sqrt{npq}.$$

Larson & Farber, Elementary Statistics: Picturing the World, 3e

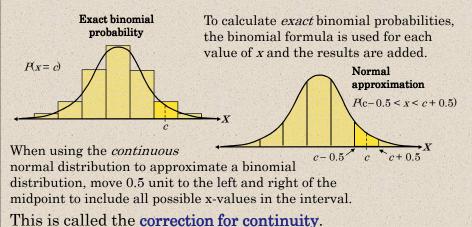
- 51

Normal Approximation

Example:

Decided whether the normal distribution to approximate *x* may be used in the following examples.

- 1. Thirty-six percent of people in the United States own a dog. You randomly select 25 people in the United States and ask them if they own a dog.
 - np = (25)(0.36) = 9 Because np and nq are greater than 5, nq = (25)(0.64) = 16 the normal distribution may be used.
- 2. Fourteen percent of people in the United States own a cat. You randomly select 20 people in the United States and ask them if they own a cat.


np = (20)(0.14) = 2.8 Because np is <u>not</u> greater than 5, the nq = (20)(0.86) = 17.2 normal distribution may NOT be used.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

= 0

Correction for Continuity

The binomial distribution is discrete and can be represented by a probability histogram.

Larson & Farber, Elementary Statistics: Picturing the World, 3

E 1

Correction for Continuity

Example:

Use a correction for continuity to convert the binomial intervals to a normal distribution interval.

1. The probability of getting between 125 and 145 successes, inclusive.

The discrete midpoint values are 125, 126, ..., 145. The continuous interval is 124.5 < x < 145.5.

- 2. The probability of getting exactly 100 successes. The discrete midpoint value is 100.

 The continuous interval is 99.5 < x < 100.5.
- 3. The probability of getting at least 67 successes.

The discrete midpoint values are $67, 68, \dots$. The continuous interval is x > 66.5.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

Guidelines

Using the Normal Distribution to Approximate Binomial Probabilities In Words In Symbols

- 1. Verify that the binomial distribution applies.
- 2. Determine if you can use the normal distribution to approximate *x*, the binomial variable.
- 3. Find the mean μ and standard deviation σ for the distribution.
- 4. Apply the appropriate continuity correction. Shade the corresponding area under the normal curve.
- 5. Find the corresponding z-value(s).
- 6. Find the probability.

Specify n, p, and q.

Is $np \ge 5$?

Is $nq \ge 5$?

$$\mu = np$$

$$\sigma = \sqrt{npq}$$

Add or subtract 0.5 from endpoints.

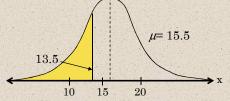
$$z = \frac{x - \mu}{\sigma}$$

Use the Standard Normal Table.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

-

Approximating a Binomial Probability


Example:

Thirty-one percent of the seniors in a certain high school plan to attend college. If 50 students are randomly selected, find the probability that less than 14 students plan to attend college.

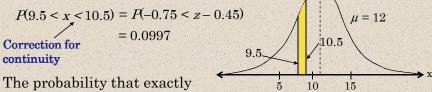
$$np = (50)(0.31) = 15.5$$
 The variable x is approximately normally distributed with $\mu = np = 15.5$ and $\sigma = \sqrt{npq} = \sqrt{(50)(0.31)(0.69)} = 3.27$.

$$P(x < 13.5) = P(z < -0.61)$$

Correction for $= 0.2709$

$$z = \frac{x - \mu}{\sigma} = \frac{13.5 - 15.5}{3.27} = -0.61$$

The probability that less than 14 plan to attend college is 0.2079.


Larson & Farber, Elementary Statistics: Picturing the World, 3e

Approximating a Binomial Probability

Example:

A survey reports that forty-eight percent of US citizens own computers. 45 citizens are randomly selected and asked whether he or she owns a computer. What is the probability that exactly 10 say yes?

$$\begin{array}{ll} np = (45)(0.48) = 12 \\ nq = (45)(0.52) = 23.4 \end{array} \qquad \begin{array}{l} \mu = 12 \\ \sigma = \sqrt{npq} = \sqrt{(45)(0.48)(0.52)} = 3.35 \end{array}$$

10 US citizens own a computer is 0.0997.

Larson & Farber, Elementary Statistics: Picturing the World, 3e