

Stem-and-Leaf Plot

In a **stem-and-leaf plot**, each number is separated into a stem (usually the entry's leftmost digits) and a leaf (usually the rightmost digit). This is an example of **exploratory data analysis**.

Example:

The following data represents the ages of 30 students in a statistics class. Display the data in a stem-and-leaf plot.

		Age	es of S	Stude	ents		
	18	20	21	27	29	20	
	19	30	32	19	34	19	
	24	29	18	37	38	22	
	30	39	32	44	33	46	
	54	49	18	51	21	21	Continued.
Ion	on & E	mhon E	lomontor	w. Ctatio	ion Diet	turing the World	3

Pie Chart					
A pie chart is a circle that is divided into sectors that represent categories. The area of each sector is proportional to the frequency of each category.					
	Туре	Frequency			
	Motor Vehicle	43,500			
	Falls	12,200			
	Poison				
Drowning		4,600			
	Fire	4,200			
	Ingestion of Food/Object	2,900			
(Source: US Dept. of Transportation) Firearms 1,400 Cont					

Pie Chart					
To create a pie chart for the data, find the relative frequency (percent) of each category.					
Туре	Frequency	Relative Frequency			
Motor Vehicle	43,500	0.578			
Falls	12,200	0.162			
Poison	6,400	0.085			
Drowning	4,600	0.061			
Fire	4,200	0.056			
Ingestion of Food/	Object 2,900	0.039			
Firearms	1,400	0.019			
n = 75,200 Continued.					

ultiply the relative fr	requency by	a the centra 360°.	il angle,
Туре	Frequency	Relative Frequency	Angle
Motor Vehicle	43,500	0.578	208.2°
falls	12,200	0.162	58.4°
Poison	6,400	0.085	30.6°
Drowning	4,600	0.061	22.0°
ire	4,200	0.056	20.1°
ngestion of Food/Object	2,900	0.039	13.9°
irearms	1,400	0.019	6.70

Times Series Chart

A data set that is composed of quantitative data entries taken at regular intervals over a period of time is a **time series**. A **time series chart** is used to graph a time series.

Example:

The following table lists the number of minutes Robert used on his cell phone for the last six months.

Construct a time series chart for the number of minutes used.

Larson & Farber

Month	Minutes	
January	236	
February	242	
March	188	
April	175	
May	199	
June	135	
		Continued

Shapes of Distributions

A frequency distribution is **symmetric** when a vertical line can be drawn through the middle of a graph of the distribution and the resulting halves are approximately the mirror images.

A frequency distribution is **uniform** (or **rectangular**) when all entries, or classes, in the distribution have equal frequencies. A uniform distribution is also symmetric.

A frequency distribution is skewed if the "tail" of the graph elongates more to one side than to the other. A distribution is **skewed left (negatively skewed)** if its tail extends to the left. A distribution is **skewed right** (**positively skewed**) if its tail extends to the right.

rson & Farber, *Elementary Statistics: Picturing the Wo*

Deviation

The **deviation** of an entry x in a population data set is the difference between the entry and the mean μ of the data set.

Deviation of $x = x - \mu$

Example:

The following data are the closing prices for a certain stock on five successive Fridays. Find the deviation of each price.

The mean stock price is $\mu = 305/5 = 61$.

Stock	Deviation
X	$X - \mu$
56	56 - 61 = -5
58	58 - 61 = -3
61	61 - 61 = 0
63	63 - 61 = 2
67	67 - 61 = 6
$\Sigma x = 305$	$\Sigma(x-\mu)=0$

Variance and Standard Deviation

Finding the Sample Standard Deviation				
Guidelines In Words	In Symbols			
1. Find the mean of the sample data set.	$\overline{x} = \frac{\sum x}{n}$			
2. Find the deviation of each entry.	$X - \overline{X}$			
3. Square each deviation.	$(x-\overline{x})^2$			
4. Add to get the sum of squares .	$SS_x = \sum (x - \overline{x})^2$			
5. Divide by $n - 1$ to get the sample variance.	$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$			
6. Find the square root of the variance to get the sample standard deviation .	$s = \sqrt{\frac{\sum \left(x - \bar{x}\right)^2}{n - 1}}$			
Larson & Farber, <i>Elementary Statistics: Picturing the World</i> , 3e 32				

Finding the Population Standard Deviation

Example:

The following data are the closing prices for a certain stock on five successive Fridays. The population mean is 61. Find the population standard deviation.

	Section .		a sizi na tangan sa	
	Stock	Deviation	Squared	$SS_2 = \Sigma(x - \mu)^2 = 74$
	X	$X - \mu$	$(x - \mu)^2$	
	56	-5	25	$\sigma^2 - \frac{\sum (x-\mu)^2}{2} - \frac{74}{14.8}$
	58	- 3	9	$0 - \frac{1}{N} - \frac{1}{5} - \frac{14.0}{5}$
	61	0	0	
	63	2	4	$\sigma = \sqrt{\frac{\sum (x-\mu)^2}{2}} = \sqrt{14.8} \approx 3.85$
	67	6	36	
	$\Sigma x = 305$	$\Sigma(x-\mu)=0$	$\Sigma(x-\mu)^2 = 74$	<i>σ</i> ≈\$3.85
1.13				

Interquartile Range

The **interquartile range (IQR)** of a data set is the difference between the third and first quartiles.

Interquartile range (IQR) = $Q_3 - Q_1$.

Example:

The quartiles for 15 quiz scores are listed below. Find the interquartile range.

 $Q_1 = 37$ $Q_2 = 43$ $Q_3 = 48$ (IQR) = $Q_3 - Q_1$ The quiz scores in the middle = 48 - 37 portion of the data set vary by = 11 at most 11 points.

arson & Farber, *Elementary Statistics: Picturing the*

