Neurofascin as a novel target for autoantibody-mediated axonal injury

Emily K. Mathey,¹ Tobias Derfuss,^{3,4} Maria K. Storch,⁵ Kieran R. Williams,¹ Kimberly Hales,⁶ David R. Woolley,² Abdulmonem Al-Hayani,^{2,7} Stephen N. Davies,² Matthew N. Rasband,⁶ Tomas Olsson,⁸ Anja Moldenhauer,⁹ Sviataslau Velhin,³ Reinhard Hohlfeld,^{3,4} Edgar Meinl,^{3,4} and Christopher Linington¹

Axonal injury is considered the major cause of disability in patients with multiple sclerosis (MS), but the underlying effector mechanisms are poorly understood. Starting with a proteomics-based approach, we identified neurofascin-specific autoantibodies in patients with MS. These autoantibodies recognize the native form of the extracellular domains of both neurofascin 186 (NF186), a neuronal protein concentrated in myelinated fibers at nodes of Ranvier, and NF155, the oligodendrocyte-specific isoform of neurofascin. Our in vitro studies with hippocampal slice cultures indicate that neurofascin antibodies inhibit axonal conduction in a complement-dependent manner. To evaluate whether circulating antineurofascin antibodies mediate a pathogenic effect in vivo, we cotransferred these antibodies with myelin oligodendrocyte glycoprotein-specific encephalitogenic T cells to mimic the inflammatory pathology of MS and breach the blood-brain barrier. In this animal model, antibodies to neurofascin selectively targeted nodes of Ranvier, resulting in deposition of complement, axonal injury, and disease exacerbation. Collectively, these results identify a novel mechanism of immune-mediated axonal injury that can contribute to axonal pathology in MS.

¹Department of Medicine and Therapeutics, Institute of Medical Sciences and ²School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK

³Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany

Institute for Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377 Munich, Germany

⁵Department of Neurology, Medical University of Graz, 8036 Graz, Austria

⁶Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030

⁷Faculty of Medicine, King Abdul Aziz University, Jeddah 21589, Saudi Arabia

⁸Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institute, Center for Molecular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden

⁹Institute for Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany