Help

Web of Science

Search History Marked List Search Search Results My Tools ▼ Save to EndNote online Add to Marked List Full Text Options ▼ ✓ Look Up Full Text

12 of 752

Efficient 2-Nitrophenol Chemical Sensor Development Based on Ce2O3 Nanoparticles Decorated CNT Nanocomposites for **Environmental Safety**

By: Hussain, MM (Hussain, Mohammad M.)^[1,2]; Rahman, MM (Rahman, Mohammed M.)^[1,2]; Asiri, AM (Asiri, Abdullah M.)[1,2]

View ResearcherID and ORCID

PLOS ONE

Volume: 11 Issue: 12 Article Number: e0166265 DOI: 10.1371/journal.pone.0166265

Published: DEC 14 2016 **View Journal Impact**

Abstract

Ce2O3 nanoparticle decorated CNT nanocomposites (Ce2O3. CNT NCs) were prepared by a wetchemical method in basic medium. The Ce2O3. CNT NCs were examined using FTIR, UV/Vis, Field-Emission Scanning Electron Microscopy (FESEM), X-ray electron dispersive spectroscopy (XEDS), Xray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD). A selective 2-nitrophenol (2-NP) sensor was developed by fabricating a thinlayer of NCs onto a flat glassy carbon electrode (GCE, surface area = 0.0316 cm 2). Higher sensitivity including linear dynamic range (LDR), long-term stability, and enhanced electrochemical performances towards 2-NP were achieved by a reliable current-voltage (I-V) method. The calibration curve was found linear (R-2 = 0.9030) over a wide range of 2-NP concentration (100 pM similar to 100.0 mM). Limit of detection (LOD) and sensor sensitivity were calculated based on noise to signal ratio (similar to 3N/S) as 60 +/- 0.02 pM and 1.6x10(-3) mu A mu M-1 cm(-2) respectively. The Ce2O3. CNT NCs synthesized by a wet-chemical process is an excellent way of establishing nanomaterial decorated carbon materials for chemical sensor development in favor of detecting hazardous compounds in health-care and environmental fields at broad-scales. Finally, the efficiency of the proposed chemical sensors can be applied and utilized in effectively for the selective detection of toxic 2-NP component in environmental real samples with acceptable and reasonable results.

Keywords

KeyWords Plus: SILVER-OXIDE NANOPARTICLES; CARBON NANOTUBES; ELECTROCHEMICAL DETECTION; 4-NITROPHENOL REDUCTION; CATALYTIC-REDUCTION; AG20 NANOPARTICLES; OXIDATION: ELECTRODE: ZNO: TEMPERATURE

Author Information

Reprint Address: Rahman, MM (reprint author)

King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah, Saudi Arabia.

Organization-Enhanced Name(s) King Abdulaziz University

Reprint Address: Rahman, MM (reprint author)

King Abdulaziz Univ, Ctr Excellence Adv Mat Res CEAMR, Jeddah, Saudi Arabia.

Organization-Enhanced Name(s)

King Abdulaziz University

Addresses:

Citation Network

2 Times Cited

61 Cited References

View Related Records

Create Citation Alert

(data from Web of Science Core Collection)

All Times Cited Counts

2 in All Databases

2 in Web of Science Core Collection

0 in BIOSIS Citation Index

0 in Chinese Science Citation Database

0 in Data Citation Index

0 in Russian Science Citation Index

0 in SciELO Citation Index

Usage Count

Last 180 Days: 12 Since 2013: 12

Learn more

Most Recent Citation

Rahman, Mohammed M. Ultrasensitive and label-free detection of creatine based on CdO nanoparticles: a real sample approach . NEW JOURNAL OF CHEMISTRY, JUL 21 2017.

View All

This record is from: Web of Science Core Collection

- Science Citation Index Expanded

Suggest a correction

If you would like to improve the quality of the data in this record, please suggest a correction.

[1] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah, Saudi Arabia

Organization-Enhanced Name(s)

King Abdulaziz University

[2] King Abdulaziz Univ, Ctr Excellence Adv Mat Res CEAMR, Jeddah, Saudi Arabia

Organization-Enhanced Name(s)

King Abdulaziz University

E-mail Addresses: mmrahman@kau.edu.sa

Publisher

PUBLIC LIBRARY SCIENCE, 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA

Categories / Classification

Research Areas: Science & Technology - Other Topics
Web of Science Categories: Multidisciplinary Sciences

Document Information

Document Type: Article
Language: English

Accession Number: WOS:000392754300009

PubMed ID: 27973600 **ISSN:** 1932-6203

Journal Information

Impact Factor: Journal Citation Reports

Other Information

IDS Number: EI8KC

Cited References in Web of Science Core Collection: 61
Times Cited in Web of Science Core Collection: 2

12 of 752

© 2017 CLARIVATE ANALYTICS

TERMS OF USE

PRIVACY POLICY

FEEDBACK