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A drug side effect is an undesirable effect which occurs in addition to the intended therapeutic effect of the drug. The unexpected
side effects that many patients suffer from are the major causes of large-scale drug withdrawal. To address the problem, it is highly
demanded by pharmaceutical industries to develop computational methods for predicting the side effects of drugs. In this study, a
novel computational method was developed to predict the side effects of drug compounds by hybridizing the chemical-chemical
and protein-chemical interactions. Compared to most of the previous works, our method can rank the potential side effects for any
query drug according to their predicted level of risk. A training dataset and test datasets were constructed from the benchmark
dataset that contains 835 drug compounds to evaluate themethod. By a jackknife test on the training dataset, the 1st order prediction
accuracy was 86.30%, while it was 89.16% on the test dataset. It is expected that the newmethod may become a useful tool for drug
design, and that the findings obtained by hybridizing various interactions in a network system may provide useful insights for
conducting in-depth pharmacological research as well, particularly at the level of systems biomedicine.

1. Introduction
Many drugs approved by Food and Drug Administration
(FDA) were recalled each year after some unexpected side
effects were discovered; for example, in 2010, Reductil/Meri-
dia, Mylotarg, and Avandia were withdrawn. According to
the “Drug Recall” (http://www.drugrecalls.com/drugrecalls
.html), about 20 million people had taken the drugs in 1997
and 1998 that were later withdrawn.The drug side effects may
have seriously harmful consequences to human beings [1].
For instance, the antiobesity drug fenfluramine/phenterm-
ine, also known as fen-phen, may cause heart disease and

hypertension. Developing and producing drugs that were
later found having serious side effects would be a disaster to a
pharmaceutical company. For instance, the withdrawal of the
aforementioned antiobesity drug has cost Wyeth more than
$21 billion in America alone [2]. Therefore, it will not only
avoid causing harm to patients but also avoid wasting lots of
money if we can discover the side effects of a drug compound
in the early phase of drug discovery.

Many efforts have been made in this regard, such as
utilizing the drug perturbed gene expression profiles or biolo-
gical pathways, to predict the side effects of drugs [1, 3–7],
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using chemical structures for the prediction of drugs side
effects [8–10]. Although, most of the methods can only
provide whether the query drug has some side effects,
they cannot determine which side effects are most likely to
happen or even the order information of the side effects. In
this study, we proposed a novel computational method to
predict the side effects of drugs based on chemical-chemical
interaction and protein-chemical interaction. Compared to
most of the previous studies, our method can provide the
order information of the side effects, that is, prioritizing the
side effects from the most likely one to the least likely one.

During the past decade, many compound databases have
been constructed, such as KEGG (Kyoto Encyclopedia of
Genes andGenomes) [11] and STITCH (SearchTool for Inter-
actions of Chemicals) [12]. KEGG provides the information
of chemical substances and reactions, while STITCH pro-
vides the interaction information of chemicals and proteins.
Thus we can acquire the properties of many compounds and
their other information from these databases. For those com-
pounds not being covered by these databases, their properties
can be inferred from the property-known compounds stored
in the databases [13–16]. Likewise, the drugs side effects can
also be inferred as elaborated below.

Recently, it was evidenced that interactive proteins are
more likely to share common biological functions [17–20],
and that interactive compounds are also more likely to share
common biological functions [13, 16]. Since the side effects
are part of biological functions of drugs, it would be feasible
to use the chemical-chemical interactions to identify the
drugs side effects. Unfortunately, some of the query drugs
cannot be predicted for their side effects by this way because
their interactive counterparts do not have any information
of the side effects. To overcome such difficulty, we proposed
to utilize the information of indirect interactions, including
both the chemical-chemical interaction and the protein-
chemical interaction, to identify the drugs side effects of
which the direct chemical-chemical interaction data are not
available. To evaluate the method, a benchmark dataset
retrieved from SIDER [21] was constructed, which consisted
of 835 drug compounds, and it was divided into one training
dataset and one test dataset. By a jackknife test on the training
dataset, the 1st order prediction accuracy was 86.30%, while
it was 89.16% on the test dataset. To confirm the effectiveness
of the method, another method based on chemical structure
similarity obtained by SMILES string [22] was also conducted
on the training and test datasets. Encouraged by the good
performance of the method and superiority to the method
based on chemical structure similarity, we hope that the
proposed method can become a useful tool to predict drugs
side effects and screen out drugs with undesired side effects.

2. Materials and Methods

2.1. Benchmark Dataset. The benchmark dataset used in
the current study was downloaded from SIDER [21] at
http://sideeffects.embl.de/, which integrated the side effects
of 888 drugs from the US Food and Drug Administration
(FDA) and other sources [21]. To obtain a high-quality, well-
defined benchmark dataset, the data were collected strictly

according to the following criteria: (i) only the 100 side effects
with most drugs listed in SIDER and the corresponding
drugs were included, and (ii) drugs without both chemical-
chemical interactions and protein-chemical interactionswere
also excluded. Finally, we obtained a benchmark dataset S
that contained 835 drugs belonging to 100 categories of side
effects.The codes of the 835 drugs in each of the 100 side effect
categories are given in Supplementary Material I available
online at http://dx.doi.org/10.1155/2013/485034.

For the convenience of later formulation, let us use the
symbols 𝐶

1
, 𝐶
2
, 𝐶
3
,. . ., 𝐶

100
to tag the 100 side effects, where

𝐶
1
represents “Nausea,” 𝐶

2
“Headache,” 𝐶

3
“Vomiting,” and

so forth, as described in the table in Supplementary Material
II, in which the number of drugs with each of the 100 side
effect tags is also given.Thus, the benchmark dataset S can be
formulated as

S = S
1
∪ S
2
∪ ⋅ ⋅ ⋅ ∪ S

100
, (1)

where S
𝑖
represents the subset that contains the drugs with

the side effect 𝐶
𝑖
(𝑖 = 1, 2, . . . , 100).

Since many drugs in S have multiple side effects that is,
they may simultaneously occur in subsets with different side
effect tags, it is instructive to introduce the concept of “virtual
drug” sample, as illustrated as follows. A drug compound
coexisting at two different side effect subsets will be counted
as 2 virtual drugs even though they have an identical chemical
structure, if coexisting at three different subsets, 3 virtual
drugs; and so forth. Accordingly, the total structure-different
drug compounds and the total number of the side-effect-
different virtual drug compounds can be described by the
following equation:

𝑁(str) = 835,

𝑁 (vir) =
100

∑

𝑖=1

𝑁(𝐶
𝑖
) = 30,114,

(2)

where 𝑁(str) is the number of the total structure-different
drug compounds, 𝑁(vir) the number of the total side-
effect-different virtual drug compounds in S, and 𝑁(𝐶

𝑖
) the

number of drugs with the side-effect tag 𝐶
𝑖
. Substituting

the numbers of 𝑁(𝐶
𝑖
) (𝑖 = 1, 2, . . . , 100) in the table in

Supplementary Material II into (2), we obtained 𝑁(vir) =
30,114 fully consistent with the results in (2) and the table in
Supplementary Material II.

It can be seen from (2) that the total number of the
side-effect-different virtual drug compounds is much greater
than that of the total structure-different drug compounds. To
provide an intuitive view about their distribution, a histogram
of the number of drugs versus the number of side effects
is given in Figure 1, from which we can see that, of the 835
drugs, only 6 have one side effect while the majority has
more than 10 side effects. Thus, the prediction of drugs side
effects is a multilabel classification problem. Like the case in
dealing with compounds withmultiple properties [13, 16], the
proposed method would provide the order information of
side effects from the most likely to the least likely.

To evaluate the methods as described below sufficiently,
we randomly selected 10% (83) samples from S to compose

http://sideeffects.embl.de/
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Figure 1: A histogram of the number of drugs versus the number of
side effects.

the test dataset, denoted by Ste, while the remaining 752
samples in S were used to construct the training dataset,
denoted by Str.

2.2. Chemical-Chemical Interactions and Protein-Chemical
Interactions. It was evidenced that interactive proteins are
more likely to share common biological functions than
noninteractive ones [17–20]. Likewise, it has been indicated
by some pioneer studies [13, 16] that interactive compounds
follow the similar rules. Since side effect is one part of bio-
logical functions of drugs, using the properties of interactive
compounds to identify drugs side effects is a feasible scheme.

To obtain the information of interactive compounds,
we downloaded the data of chemical-chemical interactions
from STITCH (http://stitch.embl.de/, chemical chemical.
links.detailed.v3.0.tsv.gz) [12], a well-known database con-
taining known and predicted chemical-chemical interaction
and protein-chemical interaction data from experiments, lit-
erature, or other reliable sources. In the datafile obtained each
interaction unit contains two chemicals and five scores with
titles “Similarity,” “Experimental,” “Database,” “Textmining,”
and “Combined score,” respectively. Since the last score
combines the information of other scores, we utilized the
last score to indicate the interactivity of two chemicals
in this study; that is, compounds in the interaction unit
with “Combined score” greater than zero were deemed to
be interactive compounds. The interactive compounds thus
considered here satisfy one of the following three properties:
(I) they participate in the same reactions; (II) they share
similar structures or activities; (III) they have literature
associations. These three properties always indicate that the
interactive compounds occupy the same biological pathways,
suggesting they may induce similar side effects. It is con-
firmed that using chemical-chemical interactions retrieved
from STITCH to identify drugs side effects is feasible. The
“Combined score” is termed as confidence score, because
its value always indicates the likelihood that two interactive
compounds can interact in a way that two compounds with
high “Combined score” mean that they can interact with
high probability. For any two-drug compounds 𝑑

1
and 𝑑

2
,

their interaction confidence score was denoted by𝑄𝑐(𝑑
1
, 𝑑
2
).

Particularly, if the interaction between𝑑
1
and𝑑
2
did not exist,

their interaction confidence score was set to zero; that is,
𝑄
𝑐
(𝑑
1
, 𝑑
2
) = 0.

Since the data of chemical-chemical interactions in
STITCH is not very complete at present; that is, some poten-
tial chemical-chemical interactions may not be reported in
STITCH, predicted methods based on chemical-chemical
interactions may have a limitation that samples without
interactive counterparts in the training dataset cannot be
processed. Thus, it is necessary to give some new schemes to
measure the interactions that are not reported in STITCH. It
is known that if two drug compounds can interact with a third
compoundor protein, these twodrug compounds are likely to
share some common functions. In view of this, we proposed
a new scheme to measure the likelihood of interaction of two
chemicals based on indirect chemical-chemical and protein-
chemical interactions.

The data for the protein-chemical interactions were
also downloaded from STITCH (http://stitch.embl.de/, pro-
tein chemical.links.detailed.v3.0.tsv.gz). Each of the inter-
action units in the datafile obtained contains one com-
pound, one protein, and four scores with titles “Experi-
mental,” “Database,” “Textmining,” and “Combined score,”
respectively. With the similar argument, we used the value
of “Combined score,” also termed as confidence score, to
indicate the likelihood of the interaction’s occurrence. For
one protein 𝑝 and one drug compound 𝑑, their interaction
confidence score was denoted as 𝑄𝑝(𝑝, 𝑑). If there was no
interaction at all between the protein 𝑝 and the drug 𝑑, it was
also set to zero; that is, 𝑄𝑝(𝑝, 𝑑) = 0.

Now, we are ready to introduce the new scheme to
measure the likelihood of interaction of two chemicals. For
two compounds 𝑑

1
and 𝑑

2
, suppose 𝐼𝑐(𝑑

1
) denote a set of

compounds that are directly interacting with the drug 𝑑
1
and

𝐼
𝑐
(𝑑
2
) a set of compounds directly interacting with the drug

𝑑
2
, formulated as

𝐼
𝑐
(𝑑
1
) = {𝑑 : 𝑄

𝑐
(𝑑, 𝑑
1
) > 0} ,

𝐼
𝑐
(𝑑
2
) = {𝑑 : 𝑄

𝑐
(𝑑, 𝑑
2
) > 0} .

(3)

In a similar way let 𝐼𝑝(𝑑
1
) denote a set of proteins that are

directly interacting with the drug 𝑑
1
and 𝐼𝑝(𝑑

2
) a set of

proteins directly interacting with the drug 𝑑
2
, formulated as

𝐼
𝑝
(𝑑
1
) = {𝑝 : 𝑄

𝑝
(𝑝, 𝑑
1
) > 0} ,

𝐼
𝑝
(𝑑
2
) = {𝑝 : 𝑄

𝑝
(𝑝, 𝑑
2
) > 0} .

(4)

According to the set theory, the drug compounds that are
interacting with both the drug 𝑑

1
and the drug 𝑑

2
should be

the intersection of the set 𝐼𝑐(𝑑
1
) and the set 𝐼𝑐(𝑑

2
); that is,

they will form a set given by

𝐼
𝑐
(𝑑
1
, 𝑑
2
) = 𝐼
𝑐
(𝑑
1
) ∩ 𝐼
𝑐
(𝑑
2
) . (5)

Likewise, the human proteins that are interacting with both
the drug 𝑑

1
and the drug 𝑑

2
should be the intersection of the

http://stitch.embl.de/
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set 𝐼𝑝(𝑑
1
) and the set 𝐼𝑝(𝑑

2
); that is, they will form a set given

by

𝐼
𝑝
(𝑑
1
, 𝑑
2
) = 𝐼
𝑝
(𝑑
1
) ∩ 𝐼
𝑝
(𝑑
2
) . (6)

Thus, the likelihood of the interaction between 𝑑
1
and 𝑑

2

can be calculated via the following equation:

𝑄
ℎ
(𝑑
1
, 𝑑
2
) = ( ∑

𝑑
󸀠
∈𝐼
𝑐
(𝑑
1
,𝑑
2
)

(𝑄
𝑐
(𝑑
1
, 𝑑
󸀠
) + 𝑄
𝑐
(𝑑
2
, 𝑑
󸀠
))

+ ∑

𝑝
󸀠
∈𝐼
𝑝
(𝑑
1
,𝑑
2
)

(𝑄
𝑝
(𝑝
󸀠
, 𝑑
1
) + 𝑄
𝑝
(𝑝
󸀠
, 𝑑
2
)))

× (2
󵄨󵄨󵄨󵄨𝐼
𝑐
(𝑑
1
, 𝑑
2
) ∪ 𝐼
𝑝
(𝑑
1
, 𝑑
2
)
󵄨󵄨󵄨󵄨)
−1

,

(7)

where ∈ is a symbol in the set theory meaning “member of.”

2.3. Interaction-Based Method. It is instructive to recall that
by using the information of protein-protein interactions,
some methods have been developed to successfully predict
the properties of proteins [17–20, 23]. Actually, the underlying
idea of thesemethodswas based on the assumption that inter-
active proteins are more likely to share common biological
functions than noninteractive ones. Similarly, based on the
argument in Section 2.2 and some previous studies [13, 16],
interactive drugs are more likely to share similar side effects
than noninteractive ones. Based on such an underlying idea,
the following predicted method based on chemical-chemical
and protein-chemical interactions was developed.

For convenience, some notations are necessary. Suppose
there are 𝑛 drugs in the training set S󸀠, say 𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
; the

side effects of the drug 𝑑
𝑖
in the training dataset is described

as

𝐶 (𝑑
𝑖
) = [𝑐
𝑖,1
, 𝑐
𝑖,2
, . . . , 𝑐

𝑖,100
]
T
(𝑖 = 1, 2, . . . , 𝑛) , (8)

where T is the transpose operator and

𝑐
𝑖,𝑗
= {
1, if 𝑑

𝑖
has the side effect 𝐶

𝑗
,

0, otherwise.
(9)

Prediction Based on Chemical-Chemical Interactions.As elab-
orated previously, interactive drugs always share similar side
effects.The likelihood that the query drug 𝑑 has the side effect
𝐶
𝑗
can be calculated by

∏
𝑐

(𝑑 󳨀→ 𝐶
𝑗
) = ∑

𝑑
𝑖
∈S󸀠
𝑄
𝑐
(𝑑, 𝑑
𝑖
) ⋅ 𝑐
𝑖,𝑗
𝑗 = 1, 2, . . . , 100.

(10)

According to (10), the greater score∏𝑐(𝑑 → 𝐶
𝑗
)means that

there are lots of interactive compounds of 𝑑 that have the side
effect 𝐶

𝑗
or some interactions between 𝑑 and its interactive

compounds with the side effect 𝐶
𝑗
are labeled by high

confidence scores.Thus, the greater the score∏𝑐(𝑑 → 𝐶
𝑗
) is,

the more likely the drug compound 𝑑 has the 𝑗th side effect,
with∏𝑐(𝑑 → 𝐶

𝑗
) = 0 indicating that the probability for the

drug 𝑑 having the 𝑗th side effect is zero. Since a drug usually
has multiple side effects (see Figure 1), the prediction should
provide a series of candidate side effects ranging from the
most likely one to the least likely one, rather than only giving
themost likely one.Thus, for a query drug 𝑑, suppose we have

∏
𝑐

(𝑑 󳨀→ 𝐶
2
) ≥ ∏

𝑐

(𝑑 󳨀→ 𝐶
4
)

≥ ⋅ ⋅ ⋅ ≥ ∏
𝑐

(𝑑 󳨀→ 𝐶
90
) > 0

(11)

meaning that the highest likelihood of side effect for the drug
𝑑 is 𝐶

2
or “Headache” (cf. table in Supplementary Material

II), and the second highest is 𝐶
4
or “Rash”, and so forth. In

other words, 𝐶
2
is called the 1st order prediction, 𝐶

4
the 2nd

order prediction, and so forth. Note that the outcome of (10)
might be trivial; that is,

∏
𝑐

(𝑑 󳨀→ 𝐶
𝑗
) = 0 for 𝑗 = 1, 2, . . . , 100 (12)

implying that no meaningful or direct interactive drug
compounds whatsoever can be found in the training dataset
S󸀠 for the drug 𝑑. Under such a circumstance, an alternative
approach should be used for predicting its side effects, as
elaborated below.
PredictionBased onHybrid Interactions.When the query drug
𝑑 did not have any directly interactive drugs in the training
dataset S󸀠 or the information of its directly interactive drugs
was trivial, the data for the indirect chemical-chemical and
protein-chemical interactions would be used to predict its
side effects. The prediction method was formulated in a
similar way as the above method. But now instead of (10), the
likelihood that the query drug 𝑑 has the side effect 𝐶

𝑗
should

be calculated by

∏
ℎ

(𝑑 󳨀→ 𝐶
𝑗
) = ∑

𝑑
𝑖
∈S󸀠
𝑄
ℎ
(𝑑, 𝑑
𝑖
) ⋅ 𝑐
𝑖,𝑗
. (13)

By integrating the above two different approaches, the
following steps were adopted to predict the side effects of the
query drug 𝑑.

Step 1. Themethod based on the chemical-chemical interac-
tions; that is, (10), was first utilized to identify its side effects.

Step 2. If the outcomes were trivial or no meaningful results
were obtained as in the case of (12), the method based on the
hybrid interactions, that is, (13), would be utilized to continue
the prediction.

2.4. Similarity-Based Method. It is known that the com-
pounds with similar structural properties always involve
in similar biological activities [24]. The most well-known
representing system to obtain the similarity information of
two compounds is SMILES (Simplified Molecular Input Line
Entry System) [22], which is a line notation for representing
molecules and reactions using ASCII strings. Here, we also
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used this system to obtain the representations of compounds,
which were used to calculate the similarity score of two
compounds and set up a new computational method to
identify drugs side effect. The similarity score between
two compounds with their SMILES representations can be
obtained from Open Babel [25] that is an open chemical
toolbox. For two-drug compounds 𝑑

1
and 𝑑

2
, their similarity

score obtained from Open Babel was denoted by 𝑄𝑠(𝑑
1
, 𝑑
2
).

Based on the fact that the compounds with similar structural
properties always share the same biological activities, the
likelihood that the query drug 𝑑 has the side effect 𝐶

𝑗
can

be calculated by

∏
𝑠

(𝑑 󳨀→ 𝐶
𝑗
) = max
𝑑
𝑖
∈S󸀠
𝑄
𝑠
(𝑑, 𝑑
𝑖
) ⋅ 𝑐
𝑖,𝑗 (14)

meaning that the likelihood that the query drug 𝑑 has the
side effect 𝐶

𝑗
is formulated as the maximum similarity scores

between 𝑑 and those drugs with side effect 𝐶
𝑗
in the training

dataset S󸀠. Obviously, the greater the score ∏𝑠(𝑑 → 𝐶
𝑗
),

the more likely the drug compound 𝑑 has the side effect
𝐶
𝑗
. Following the similar procedure of the method based on

chemical-chemical interactions, we can also obtain the order
information of the query drug 𝑑 in terms of ∏𝑠(𝑑 → 𝐶

𝑗
)

(𝑗 = 1, 2, . . . , 100).

2.5. Jackknife Test. In statistical prediction, Jackknife test [16]
is often used to examine a predictor for its effectiveness in
practical application. In the jackknife test, all the samples
in the dataset will be singled out one-by-one and tested by
the predictor trained by the remaining samples. During the
process of jackknifing, both the training dataset and testing
dataset are actually open, and each sample will be in turn
moved between the two. The jackknife test can exclude the
“memory” effect, and the arbitrariness problem can also
be avoided. Thus, the outcome obtained by the jackknife
test is always unique for a given benchmark dataset [26].
Accordingly, the jackknife test has been widely recognized
and increasingly adopted to investigate the performance of
various predictors [27–36]. Thus, the jackknife test was also
adopted here to evaluate the anticipated accuracy of the
current predicted methods.

2.6. Accuracy Measurement. For a query drug, we may
identify a series of side effects with the current prediction
method. For the 𝑗th order prediction, its prediction accuracy
AC(𝑗) can be calculated by

AC (𝑗) =
𝑃 (𝑗)

𝑁
𝑗 = 1, 2, . . . , 100, (15)

where 𝑃(𝑗) denotes the number of drugs whose 𝑗th order
prediction is one of the true side effects and 𝑁 denotes
the total number of structure-different drugs in the dataset.
According to the prediction method with 100 orders of
prediction results, high AC(𝑗) with small 𝑗 and low AC(𝑗)
with large 𝑗 would indicate a good prediction [13, 16, 20].
Generally speaking, it also implies a good performance by the
predictor if its 1st order prediction has a high success rate.
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Figure 2: A plot of the prediction accuracy of two methods on the
training dataset versus the order of prediction.

3. Results and Discussion

Of the 835 drugs in the benchmark dataset S, 83 samples were
randomly selected to compose test dataset Ste, while the rest
752 samples composed the training dataset Str. The predicted
results of the interaction-based method and similarity-based
method on the training and test datasets are as follows.

3.1. Performance of the Methods on the Training Dataset.
For 752 drug compounds in the training dataset Str, the
interaction-based method and similarity-based method were
conducted to make prediction with their performance evalu-
ated by jackknife test. Listed in columns 2 and 4 of Table 1
are the first 20 prediction accuracies obtained by these
two methods, from which we can see that the 1st order
prediction accuracies of the interaction-based and similarity-
based method were 86.30% and 83.64%, respectively, while
the 2nd ones were 80.45% and 79.12%, respectively. The total
100 prediction accuracies obtained by these two methods
are given in Supplementary Material III, and two curves
with prediction accuracies as their 𝑌-axis and prediction
order as their 𝑋-axis are shown in Figure 2. It is observed
that the prediction accuracies obtained by the interaction-
based method descend generally with the increase of the
order number, and the same situation also occurred for
the prediction accuracies obtained by the similarity-based
method. All of these imply that the two methods sorted the
side effects of drug compounds in the training dataset quite
well, and they are all quite effective in identifying drugs side
effects.

3.2. Performance of the Methods on the Test Dataset. For the
83 drug compounds in the test dataset Ste, the side effects of
these samples were predicted by the interaction-based and
similarity-basedmethodbased on the drug compounds in the
training dataset Str. After processing by (15), 100 prediction
accuracies obtained by each method were obtained and were
also given in SupplementaryMaterial III. Listed in columns 3
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Table 1: The first 20 prediction accuracies of the interaction-based and similarity-based methods in identifying the side effects of drugs in
the training and test datasets.

Prediction order Interaction-based Similarity-based Difference
Training dataset Test dataset Training dataset Test dataset Training dataseta Test datasetb

1 86.30% 89.16% 83.64% 87.95% 2.66% 1.20%
2 80.45% 83.13% 79.12% 83.13% 1.33% 0.00%
3 77.13% 84.34% 75.00% 79.52% 2.13% 4.82%
4 72.61% 81.93% 71.41% 75.90% 1.20% 6.02%
5 73.40% 77.11% 68.22% 74.70% 5.19% 2.41%
6 68.75% 75.90% 66.89% 71.08% 1.86% 4.82%
7 67.69% 67.47% 64.76% 57.83% 2.93% 9.64%
8 64.23% 65.06% 59.97% 65.06% 4.26% 0.00%
9 63.70% 68.67% 58.78% 57.83% 4.92% 10.84%
10 57.71% 57.83% 57.31% 60.24% 0.40% −2.41%
11 59.18% 60.24% 56.38% 67.47% 2.79% −7.23%
12 59.18% 69.88% 56.65% 51.81% 2.53% 18.07%
13 57.31% 61.45% 54.79% 53.01% 2.53% 8.43%
14 55.85% 59.04% 53.86% 62.65% 1.99% −3.61%
15 54.12% 54.22% 50.66% 57.83% 3.46% −3.61%
16 53.86% 59.04% 52.66% 55.42% 1.20% 3.61%
17 51.33% 39.76% 50.00% 60.24% 1.33% −20.48%
18 54.52% 62.65% 51.73% 53.01% 2.79% 9.64%
19 50.00% 56.63% 50.00% 38.55% 0.00% 18.07%
20 47.21% 44.58% 47.74% 51.81% −0.53% −7.23%
aPercentages in this column were calculated by percentages in column 2 minus percentages in column 4.
bPercentages in this column were calculated by percentages in column 3 minus percentages in column 5.
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Figure 3: A plot of the prediction accuracy of two methods on the
test dataset versus the order of prediction.

and 5 of Table 1 are the first 20 prediction accuracies obtained
by these two methods, from which we can see that the
1st order prediction accuracies obtained by the interaction-
based and similarity-based method were 89.16% and 87.95%,
respectively. We also plotted two curves with prediction
accuracies as their 𝑌-axis and prediction order as their 𝑋-
axis, which are shown in Figure 3. It is observed fromFigure 3

that the accuracies also exhibit a trend of decrease with
the increase of the order number. However, two curves in
Figure 3 fluctuate more drastically and frequently than those
of Figure 2, which may be caused by the low number of the
samples in the test dataset. In any case, the interaction-based
and similarity-based methods still sorted the side effects of
samples in the test dataset reasonably well, implying again
that these twomethods are quite effective in identifying drugs
side effects.

3.3. Comparison of the Interaction-Based and Similarity-Based
Method. For 752 samples in the training dataset Str and 83
samples in the test dataset Ste, the interaction-based and
similarity-based methods were all used to identify their side
effects. Listed in columns 6 and 7 of Table 1 are the differences
of the first 20 prediction accuracies obtained by these two
methods, from which we can see that the 1st order prediction
accuracies obtained by the interaction-based method on
the training and test datasets were 2.66% and 1.20% higher
than those of similarity-based method. Furthermore, most
prediction accuracies in Table 1 obtained by the interaction-
based method are higher than the corresponding accuracies
obtained by the similarity-based method, indicating that
interaction-based method is more effective in identifying
drugs side effects. It is also confirmed from Figures 2 and
3 that the curve obtained by the interaction-based method
is always above the curve obtained by the similarity-based
method when the prediction order is low. However, with
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the increase of order number, the curve obtained by the
similarity-basedmethod keeps upwith and exceeds the curve
obtained by the interaction-based method, which may be
caused by the following two reasons: (I) the high prediction
accuracies, obtained by the interaction-based method, with
low order number cause the low number of correctly pre-
dicted samples with high prediction order; (II) the system
of using chemical similarity between two chemicals is more
complete than that in STITCH at present, which leads to
the fact that the similarity-based method can always identify
more side effects than the interaction-based method. It is
expected that the interaction-based method can be improved
as more and more chemical-chemical and protein-chemical
interactions become available in STITCH.

3.4. Discussion. It is amultitarget learning problem to predict
the side effects of drugs, just like the case in dealing with a
protein system with multiple subcellular location sites [37].
For each of the drugs investigated, we need to consider
how many different side effects it may have and what are
the probabilities these side effects may occur. To deal with
this complicated statistical systems like that, we adopted the
strategy of the multiple prediction orders, ranging from the
most likely side effect prediction order to the least one, that
is, giving the information to users, which side effect is most
likely, which one is the second likely one, and so forth.
Compared tomost of the previous studies on the prediction of
drugs side effects, ourmethod can providemore information.
The multiple prediction orders method can also be utilized
to deal with other multi-target learning problems, such as
subcellular location prediction [37] and functions of proteins
[20].

In addition to the multi-target issue, we also faced the
problem of coverage scope. Of the 835 drug compounds in
the benchmark dataset, some of themhave the information of
chemical-chemical interaction, while for the rest such infor-
mation is missing. To establish a predictor that can be used to
predict the side effects of drugs under both the circumstances,
the approach of the direct chemical-chemical interaction and
the approach of the indirect chemical-chemical interaction
were introduced. For the drug compounds belonging to the
1st circumstance, the predictions were conducted based on
the direct chemical-chemical interactions (cf. (10)); for the
rest drug compounds belonging to the 2nd circumstance, the
predictions were conducted based on the hybrid interactions
(cf. (13)). Thus, the side effects of all the 835 drugs could be
predicted.

Finally, the good performance of the interaction-based
method on the training and test datasets suggests that predic-
tions based on the indirect interactions was also quite good,
indicating that the entire interaction network—involving all
the drug compounds and their direct or indirect interac-
tions, as well as their interactions with human proteins—
determines the side effects of drug compounds.

4. Conclusions

In this study, we proposed a novel prediction method to
identify drugs side effects. For any query drug 𝑑, its side

effects were determined by the following strategy: (1) if there
exist interactive compounds of 𝑑 in the training set, only
chemical-chemical interactions were used to identify its side
effects; (2) otherwise, both chemical-chemical interactions
and protein-chemical interactions were employed to make
prediction. Good performance of the method on the training
and test datasets indicates that our method is quite effective
in identifying drugs side effects. We hope that the method
would assist in the prediction of drugs side effects during
drug development and screening out drug candidates with
undesired side effects.
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