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ABSTRACT

Motivation: Owing to its importance in both basic research (such as

molecular evolution and protein attribute prediction) and practical ap-

plication (such as timely modeling the 3D structures of proteins tar-

geted for drug development), protein remote homology detection has

attracted a great deal of interest. It is intriguing to note that the profile-

based approach is promising and holds high potential in this regard.

To further improve protein remote homology detection, a key step is

how to find an optimal means to extract the evolutionary information

into the profiles.

Results: Here, we propose a novel approach, the so-called profile-

based protein representation, to extract the evolutionary information

via the frequency profiles. The latter can be calculated from the

multiple sequence alignments generated by PSI-BLAST. Three top

performing sequence-based kernels (SVM-Ngram, SVM-pairwise

and SVM-LA) were combined with the profile-based protein represen-

tation. Various tests were conducted on a SCOP benchmark dataset

that contains 54 families and 23 superfamilies. The results showed that

the new approach is promising, and can obviously improve the

performance of the three kernels. Furthermore, our approach can

also provide useful insights for studying the features of proteins in

various families. It has not escaped our notice that the current

approach can be easily combined with the existing sequence-based

methods so as to improve their performance as well.

Availability and implementation: For users’ convenience, the source

code of generating the profile-based proteins and the multiple kernel

learning was also provided at

http://bioinformatics.hitsz.edu.cn/main/*binliu/remote/

Contact: bliu@insun.hit.edu.cn or bliu@gordonlifescience.org

Supplementary information: Supplementary data are available at
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1 INTRODUCTION

By March 2013, 89 003 experimentally determined protein struc-
tures were deposited in the Protein Data Bank (Berman et al.,

2007). However, this number is only about one-sixth of 539 616,

the number of protein sequences held in the UniProtKB/Swiss-

Prot database (Wu et al., 2006). To timely use such vast amount
of structure-unknown protein sequences for basic research and

drug development, it is highly desired to determine their 3D

structures and functions by means of homology approaches

(Chou, 2004). Unfortunately, protein remote homology detec-

tion is still a challenging problem in bioinformatics.
The early methods in dealing with this problem were based on

the pairwise sequence comparison approaches, such as BLAST
(Altschul et al., 1990) and Smith–Waterman local alignment

algorithm (Smith and Waterman, 1981). However, in many

cases, this kind of sequence alignment method failed to detect

remote homologies due to the low sequence similarities. Later

methods to challenge this problem were based on the generative
models to induce a probability distribution over the protein

family, and then to generate the unknown proteins as new

members of the family from the stochastic model. For example,

the hidden Markov model (HMM) (Karplus et al., 1998) can be

trained iteratively in a semi-supervised manner by using both
positively labeled and unlabeled samples of a particular family

to generate the positive set (Qian and Goldstein, 2004).
Recently, the discriminative methods, such as support vector

machine (SVM) (Vapnik, 1998), were used to address this problem

by focusing on the differences between protein families. The key of

the SVMmethods is the kernel function by which to compute the

inner product between two samples in the feature space. The most
straightforward approach to generate the kernelswas based on the

features extracted from protein sequences. SVM-Ngram (Dong

et al., 2006), SVM-pairwise (Liao andNoble, 2003) and SVM-LA

(Saigo et al., 2004) were three of the most successful sequence-
based kernels. SVM-Ngram (Dong et al., 2006) was based on the

feature space that contains all short subsequence of length N. In

SVM-pairwise (Liao and Noble, 2003), a protein sequence was

represented as a vector of pairwise similarities to all protein*To whom correspondence should be addressed.
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sequences in the training set, and then inner product between these
vector-space representations was taken as the kernel. SVM-LA
(Saigo et al., 2004) measured the similarity between a pair of pro-

teins by taking all the optimal local alignment scores with gaps
between all possible subsequences into account. Besides these ker-
nels, several other sequence-based kernels were also proposed,

such as Mismatch (Leslie et al., 2004) and SVM-BALSA
(Webb-Robertson et al., 2005). The profile-based kernels could
further improve the performance by using the evolutional infor-

mation extracted from the profiles. For example, Top-n-grams
(Liu et al., 2008) extracted the profile-based patterns by consider-
ing the most frequent elements in the profiles; profile kernel

(Kuang et al., 2005) extracted the short substrings according to
the profile-based ungapped alignment scores; some profile-based
methods improved the predictive performance by developing

more sensitive profiles. HHsearch method (Söding, 2005) was
based on a novel profile using the HMM. In COMPASS
(Sadreyev et al., 2009), numerical profiles were generated to con-
struct optimal profile–profile alignments and to estimate the stat-

istical significance of the corresponding alignment scores.
In the meantime, some other features and techniques have

been applied to this field to further improve the predictive per-

formance. For instance, the kernel combination methodology
(VBKC) (Damoulas and Girolami, 2008) used a single multi-
class kernel machine to combine various kernels based on differ-

ent feature spaces; SVM-physicochemical distance transform-
ation (PDT) (Liu et al., 2012) combined the amino acid
physicochemical properties and the profile features via PDT to

incorporate the local sequence-order information of the entire
protein sequences. Also, based on the similarities between pro-
tein sequences and natural languages, the natural language pro-

cessing techniques were applied to this field. It was shown that
the performance of building-block-based methods could be im-
proved by using the latent semantic analysis (LSA) (Dong et al.,

2006). Moreover, PROTEMBED (Melvin et al., 2011) detected pro-
tein remote homology by embedding protein sequences into a
low-dimensional semantic space.

As we can see from the aforementioned introduction, most of
the top-performing methods were developed based on the fea-
tures extracted from profiles. This is consistent with the fact that

a profile is much richer than an individual sequence in encoding
information. Also, biology is a natural science with historic
dimension. All biological species have developed beginning

from a limited number of ancestral species. It is true for protein
sequence as well (Chou, 2004). Their evolution involves changes
of single residues, insertions and deletions of several residues,

gene doubling and gene fusion (Chou, 1995). With these changes
accumulated for a long period, many similarities between initial
and resultant amino acid sequences are gradually eliminated, but

the corresponding proteins may still share many common fea-
tures, such as having basically the same biological function
(Loewenstein et al., 2009), folding topology, subcellular location

and other attributes (Chou, 2013).
Accordingly, the key to improve the performance of these

methods is to find a suitable approach to extract the evolutionary

information from the profiles. In view of this, the current study
was initiated in an attempt to propose a profile-based protein
representation by extracting the evolutionary information from

the frequency profiles.

2 MATERIALS AND METHODS

As shown by a series of publications (Chen et al., 2013; Liu et al., 2009;

Xiao et al., 2013; Xu et al., 2013) and summarized in a comprehensive

review (Chou, 2011), to develop a useful statistical prediction method or

model for a biological system, one needs to engage the following proced-

ures: (i) construct or select a valid benchmark dataset to train and test the

predictor; (ii) formulate the samples with an effective mathematical

expression that can truly reflect their intrinsic correlation with the target

to be predicted; (iii) introduce or develop a powerful algorithm (or engine)

to operate the prediction; (iv) properly perform cross-validation tests

to objectively evaluate the anticipated accuracy of the predictor; and

(v) provide the downloadable source code or a web-server for the predic-

tion method. Below, let us describe how to deal these procedures.

2.1 SCOP benchmark

Suppose S is a remote homology system investigated in the current study

that contains 4352 protein sequences, which were taken from (Liao and

Noble, 2003) at http://noble.gs.washington.edu/proj/svm-pairwise/. These

proteins were selected from SCOP version 1.53 and extracted from the

Astral database (Brenner et al., 2000). None of the 4352 proteins has

sequence pairwise similarity to any other with higher than 10�25 in the

E-value [for more about the E-value and its implication in reducing hom-

ology bias and redundancy, see (Brenner et al., 2000)]. These proteins

were also used by others (Dong et al., 2006; Lingner and Meinicke, 2006;

Saigo et al., 2004) to study remote homology detection. The 4352 proteins

in S can be classified into 853 superfamilies and 1356 families; i.e.

S ¼ S
F
1US

F
2U � � �US

F
853 ¼ S

f
1US

f
2U � � �US

f
1356 ð1Þ

where S
F
i ði ¼ 1, 2, . . . , 853Þ is the ith superfamily, Sf

k ðk ¼ 1, 2, . . . , 1356Þ

is the kth family and the symbol [ represents the ‘union’ in the set theory.

For readers’ convenience, the codes of the 4352 proteins and their

sequence as well as the attributes of their families and superfamilies

are given in Supplementary Material S1.

Because some families and superfamilies in S do not contain signifi-

cant number of protein sequences, and also because the negative dataset

for each protein family can be any proteins except those belonging to its

own superfamily, it is not so straightforward but a little more complicated

and subtle for how to select protein samples from S to define the training

and testing datasets. To provide a clear description, let us consider a

different manner to address this. As demonstrated by many previous

studies on a series of important biological topics, such as enzyme-

catalyzed reactions (Zhou and Deng, 1984), inhibition of human

immunodeficiency virus-1 reverse transcriptase (Althaus et al., 1993),

drug metabolism systems (Chou, 2010) and applying wenxiang diagram

or graph (Chou et al., 2011) to study protein–protein interactions (Zhou,

2011; Zhou and Huang, 2013), using graphical approaches to study com-

plicated problems can provide an intuitive picture and useful insights for

in-depth studying and analyzing various complicated relations in these

systems (Lin and Lapointe, 2013). In view of this, let us also use graphic

approach to describe the feature and relation of the families and super-

families in S, as shown in Figure 1, where the open circles denote the

families or superfamilies that have significant number of protein se-

quences and the gray circles denote those that do not.

Of the 1356 families in S (cf. Equation 1), 54 contain significant

number of proteins (see the third row of Fig. 1) and form a target

family set S
f
target; i.e.

S
f
target ¼ S

f
1US

f
2US

f
3U � � �US

f
54 ð2Þ

Of the 853 superfamilies in S, 23 contain at least one target family (see

the open circles in the second row of Fig. 1) and form a target superfamily

set S
F
Target; i.e.

S
F
target ¼ S

F
1US

F
2U � � �US

F
23 ð3Þ
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Thus, we have

S
f
target � S

F
target � S ð4Þ

meaning that S
f
target is the subset of S

F
Target, and S

F
Target is the subset of S;

each of the three contains 857, 1508 and 4352 proteins, respectively.

Now, for each of the 54 families in the target family set S
f
target, we can

define a training dataset and testing dataset given by

StrainðkÞ ¼ SþtrainðkÞ [ S
�
trainðkÞ

StestðkÞ ¼ SþtestðkÞ [ S
�
testðkÞ

(
ðk ¼ 1, 2, . . . , 54Þ ð5Þ

where the positive training dataset SþtrainðkÞ contains at least 10 of its

superfamily members, none of which belongs to the kth family, and the

positive testing dataset SþtestðkÞ contains at least five protein domains

within the family. The proteins in the negative training and testing data-

sets, S�trainðkÞ and S�testðkÞ, were picked from S by excluding the superfam-

ily of the kth family and randomly split between the two in the same ratio

as the positive ones. The 54 training and testing datasets thus obtained

are given in the Supplementary Materials S2 and S3, respectively.

2.2 Protein frequency profile

The frequency profile M for protein P with L amino acids can be repre-

sented by

M ¼

m
1, 1

m
1, 2
� � � m

1,L

m
2, 1

m
2, 2
� � � m

2,L

..

. ..
. ..

. ..
.

m
20, 1

m
20, 2
� � � m

20,L

2
6664

3
7775 ð6Þ

where 20 is the total number of standard amino acids; mi,j (0�mi,j� 1)

is the target frequency, which reflects the probability of amino acid i

(i¼ 1,2, . . . ,20) occurring at the sequence position j (j¼ 1,2, . . . ,L) in pro-

tein P during evolutionary processes. For each column in M, the elements

add up to 1.

The target frequency is calculated from the multiple sequence align-

ments generated by running PSI-BLAST (Altschul et al., 1997) against

the NCBI’s NR with default parameters except that the number of

iterations was not set at 1 but was set at 10 in the current study. The

target frequency of amino acid i in sequence position j is calculated as:

mi, j ¼
ð�fij þ �gijÞ

ð�þ �Þ
ð7Þ

where fij is the observed frequency of amino acid i in column j; � is a free

parameter set to a constant value of 10, which is initially used by PSI-

BLAST; � is the number of different amino acids in column j� 1; and gij
is the pseudo-count for amino acid i in protein sequence position j, which

can be calculated as:

gij ¼
X20
k¼1

fkjqik

pk
ð8Þ

where pk is the background frequency of amino acid k, and qik is the

score of amino acid i being aligned to amino acid k in BLOSUM62

substitution matrix, which is the default score matrix of PSI-BLAST

(Altschul et al., 1997).

2.3 Profile-based protein representation

Although the methods by using amino acid sequence information achieve

certain degree of success, only using sequence information cannot accur-

ately detect protein remote homology. Recent studies demonstrated that

the profile-based methods would show better performance because a pro-

file is richer than an individual sequence as far as the encoding informa-

tion is concerned. However, a profile is a 2D matrix, whereas a protein

sequence is an amino acid string. Therefore, the 2D evolutionary profile

information cannot be directly incorporated into the sequence-based

methods for prediction. To deal with this problem, we propose an

approach to convert the frequency profiles into a series of profile-based

proteins. Thus, the existing sequence-based methods can be directly

performed on these proteins for the prediction. The target frequencies

in the frequency profiles reflect the probabilities of the corresponding

amino acids appearing in the specific sequence positions. The higher

the frequency is, the more likely the corresponding amino acid occurs.

It is reasonable to use the nth most frequent amino acids in the frequency

profiles to represent the protein sequences. Below is the description on

how to convert frequency profiles into profile-based proteins.

Given the frequency profile M for protein P (Equation 6), we can

sort the amino acids in each column according to a descending order.

The frequency profile thus obtained by the sorting operation is called

the sorted frequency profile and denoted by M
0. For each row in M

0,

the amino acids are combined to produce the profile-based protein.

By following this approach, the frequency profile M is converted into

20 profile-based proteins p1, p2, . . . , p20 (Supplementary Fig. S1 in

Supplementary Material S4), which contain the evolutionary information

in the frequency profile. These 20 proteins have different importance.

During evolutionary process, protein P is preferred to transform into

p1, but not preferred to transform into p20. For reader’s convenience,

the source code for generating the profile-based proteins is accessible by

clicking the link at http://bioinformatics.hitsz.edu.cn/main/*binliu/

remote/.

2.4 Sequence-based kernels

Three state-of-the-art sequence-based kernels [SVM-Ngram (Dong et al.,

2006), SVM-pairwise (Liao and Noble, 2003) and SVM-LA (Saigo et al.,

2004)] were used to validate whether the proposed approach could

improve their performance.

In SVM-Ngram (Dong et al., 2006) method, the Ngrams were the set

of all possible subsequences of amino acids of a fixed length. A protein

sequence was mapped to a feature vector by the occurrence frequency of

each Ngram. The value of N was set at 3 as suggested by the authors

(Dong et al., 2006), and therefore the dimension of the vector is 8000. At

the heart of the SVM is a kernel function that acts as a similarity score

between pairs of vectors. The kernel was normalized so that each vector

had length 1 in the feature space:

KðX,YÞ ¼
X � Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX � XÞðY � YÞ
p ð9Þ

where X and Y are two proteins in the dataset. This normalized step was

also used by SVM-pairwise (Liao and Noble, 2003) and SVM-LA (Saigo

et al., 2004). The normalized kernel thus obtained was then transformed

into a radial basis kernel.

In the SVM-pairwise (Liao and Noble, 2003) method, the feature

vector was a list of pairwise sequence similarity scores, computed with

respect to all of the sequences in the training set. The radial basis function

Fig. 1. A tree (or 3-row) graph to show the remote homology system on

the SCOP benchmark. Only the open circles are in the target of the

23 superfamilies and 54 families, while the circles in gray are outside of

the target. See the text for further explanation
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was used as the kernel. The rest steps were the same as the ones used in

SVM-Ngram (Dong et al., 2006).

In the SVM-LA (Saigo et al., 2004), the kernel was calculated by

summing up scores obtained from the local alignments with gaps between

the two sequences, computed by Smith–Waterman dynamic program-

ming algorithm. Such kernel might not be a positive definite kernel and

the authors (Saigo et al., 2004) provided two solutions for this problem.

Owing to its performance and simplicity, we implemented one of the two

methods, namely, the LA-ekm kernel. The parameters of LA-ekm kernel

took the optimal values (�¼ 0.5, d¼�11, e¼�4).

2.5 Multiple kernel learning

The kernel described in the previous section can be used by kernel meth-

ods to train the SVM classifier. Each kernel contains different discrim-

inative information, and therefore combining the kernels automatically is

a promising way to improve the performance. In machine learning field,

this approach is called multiple kernel learning (MKL) (Cortes et al.,

2010; Varma and Babu, 2009), which has attracted a lot of attention

recently. The MKL technique aimed to combine different kernels to im-

prove the performance, and showed the state-of-the-art results on image

classification field (Varma and Babu, 2009). In this article, we focused on

the weighted linear combination of kernels. The weight of each kernel can

be optimized based on different criterion, which can be categorized by

two groups. One group is the one-stage kernel learning methods, which

optimize the weight and the SVM objective function simultaneously

(Varma and Babu, 2009). These methods suffer from the high training

complexity. The other group is two-stage kernel learning methods, which

optimize the weight by using a criterion first and then train the SVM

classifier using the kernel combined by the learned weight of each kernel.

Compared with one-stage learning methods, the two-stage kernel learning

methods showed better performance with reduced training cost.

Therefore, in this study, we adopted the two-stage kernel learning

method. Specifically, the kernel target alignment (KTA) objective

function was used to optimize the weight of each kernel, which showed

theoretical guarantees and can improve the performance in practice

(Cortes et al., 2010; Varma and Babu, 2009).

Given m training samples x1, x2, . . . , xm and their corresponding labels

y1, y2, . . . , ym, the ideal kernel matrix can be formulated as Ky¼ yTy,

where y is the vector of labels [y1, y2, . . . , ym]. For the given n kernels

K1, K2, . . .Kn, the aim is to learn the weight of each kernel. To avoid the

kernel scaling problem, we center kernel Kk and the corresponding ideal

kernel Ky in feature space by the following equation:

Kckðxi,xjÞ ¼ Kkðxi,xjÞ �
1

m

Xm
i¼1

Kkðxi,xjÞ �
1

m

Xm
j¼1

Kkðxi,xjÞ

þ
1

m2

Xm
i, j¼1

Kkðxi,xjÞ

ð10Þ

where Kck is normalized by:

K0kðxi, xjÞ ¼
mKckðxi,xjÞPm
i¼1

Kck xi,xj
� � ð11Þ

Following the above steps, each kernel is normalized, and then these

n kernels are linearly combined by the following equation:

KComb ¼
Xn
k¼1

wkK
0
k ð12Þ

where wk (0 � wk � 1,
Pn

k¼1 wk ¼ 1) is the weight of kernel K0k.

The weight is learned by KTA objective function, which maximizes the

alignment between KComb and the centered ideal kernel Kcy.

�ðKComb,KcyÞ ¼
KComb � Kcyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðKComb � KCombÞ � ðKcy � KcyÞ
p ð13Þ

This leads to a quadratic program problem and can be solved quite effi-

ciently. For implementation details, please refer to (Cortes et al., 2010).

In this study, three kernels (Kp, Kp1 and Kp2) for each selected

sequence-based method were linearly combined by using the above

KTA approach to further improve the performance. For reader’s con-

venience, the source code of the MKL is accessible by clicking the link

at http://bioinformatics.hitsz.edu.cn/main/*binliu/remote/.

2.6 SVM

SVM is a class of supervised learning algorithms first introduced by

Vapnik (1998). SVM-based machine learning algorithm has been success-

fully used to investigate various problems in molecular biology, such as

identifying DNA recombination spots (Chen et al., 2013), membrane

protein types (Cai et al., 2003) and heat-shock protein functions (Feng

et al., 2013), among many others. In this study, the publicly available Gist

SVM package (http://www.chibi.ubc.ca/gist/) was used.

2.7 Evaluation methodology

Because the test sets have many more negative than positive samples,

simply measuring error-rates will not give a good evaluation of perform-

ance. For the cases in which the positive and negative samples are not

evenly distributed, the best way to evaluate the trade-off between the

specificity and sensitivity is to use a receiver operating characteristic

(ROC) score (Gribskov and Robinson, 1996). An ROC score is the

normalized area under a curve that plots true positives against false posi-

tives for different classification thresholds. A score of 1 means perfect

separation of positive samples from negative ones, whereas a score of

0 means that none of the sequences selected by the algorithm is positive.

Another performance measure is ROC50 score, which is the area under

the ROC curve up to the first 50 false positives.

3 RESULTS AND DISCUSSION

3.1 Profile-based protein representation can improve the

performance of methods based on sequence

composition

The frequency profile of a protein P can be converted into 20

profile-based proteins (p1, p2, . . . , p20) by using the proposed

approach (see Section 2 for details). These 20 proteins have

different importance. p1 is the most important protein, as it is

the combination of the top frequent amino acids in frequency

profile, whereas p20 is the profile-based protein to which protein

P is the most unlikely to convert because it is the combination

of the amino acids with lowest frequencies in frequency profile.

If all the 20 profile-based proteins are used in the prediction,

the computational cost is relatively high. In this study, only the

top n most important profile-based proteins (p1, . . . , pn) were

used in the prediction. To select the value of n, the following

experiment was conducted. The frequencies of 20 standard

amino acids in each column of a frequency profiles add up

to 1. Therefore, the average frequency is 0.05 (1/20¼ 0.05).

If an amino acid with frequency 40.05, it is likely to occur

during evolutionary process; otherwise, it is not likely to occur.

The percentage of the amino acids with frequencies40.05 in each

profile-based protein on the SCOP benchmark was calculated,

and the results are shown in Figure 2. As we can see from the

figure, such amino acids are abundant in profile-based proteins

p1, p2 and p3 (99.99%, 99.60% and 98.13%, respectively), but

for the other 17 profile-based proteins, the percentage decreases
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significantly (from 89.28 to 0%). Therefore, in this study, only

the top three profile-based proteins were used in the prediction.
These profile-based proteins were combined with three state-of-

the-art methods based on sequence composition, including

SVM-Ngram (Dong et al., 2006), SVM-pairwise (Liao and

Noble, 2003) and SVM-LA (Saigo et al., 2004), and the results
are shown in Supplementary Table S1 of Supplementary

Material S4. For each of the three methods, the best performance

was achieved for the top important protein p1. Compared with

the methods performed on the raw protein sequence P, the
performance of the proposed methods can be improved by

3.7�7.5% and 9.6�13.7% in terms of average ROC and

ROC50 scores, respectively, indicating that the proposed pro-
file-based protein representation is useful for protein remote

homology detection. The performance of the methods performed

on p2 is similar as that of the methods performed on the raw

protein P. The predictive results of the methods performed on p3
were the lowest. These results are consistent with the different

importance of the three profile-based proteins p1, p2 and p3.

3.2 Comparison with closely related methods

Besides the current method, there are some other methods for

predicting protein remote homologies based on profiles, such

as SVM-Top-n-gram-combine-LSA (Liu et al., 2008), SVM-

PDT-Profile (Liu et al., 2012), Profile (Kuang et al., 2005),
BioSVM-2L (Muda et al., 2011) and HHSearch (Söding,

2005). SVM-Top-n-gram-combine-LSA (Liu et al., 2008)

extracted the building blocks of proteins from the frequency pro-

files, which could be treated as the ‘words’ of protein language.
The LSA (Dong et al., 2006) was applied to further improve the

performance of this method. SVM-PDT-Profile (Liu et al., 2012)

combined the amino acid physicochemical properties in the

Amino Acid Index (AAIndex) (Kawashima et al., 2008) with
the frequency profiles for the prediction. The feature vector of

Profile method (Kuang et al., 2005) was constructed by the short

subsequences whose PSSM-based ungapped alignment score was

above a predefined threshold. BioSVM-2L constructed two-layer
SVM classifiers with profile-based kernels (Muda et al., 2011).
All the above three methods were based on SVM, and the dif-

ference among them was in the extracted features. HHSearch
(Söding, 2005) was one of the best protein remote homology
detection methods, which used a novel profile-based HMM.

The results obtained by these four methods on the SCOP bench-
mark are listed in Supplementary Table S1 of Supplementary

Material S4, from which we can see that the current method
outperforms SVM-Top-n-gram-combine-LSA (Liu et al., 2008),
SVM-PDT-Profile (Liu et al., 2012) and BioSVM-2L (Muda

et al., 2011) and is highly comparable with Profile (Kuang
et al., 2005) and HHSearch (Söding, 2005), indicating that the

profile-based protein representation is a promising approach to
extract the evolutionary information from frequency profiles for
protein remote homology detection.

3.3 Combining different methods via MKL

As mentioned above, the approaches based on the top two
profile-based proteins p1, p2 and the raw protein P are among

the top performing methods. It is interesting to investigate
whether these methods can be combined to further improve
the performance. In this study, the MKL framework was used

to combine these methods. The KTA method was used to auto-
matically optimize the weight of each kernel on the training set,

and then these kernels are combined with weights into a single
kernel for the SVM-based prediction. The results are shown in
Supplementary Table S2 of Supplementary Material S4 as well

as Supplementary Materials S5–S7. The MKL approach can
improve the performance of SVM-Ngram (Dong et al., 2006),
but only has minor impact on the SVM-pairwise (Liao and

Noble, 2003) and SVM-LA (Saigo et al., 2004). To uncover
the reason, the weight of each kernel was analyzed. For each

kernel, the average weight on all the 54 protein families is
shown in Supplementary Table S2 of Supplementary
Material S4. For these three methods, the p1-based kernel was

weighted most heavily. For SVM-pairwise (Liao and Noble,
2003) and SVM-LA (Saigo et al., 2004), the weight values of

their corresponding P and p2 kernels are50.1, indicating these
kernels only have minor impact on the final results, and hence
the performance improvement is modest. VBKC (Damoulas and

Girolami, 2008) is another method based on the MKL, which
combined four string kernels: SVM-pairwise (Liao and Noble,
2003), SVM-LA (Saigo et al., 2004), SVM-MM (Leslie et al.,

2004) and SVM-Mono (Lingner and Meinicke, 2006). Our pro-
posed SVM-pairwise-KTA and SVM-LA-KTA outperform

VBKC (Damoulas and Girolami, 2008) by 1.2� 2.2% and
29.9� 31.3% according to the average ROC and ROC50
scores, respectively. The obvious performance improvement is

mainly due to the proposed profile-based protein representation
and MKL approach.

3.4 Correlations between discriminative power of Ngrams

and protein families

The SVM-Ngram (Dong et al., 2006) method is based on the
explicit feature space representation, which provides the possibil-
ity to measure the correlations between Ngrams and protein

families. The sequence-specific weight learnt from the SVM

Fig. 2. Illustration to show the feature of frequency profile. Percentage of

amino acids with frequencies 4 0.05 in the 20 profile-based proteins

derived from SCOP benchmark
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training process can be used to calculate the discriminant weight

for each Ngram, which indicates the importance of the corres-

ponding Ngram. By following Lingner and Meinicke’s approach

(Lingner and Meinicke, 2008), given the weight vector of a set of

M sequences obtained from the kernel-based training process

�¼ [�1, �2, �3, . . . , �M], the discriminant weight vector w in the

feature space can be calculated by the following equation:

w ¼ F�� ð14Þ

where F is the matrix of sequence representatives. The magnitude

of the element in w represents the discriminative power of the

corresponding feature.

In most protein families, kernel p1 is weighted more heavily

than kernel P and kernel p1. Two such protein families (SCOP

ID: 2.1.1.4 and 3.2.1.5) were selected from the SCOP benchmark

for further study, and the results are shown in Supplementary

Tables S3 and S4 of Supplementary Material S4, respectively.

For each kernel, the top 10 most discriminative Ngram features

calculated by Equation 14 are shown in the tables too. For pro-

tein family 2.1.1.4, kernel P and kernel p1 share some common

most discriminative Ngrams, such as ‘mtm’, ‘yty’, ‘mtf’ and

‘wwf’, indicating these Ngrams remain stable during evolution-

ary process and therefore these Ngrams would be the important

sequence patterns for maintaining the structure and function of

this protein family (Supplementary Table S3 of Supplementary

Material S4). However, there are a few common most discrim-

inative Ngrams between kernel P and kernel p1 in protein family

3.2.1.5. The top 10 most discriminative Ngrams of kernel p1 are

all different from those in kernel P (Supplementary Table S4 of

Supplementary Material S4). These Ngrams would contribute to

the higher discriminative power of kernel p1 for this protein

family.

Although in most cases, kernel p1 was weighted most heavily,

some exceptions were observed. For example, for protein

family 7.3.6.1, kernel p2 is the most discriminative kernel with

weight value of nearly 1, while the other two kernels only have

little contribution to the MKL (Supplementary Table S5 of

Supplementary Material S4). The top 10 most discriminative

Ngrams for each kernel were investigated, and the results are

shown in Supplementary Table S5 of Supplementary Material

S4, from which some interesting patterns can be observed. The

Ngrams containing amino acids ‘n’ and ‘f’ tended to show strong

discriminative power in both kernel P and kernel p1, whereas

amino acid ‘a’ was abundant in the top discriminative Ngrams

in kernel p2, indicating the Ngrams with amino acid ‘a’ could

better describe the prosperities of protein family 7.3.6.1 in the

evolutionary process.

3.5 Application of the proposed remote homology

detection methods for studying the 3D structure

of Nck5a

In addition to provide useful insights for evolution study, pro-

tein remote homology detection is useful for drug develop-

ment as well. As is well known, many drug-targeted proteins

are still without X-ray or nuclear magnetic resonance structure.

Pharmaceutical scientists have to resort to the homology model-

ing technique or structural bioinformatics tools (Chou, 2004) to

timely develop their 3D structures, so as to be able to conduct

molecular docking study (Chou et al., 2003; Wang et al., 2009),
one of the key steps in structure-based drug design. However, a
reliable template, or a structure-known protein homologous to

the target protein, is the necessary prerequisite in this regard
(Chou, 2004). Unfortunately, many target proteins did not
have significant sequence similarity with any structure-known

proteins, and hence it was hard to find a proper template to
develop their 3D structures. Actually, many of them did have
structure-known homologous proteins, but the problem was how

to detect them. For example, the sequence similarity between
Nck5a and CyclinA was520% (Chou et al., 1999) and hence
their homologous relationship could not be detected by the

simple sequence alignment technique (Mohabatkar, 2010).
Now let us see what will happen if the current remote homology

detection technique is applied.
To realize this, a dataset was constructed based on SCOP,

from which 11 proteins were selected as the positive samples in

the cyclin family (SCOP ID: a.74.1.1), while 3605 negative sam-
ples were selected from the SCOP version 1.67 by excluding all
the proteins within the cyclin-like superfamily. None of these

proteins shares 495% sequence similarity. Trained with such
11 positive proteins and 3605 negative proteins, the proposed
best performing method SVM-LA (p1) was used to predict

Nck5a. It was found that Nck5a is homologous to CyclinA,
fully consistent with the experimental results obtained by the
site-directed mutagenesis studies (Tang et al., 1997). Actually,

Chou et al. (1999) did use CyclinA as a template to construct
the 3D structure of activation domain of Nck5a, one of the im-
portant parts of tau protein kinase II, an important therapeutic

target against Alzheimer’s disease. Furthermore, based on the
computed structure thus obtained, the molecular truncation

experiments (Zhang et al., 2002) were conducted with an out-
come that confirmed and validated the structure computed
by using such a remote homologous protein as a template.

Therefore, it is anticipated that the proposed method for
detecting remote homology proteins will certainly enhance the
power of homology modeling, and hence have impacts on drug

development as well.

4 CONCLUSION

Discriminative methods based on SVM are the most effective
and accurate methods for protein remote homology detection.
The performance of the SVM-based methods depends on

the kernel function, which measures the similarity between
the samples in any pair. Varieties of kernels based on sequence

composition have been proposed. However, these methods
often fail to accurately predict the proteins sharing low sequence
similarity. Recently, methods using the evolutionary information

extracted from profiles achieved great success, such as Profile
(Kuang et al., 2005), SW-PSSM (Rangwala and Karypis,
2005), SVM-Top-Ngram (Liu et al., 2008) and SVM-ACC (Liu

et al., 2011). A key step to improve the performance of these
methods is in how to find a suitable approach to incorporate the
evolutionary information extracted from the profiles for predic-

tion. In this article, we proposed a method that can convert
the frequency profile into a series of profile-based proteins.
Three state-of-the-art sequence-based kernels, i.e. SVM-Ngram

(Dong et al., 2006), SVM-pairwise (Liao and Noble, 2003) and
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SVM-LA (Saigo et al., 2004), were selected for demonstration on

a well-known benchmark. It was shown that the methods based

on the profile-based proteins p1 and p2 achieved the best per-

formance, outperforming the original three string kernels by

3.7� 7.5% and 9.6� 13.7%, respectively, according to the aver-

age ROC and ROC50 scores. These results are fully consistent

with our previous findings that the top two most frequent amino

acids show stronger discriminative power than the other low

frequent amino acids in the frequency profiles (Liu et al.,

2008), further confirming that the proposed profile-based protein

representation is a promising approach in extracting the evolu-

tionary information from frequency profiles for protein remote

homology detection.
It has not escaped our notice that the current approach can be

easily combined with sequence-based methods, and hence, with

the development of the sequence-based kernels, the currently

proposed method can be further improved accordingly. It is in-

structive to point out that since the concept of pseudo amino acid

composition, or Chou’s PseAAC (Lin and Lapointe, 2013), was

introduced in 2001 (Chou, 2001), it has been successfully used to

predict various attributes of proteins (e.g. Chen and Li, 2013;

Chou, 2005; Georgiou et al., 2009; Huang and Yuan, 2013;

Khosravian et al., 2013; Mohabatkar, 2010; Mohabatkar et al.,

2011, 2013; Mohammad Beigi et al., 2011; Nanni et al., 2012;

Sahu and Panda, 2010; Zhang et al., 2008; Zhou et al., 2007; Liu

et al., 2013). Accordingly, the potential would be high to develop

a powerful method for protein remote homology detection by

combing PseAAC with profile-based protein representation. In

the original PseAAC, it only uses three indices, including the

hydrophobicity index, hydrophilicity index and side-chain mass

index. Because protein remote homology detection is a more

difficult problem, proteins in the dataset only share low sequence

similarity. Only these three indices would not be enough to cap-

ture the different properties of various proteins. Therefore, our

further research will focus on incorporating new amino acid in-

dices into PseAAC and applying it to protein remote homology

detection.
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