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Differential equations of mass transfer 

Definition: 

The differential equations of mass transfer are general equations describing mass transfer 

in all directions and at all conditions. 

How is the differential equation obtained? 

The differential equation for mass transfer is obtained by applying the law of 

conservation of mass (mass balance) to a differential control volume representing the 

system. 

The resulting equation is called the continuity equation and takes two forms: 

(1) Total continuity equation [in – out = accumulation] (this equation is obtained if we 

applied the law of conservation of mass on the total mass of the system) 

(2) Component continuity equation[in – out + generation – consumption = accumulation] 

(this equation is obtained if we applied the law of conservation of mass to an 

individual component) 

(1) Total continuity equation 

Consider the control volume, Δx Δy Δz (Fig. 1) 

 

Fig. 1 
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Apply the law of conservation of mass on this control volume [in – out = accumulation] 

direction in out in - out 

x 
𝜌v𝑥  ∆𝑦∆𝑧⃒𝑥 𝜌v𝑥 ∆𝑦∆𝑧⃒𝑥+Δ𝑥 (𝜌v𝑥⃒𝑥 − 𝜌v𝑥⃒𝑥+Δ𝑥)∆𝑦∆𝑧 

y 
𝜌v𝑦 ∆𝑥∆𝑧⃒𝑦 𝜌v𝑦  ∆𝑥∆𝑧⃒𝑦+Δ𝑦 (𝜌v𝑦⃒𝑦 − 𝜌v𝑦⃒𝑦+Δ𝑦)∆𝑥∆𝑧 

z 
𝜌v𝑧 ∆𝑥∆𝑦⃒𝑧 𝜌v𝑧 ∆𝑥∆𝑦⃒𝑧+Δ𝑧 (𝜌v𝑧⃒𝑧 − 𝜌v𝑧⃒𝑧+Δ𝑧)∆𝑥∆𝑦 

 

Accumulation = 
𝜕𝑚

𝜕𝑡
=

𝜕𝜌∆𝑥∆𝑦∆𝑧

𝜕𝑡
 = ∆𝑥∆𝑦∆𝑧

𝜕𝝆

𝜕𝑡
 

Write the above terms in the overall equation [in – out = accumulation (rate of change)] 

(𝜌v𝑥⃒𝑥 − 𝜌v𝑥⃒𝑥+Δ𝑥) ∆𝑦∆𝑧 + (𝜌v𝑦⃒𝑦 − 𝜌v𝑦⃒𝑦+Δ𝑦) ∆𝑥∆𝑧 + (𝜌v𝑧⃒𝑧 − 𝜌v𝑧⃒𝑧+Δ𝑧) ∆𝑥∆𝑦 = ∆𝑥∆𝑦∆𝑧
𝜕𝝆

𝜕𝑡
 

Dividing each term in the above equation by ∆𝑥∆𝑦∆𝑧: 

(𝜌v𝑥⃒𝑥− 𝜌v𝑥⃒𝑥+Δ𝑥)

∆𝑥
+

(𝜌v𝑦⃒𝑦− 𝜌v𝑦⃒𝑦+Δ𝑦)

∆𝑦
 + 

(𝜌v𝑧⃒𝑧− 𝜌v𝑧⃒𝑧+Δ𝑧)

∆𝑧
 = 

𝜕𝝆

𝜕𝑡
 

Take the limit as Δx, Δy, and Δz approach zero: 

−
𝜕

𝜕𝑥
 𝜌v𝑥  - 

𝜕

 𝜕𝑦
 𝜌v𝑦 - 

𝜕

𝜕𝑧
 𝜌v𝑧 = 

𝜕𝜌

𝜕𝑡
 

∴
𝜕

𝜕𝑥
 𝜌v𝑥+ 

𝜕

 𝜕𝑦
 𝜌v𝑦 + 

𝜕

𝜕𝑧
 𝜌v𝑧 + 

𝜕𝜌

𝜕𝑡
= 0 

The above equation is the general total continuity equation (the velocity distribution can 

be obtained from this equation) 

It can be written in the following form (this form can be used in all coordination system): 

∇. 𝜌v⃗⃗⃗⃗ +
𝜕𝜌

𝜕𝑡
= 0 

 

 



3 
 

Special forms of the general continuity equation: 

a. Steady state conditions 

∇. 𝜌v⃗⃗⃗⃗ = 0 

b. Constant density (either steady state or not) 

∇. v⃗ = 0 

c. Steady state, one dimensional flow (assume in x direction) and constant density 

𝑑vx

𝑑𝑥
= 0 

(2) Component continuity equation 

The component continuity equation takes two forms depending on the units of 

concentration; (i) mass continuity equation and (ii) molar continuity equation. 

 

What is the importance of the component differential equation of mass transfer? 

It is used to get (describe) the concentration profiles, the flux or other parameters of 

engineering interest within a diffusing system. 

(i) Component mass continuity equation: 

Consider the control volume, Δx Δy Δz (Fig. 1) 

Apply the law of conservation of mass to this control volume: 

[in – out + generation – consumption = accumulation] 

Note: in the total continuity equation there is no generation or consumption terms 

Component continuity 
equation

Mass units Molar units
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direction in out in - out 

x 
𝑛𝐴,𝑥 ∆𝑦∆𝑧⃒𝑥 𝑛𝐴,𝑥 ∆𝑦∆𝑧⃒𝑥+Δ𝑥 (𝑛𝐴,𝑥⃒𝑥 − 𝑛𝐴,𝑥⃒𝑥+Δ𝑥)∆𝑦∆𝑧 

y 
𝑛𝐴,𝑦 ∆𝑥∆𝑧⃒𝑦 𝑛𝐴,𝑦 ∆𝑥∆𝑧⃒𝑦+Δ𝑦 (𝑛𝐴,𝑦⃒𝑦 − 𝑛𝐴,𝑦⃒𝑦+Δ𝑦)∆𝑥∆𝑧 

z 
𝑛𝐴,𝑧 ∆𝑥∆𝑦⃒𝑧 𝑛𝐴,𝑧 ∆𝑥∆𝑦⃒𝑧+Δ𝑧 (𝑛𝐴,𝑧⃒𝑧 − 𝑛𝐴,𝑧⃒𝑧+Δ𝑧)∆𝑥∆𝑦 

  

Accumulation = 
𝜕𝑚

𝜕𝑡
=

𝜕𝝆𝑨∆𝑥∆𝑦∆𝑧

𝜕𝑡
 = ∆𝑥∆𝑦∆𝑧

𝜕𝝆𝑨

𝜕𝑡
 

If A is produced within the control volume by a chemical reaction at a rate 𝑟𝐴 

(mass/(volume)(time) 

Rate of production of A (generation)  = 𝑟𝐴 ∆𝑥∆𝑦∆𝑧 

Put all terms in the equation: in – out + generation – consumption = accumulation 

(𝑛𝐴,𝑥⃒𝑥 − 𝑛𝐴,𝑥⃒𝑥+Δ𝑥)∆𝑦∆𝑧 + (𝑛𝐴,𝑦⃒𝑦 − 𝑛𝐴,𝑦⃒𝑦+Δ𝑦)∆𝑥∆𝑧 + (𝑛𝐴,𝑧⃒𝑧 − 𝑛𝐴,𝑧⃒𝑧+Δ𝑧) ∆𝑥∆𝑦 + 𝑟𝐴 ∆𝑥∆𝑦∆𝑧 = ∆𝑥∆𝑦∆𝑧
𝜕𝜌𝐴

𝜕𝑡
 

Dividing each term in the above equation by ∆𝑥∆𝑦∆𝑧: 

(𝑛𝐴,𝑥⃒𝑥− 𝑛𝐴,𝑥⃒𝑥+Δ𝑥)

∆𝑥
 + 

(𝑛𝐴,𝑦⃒𝑦− 𝑛𝐴,𝑦⃒𝑦+Δ𝑦)

∆𝑦
 + 

(𝑛𝐴,𝑧⃒𝑧− 𝑛𝐴,𝑧⃒𝑧+Δ𝑧)

∆𝑧
 + 𝑟𝐴= 

𝜕𝜌𝐴

𝜕𝑡
 

Take the limit as Δx, Δy, and Δz approach zero: 

−
𝜕

𝜕𝑥
 𝑛𝐴,𝑥 - 

𝜕

 𝜕𝑦
 𝑛𝐴,𝑦 - 

𝜕

𝜕𝑧
 𝑛𝐴,𝑧 + 𝑟𝐴= 

𝜕𝜌𝐴

𝜕𝑡
 

𝜕

𝜕𝑥
𝑛𝐴,𝑥 +

𝜕

 𝜕𝑦
𝑛𝐴,𝑦 + 

𝜕

𝜕𝑧
𝑛𝐴,𝑧 +

𝜕𝜌𝐴

𝜕𝑡
− 𝑟𝐴 = 0 (1) 

Equation 1 is the component mass continuity equation and it can be written in the form: 

∇. �⃗� 𝐴 + 
𝜕𝜌𝐴

𝜕𝑡
− 𝑟𝐴 = 0 (2) 

(The above equation can be written in different coordinate systems since it is written in a 

vector form) 
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But from Fick’s law 

𝑛𝐴 = −𝜌𝐷𝐴𝐵∇𝜔𝐴 + 𝜌𝐴v 

Substitute in equation 2 by this value we can get the equation: 

−∇. 𝜌𝐷𝐴𝐵∇𝜔𝐴 + ∇. 𝜌𝐴v + 
𝜕𝜌𝐴

𝜕𝑡
− 𝑟𝐴 = 0 (3) 

Equation 3 is a general equation used to describe concentration profiles (in mass basis) 

within a diffusing system. 

(ii) Component molar continuity equation 

Equations 1, 2 and 3 can be written in the form of molar units to get the component 

continuity equation in molar basis by replacing: 

𝑛𝐴 𝑏𝑦 𝑁𝐴;𝜌 𝑏𝑦 𝑐; 𝜔𝐴 𝑏𝑦 𝑦𝐴 ;  𝜌𝐴 𝑏𝑦 𝑐𝐴 𝑎𝑛𝑑 𝑟𝐴 𝑏𝑦 𝑅𝐴  

The different forms of the component molar continuity equation: 

𝜕

𝜕𝑥
𝑁𝐴,𝑥 + 

𝜕

 𝜕𝑦
 𝑁𝐴,𝑦 + 

𝜕

𝜕𝑧
𝑁𝐴,𝑧 +

𝜕𝑐𝐴
𝜕𝑡

− 𝑅𝐴 = 0 (4) 

Equation 4 is the component molar continuity equation and it can be written in the form: 

∇. �⃗⃗� 𝐴 + 
𝜕𝑐𝐴
𝜕𝑡

− 𝑅𝐴 = 0 (5) 

But from Fick’s law 

𝑁𝐴 = −𝑐𝐷𝐴𝐵∇𝑦𝐴 + 𝑐𝐴V 

Substitute in equation 5 by this value we can get the equation: 

−∇. 𝑐𝐷𝐴𝐵∇𝑦𝐴 + ∇. 𝑐𝐴V + 
𝜕𝑐𝐴
𝜕𝑡

− 𝑅𝐴 = 0 (6) 

Equation 6 is a general equation used to describe concentration profiles (in molar basis) 

within a diffusing system. 

Note: you may be given the general form and asked to apply specific conditions to get a 

special form of the differential equation. 
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 Special forms of the component continuity equation 

1. If the density and diffusion coefficient are constant (assumed to be constant) 

For mass concentration equation 3 becomes 

−𝐷𝐴𝐵∇2𝜌𝐴 + 𝜌𝐴∇. v + v ∇. 𝜌𝐴 + 
𝜕𝜌𝐴

𝜕𝑡
− 𝑟𝐴 = 0 

For constant density ∇. v = 0 [from the total continuity equation] (page 3 no. b) 

∴  −𝐷𝐴𝐵∇2𝜌𝐴 + v ∇. 𝜌𝐴 + 
𝜕𝜌𝐴

𝜕𝑡
− 𝑟𝐴 = 0 

and for molar concentration equation 6 becomes 

∴  −𝐷𝐴𝐵∇2𝑐𝐴 + V ∇. 𝑐𝐴 + 
𝜕𝑐𝐴
𝜕𝑡

− 𝑅𝐴 = 0 

2. If there is no consumption or generation term and the density and diffusion 

coefficient are assumed constant 

For mass concentration: 

∴  −𝐷𝐴𝐵∇2𝜌𝐴 + v ∇. 𝜌𝐴 + 
𝜕𝜌𝐴

𝜕𝑡
= 0 

For molar concentration: 

−𝐷𝐴𝐵∇2𝑐𝐴 + V ∇. 𝑐𝐴 + 
𝜕𝑐𝐴
𝜕𝑡

= 0 

3. If there is no fluid motion, no consumption or generation term, and constant density 

and diffusivity 

For mass concentration: 

∴  
𝜕𝜌𝐴

𝜕𝑡
= 𝐷𝐴𝐵∇2𝜌𝐴 
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For molar concentration: 

 
𝜕𝑐𝐴
𝜕𝑡

= 𝐷𝐴𝐵∇2𝑐𝐴 (7) 

 

Equation 7 referred to as Fick’s second law of diffusion 

Fick’s second ‘‘law’’ of diffusion written in rectangular coordinates is 

 

Note: what are the conditions at which there is no fluid motion? (bulk motion = 0.0) 

The assumption of no fluid motion (bulk motion) restricts its applicability to: 

a) Diffusion in solid 

b) Stationary (stagnant) liquid 

c) Equimolar counterdiffusion (for binary system of gases or liquids where 𝑁𝐴 is equal 

in magnitude but acting in the opposite direction to 𝑁𝐵  

𝑁𝐴 = −𝑐𝐷𝐴𝐵

𝑑𝑦𝐴

𝑑𝑧
+ 𝑦𝐴(𝑁𝐴 + 𝑁𝐵) 

If 𝑁𝐴 = −𝑁𝐵 the bulk motion term will be cancelled from the above equation 

4. If there is no fluid motion, no consumption or generation term, constant density and 

diffusivity and steady state conditions 

For mass concentration:  

∇2𝜌𝐴 = 0 
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For mass concentration: 

∇2𝑐𝐴 = 0 

Note: see page 438 in the reference book for the differential equation of mass transfer in 

different coordinate systems. 

The general differential equation for mass transfer of component A, or the equation of 

continuity of A, written in rectangular coordinates is  

 

 Initial and Boundary conditions  

To describe a mass transfer process by the differential equations of mass transfer the 

initial and boundary conditions must be specified. 

Initial and boundary conditions are used to determine integration constants associated 

with the mathematical solution of the differential equations for mass transfer 

1. Initial conditions: 

It means the concentration of the diffusing species at the start (t = 0) expressed in mass or 

molar units. 

𝑎𝑡 𝑡 = 0 𝑐𝐴 = 𝑐𝐴𝑜 (𝑚𝑜𝑙𝑎𝑟 𝑢𝑛𝑖𝑡𝑠) 

𝑎𝑡 𝑡 = 0 𝜌𝐴 = 𝜌𝐴𝑜 (𝑚𝑎𝑠𝑠 𝑢𝑛𝑖𝑡𝑠) 

where 𝑐𝐴𝑜
 and 𝜌𝐴𝑜

 are constant (defined values)  
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Note: Initial conditions are associated only with unsteady-state or pseudo-steady-state 

processes. 

2. Boundary conditions: 

It means the concentration is specified (known) at a certain value of coordinate (x, y or 

z). 

Concentration is expressed in terms of different units, for example, molar 

concentration 𝑐𝐴, mass concentration 𝜌𝐴, gas mole fraction 𝑦𝐴, liquid mole fraction 𝑥𝐴, 

etc. 

Types of boundary conditions: 

(1) The concentration of the transferring species A at a boundary surface is specified. 

(The concentration of the species is known at the interface) 

Examples:  

I. For a liquid mixture in contact with a pure solid A, (liquid-solid interface)  the 

concentration of species A in the liquid at the surface is the solubility limit of A in 

the liquid, 𝑐𝐴𝑠
 

II. For a contacting gas and liquid, (gas-liquid)   where transferring species A is 

present in both phases, there are two ways to specify the concentration at the gas–

liquid interface.  

(i) if both of the species in the liquid phase are volatile, then the boundary condition 

at the gas–liquid surface is defined for an ideal liquid mixture by Raoult’s law 

𝑝𝐴𝑠
= 𝑥𝐴𝑝𝐴 

and from Dalton’s law 

𝑦𝐴𝑠
=

𝑝𝐴𝑠

𝑝
 

or the surface concentration by the ideal gas law 

𝑐𝐴𝑠
=

𝑝𝐴𝑠

𝑅𝑇
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(ii) for solutions where species A is only weakly soluble in the liquid, Henry’s law 

may be used to relate the mole fraction of A in the liquid to the partial pressure of 

A in the gas 

𝑝𝐴 = 𝐻 ∙  𝑥𝐴 

H: Henry’s constant 

(iii) at gas solid interface 

  

𝑐𝐴𝑠𝑜𝑙𝑖𝑑
= 𝑆 ∙  𝑝𝐴 

𝑐𝐴𝑠𝑜𝑙𝑖𝑑
: is the molar concentration of A within the solid at the interface in units 

of kg mol/m3 and 𝑝𝐴 is the partial pressure of gas phase species A over the 

solid in units of Pa. 

𝑆: solubility constant (partition coefficient) 

(2) A reacting surface boundary is specified 

𝑁𝐴⃒𝑧=0 = 𝑘𝑐𝑐𝐴𝑠

𝑛  

where 𝑘𝑐 is a surface reaction rate constant with units of m/s. n is the reaction order 

Note: the reaction may be so rapid that 𝑐𝐴𝑠
= 0 if species A is the limiting reagent in the 

chemical reaction. 

(3) The flux of the transferring species is zero at an impermeable boundary  

𝑁𝐴⃒𝑧=0 = −𝐷𝐴𝐵

𝜕𝑐𝐴
𝜕𝑧

⃒𝑧=0 = 0  

𝑜𝑟 
𝜕𝑐𝐴
𝜕𝑧

⃒𝑧=0 = 0  

where the impermeable boundary or the centerline of symmetry is located at z = 0 

(4) The convective mass flux at the boundary surface is specified 

𝑁𝐴⃒𝑧=0 = 𝑘 (𝑐𝐴𝑠
− 𝑐𝐴∞

) 

Where k is the convection mass transfer coefficient 
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Solved problems: 

Problem 1: 

The following sketch illustrates the gas diffusion in the neighborhood of a catalytic 

surface. Hot gases of heavy hydrocarbons diffuse to the catalytic surface where they are 

cracked into lighter compounds by the reaction: H → 2L, the light products diffuse back 

into the gas stream. 

 

a. Reduce the general differential equation for mass transfer to write the specific 

differential equation that will describe this steady-state transfer process if the catalyst 

is considered a flat surface. List all of the assumptions you have made in simplifying 

the general differential equation. 

b. Determine the Fick’s law relationship in terms of only compound H and insert it into 

the differential equation you obtained in part (a). 

c. Repeat the solution for spherical catalyst surface. 

Solution 

a. The specific differential equation 

Assumptions: steady state, unidirectional mass transfer. 

𝜕

𝜕𝑥
𝑁𝐴,𝑥 +

𝜕

 𝜕𝑦
𝑁𝐴,𝑦 +

𝜕

𝜕𝑧
𝑁𝐴,𝑧 +

𝜕𝑐𝐴
𝜕𝑡

− 𝑅𝐴 = 0 

Apply these assumptions on the general equation we get the specific differential equation: 

𝜕

𝜕𝑧
 𝑁𝐻,𝑧 + 𝑅𝐻 = 0 

b. Fick’s law relationship in terms of only compound H 

𝑁𝐻 = −𝑐𝐷𝐻𝐿

𝑑𝑦𝐻

𝑑𝑧
+ 𝑦𝐻(𝑁𝐻 + 𝑁𝐿) 
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but  𝑁𝐿 = −2𝑁𝐻 

Fick’s law in terms of H 

𝑁𝐻 = −
𝑐𝐷𝐻𝐿

(1 + 𝑦𝐻)

𝑑𝑦𝐻

𝑑𝑧
 

Problem 2: 

A hemispherical droplet of liquid water, lying on a flat surface, evaporates by molecular 

diffusion through still air surrounding the droplet. The droplet initially has a radius R. As 

the liquid water slowly evaporates, the droplet shrinks slowly with time, but the flux of 

the water vapor is at a nominal steady state. The temperature of the droplet and the 

surrounding still air are kept constant. The air contains water vapor at an infinitely long 

distance from the droplet’s surface. 

a. After drawing a picture of the physical process, select a coordinate system that 

will best describe this diffusion process, list at least five reasonable assumptions 

for the mass-transfer aspects of the water-evaporation process and simplify the 

general differential equation for mass transfer in terms of the flux 𝑁𝐴. 

b. What is the simplified differential form of Fick’s equation for water vapor 

(species A)? 

Solution: 

a. The coordinate system that will describe  

 

Basic assumptions: 

1. Steady state conditions 2. No chemical reaction 

3. Constant pressure and temperature 4. One dimensional mass transfer (r direction) 

5. 𝑁𝐴𝑖𝑟 = 0  
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Apply these assumptions on the general differential equation: 

∇. �⃗⃗� 𝐴 + 
𝜕𝑐𝐴
𝜕𝑡

− 𝑅𝐴 = 0 

∴ ∇. �⃗⃗� 𝐴 = 0 

For spherical coordinates and mass transfer in r-direction 

1

𝑟2
 
𝑑

𝑑𝑟
𝑟2𝑁𝐴 = 0 

b. The simplified differential form of Fick’s equation for water vapor (species A)? 

Assume water is A and air is B 

𝑁𝐴 = −𝑐𝐷𝐴𝐵

𝑑𝑦𝐴

𝑑𝑟
+ 𝑦𝐴(𝑁𝐴 + 𝑁𝐵) 

𝑁𝐵 = 0 

𝑁𝐴 = −
𝑐𝐷𝐴𝐵

(1 − 𝑦𝐴)

𝑑𝑦𝐴

𝑑𝑟
 

Problem 3: 

A large deep lake, which initially had a uniform oxygen concentration of 1kg/m3, has its 

surface concentration suddenly raised and maintained at 9 kg/m3 concentration level. 

Reduce the general differential equation for mass transfer to write the specific differential 

equation for 

a. the transfer of oxygen into the lake without the presence of a chemical reaction; 

b. the transfer of oxygen into the lake that occurs with the simultaneous 

disappearance of oxygen by a first-order biological reaction. 

Solution: 

Assume oxygen = A and water = B 

a. the transfer of oxygen into the lake without the presence of a chemical reaction 
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∇. �⃗⃗� 𝐴 + 
𝜕𝑐𝐴
𝜕𝑡

− 𝑅𝐴 = 0 

Basic assumptions: 

1. no chemical reaction occur 

2.  For deep lake (stationary liquid) we can assume v = 0 

3. Unidirectional mass transfer (assume in z direction) 

𝑑𝑁𝐴

𝑑𝑧
+

𝜕𝑐𝐴
𝜕𝑡

= 0 

But  

 𝑁𝐴 = −𝑐𝐷𝐴𝐵

𝑑𝑦𝐴

𝑑𝑧
+ 𝑐𝐴𝑉 

Since the liquid is stationary  

∴ 𝑁𝐴 = −𝑐𝐷𝐴𝐵

𝑑𝑦𝐴

𝑑𝑧
 

𝑑𝑁𝐴

𝑑𝑧
= −𝐷𝐴𝐵

𝑑2𝑐𝐴
𝑑𝑧2

 

𝜕𝑐𝐴
𝜕𝑡

= 𝐷𝐴𝐵

𝑑2𝑐𝐴
𝑑𝑧2

 

b. The transfer of oxygen into the lake that occurs with the simultaneous disappearance 

of oxygen by a first-order biological reaction. 

Basic assumptions: 

1.  chemical reaction occur (−𝑅𝐴 = 𝑘𝑟𝑐𝐴) 

2.  For deep lake (stationary liquid) we can assume v = 0 

3. Unidirectional mass transfer (assume in z direction) 

𝐷𝐴𝐵

𝑑2𝑐𝐴
𝑑𝑧2

+
𝜕𝑐𝐴
𝜕𝑡

+ 𝑘𝑟𝑐𝐴 = 0 

where 𝑘𝑟is the reaction rate constant 
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Problem 4: 

A liquid flows over a thin, flat sheet of a slightly soluble solid. Over the region in which 

diffusion is occurring, the liquid velocity may be assumed to be parallel to the plate and 

to be given by 𝑉𝑥 = 𝑎𝑦, where y is the vertical distance from the plate and a is a constant. 

Show that the equation governing the mass transfer, with certain simplifying 

assumptions, is 

 

List the simplifying assumptions, and propose reasonable boundary conditions. 

Solution: 

Basic assumptions: 

1. Steady state conditions 

2. Mass transfer in x and y directions 

3. No chemical reaction occur 

4. Constant temperature and pressure (constant concentration and diffusivity) 

5. Velocity in y direction = 0 

Apply these assumptions on the general differential equation: 

𝜕

𝜕𝑥
 𝑁𝐴,𝑥 + 

𝜕

 𝜕𝑦
 𝑁𝐴,𝑦 + 

𝜕

𝜕𝑧
 𝑁𝐴,𝑧 + 

𝜕𝑐𝐴

𝜕𝑡
+ 𝑅𝐴 = 0 

∴
𝜕𝑁𝐴,𝑥 

𝜕𝑥
 + 

𝜕𝑁𝐴,𝑦

 𝜕𝑦
  = 0 (i) 

𝑁𝐴,𝑥 = −𝑐𝐷𝐴𝐵

𝑑𝑦𝐴

𝑑𝑥
+ 𝑐𝐴𝑉𝑥 

∴ 𝑁𝐴,𝑥 = −𝐷𝐴𝐵

𝑑𝑐𝐴
𝑑𝑥

+  𝑎𝑦𝑐𝐴 

𝑁𝐴,𝑦 = −𝐷𝐴𝐵

𝑑𝑐𝐴
𝑑𝑦

+ 𝑐𝐴𝑉𝑦 
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But 𝑉𝑦 = 0 (based on the assumptions) 

∴ 𝑁𝐴,𝑦 = −𝐷𝐴𝐵

𝑑𝑐𝐴
𝑑𝑦

 

Substitute by the values of 𝑁𝐴,𝑥 and 𝑁𝐴,𝑦 in equation (i) 

−𝐷𝐴𝐵

𝜕2𝑐𝐴
𝜕𝑥2

+ ay
𝜕𝑐𝐴
𝜕𝑥

− 𝐷𝐴𝐵

𝜕2𝑐𝐴
𝜕𝑦2

= 0 

∴ 𝐷𝐴𝐵 [
𝜕2𝑐𝐴
𝜕𝑥2

+
𝜕2𝑐𝐴
𝜕𝑦2

] = ay
𝜕𝑐𝐴
𝜕𝑥

 

Boundary conditions: 

1. 𝑐𝐴 = 𝑐𝐴𝑠
 at y = 0  

2. 𝑐𝐴 = 0 at y = ∞  

3. 𝑐𝐴 = 0 at x = 0 

Note: 

The specific differential equation of mass transfer for a given system can be obtained by 

two methods: 

1. Select the general equation according to the system coordinates and omit the 

unnecessary terms 

2. Make a mass balance over a control volume, divide by the volume and take limits 

as values of length approaches zero   

 

 

 

 

 

 



17 
 

Supplementary data: 

The general differential equation for mass transfer of component A, in rectangular 

coordinates is 

 

 

 

 


