Differential equations of mass transfer

Definition:

The differential equations of mass transfer are general equations describing mass transfer

in all directions and at all conditions.

How is the differential equation obtained?

The differential equation for mass transfer is obtained by applying the law of
conservation of mass (mass balance) to a differential control volume representing the

system.
The resulting equation is called the continuity equation and takes two forms:

(1) Total continuity equation [in — out = accumulation] (this equation is obtained if we
applied the law of conservation of mass on the total mass of the system)

(2) Component continuity equation[in — out + generation — consumption = accumulation]
(this equation is obtained if we applied the law of conservation of mass to an
individual component)

(1) Total continuity equation

Consider the control volume, Ax Ay Az (Fig. 1)
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Apply the law of conservation of mass on this control volume [in — out = accumulation]

direction in out in - out
X pvy AyAz |x pvy AyAz |x+Ax (pvx |x — PVx |x+Ax) AyAz
y pv, AxAz |, pvy 80z sy | (pvy |y = pvy |yeay ) Bz
? pv, AxAy |z pv, AxAy |z+Az (pvz |z — PV, |Z+Az) AxAy

m _ dpAxAyAz

.2 _ ap
Accumulation = o P AxAyAz oL

Write the above terms in the overall equation [in — out = accumulation (rate of change)]
(pvx |x — pPVy |x+Ax) AyAz + (pvy |y — pVy |y+Ay) AxAz + (pvz |Z — pvy, |Z+Az) AxAy = AxAyAzi—’:
Dividing each term in the above equation by AxAyAz:

(PVx ‘x_ PVx ‘x+Ax) n (PVy |y_ PVy |y+Ay) + (pvz |z_ PVz |z+Az) _ 6_p

Ax Ay Az at

Take the limit as Ax, Ay, and Az approach zero:

9 \% \% \ =9
axpx aypy azpz ot

F) F) F] ap
o — + — + = + L =
dx PVx dy PVy oz PVz ot 0

The above equation is the general total continuity equation (the velocity distribution can

be obtained from this equation)

It can be written in the following form (this form can be used in all coordination system):

dp
V.pv+—=0
PV T 5




Special forms of the general continuity equation:

a. Steady state conditions

V.ov=10
b. Constant density (either steady state or not)
Vv=0

c. Steady state, one dimensional flow (assume in x direction) and constant density

dvy

=0
dx

(2) Component continuity equation

The component continuity equation takes two forms depending on the units of

concentration; (i) mass continuity equation and (ii) molar continuity equation.

What is the importance of the component differential equation of mass transfer?

It is used to get (describe) the concentration profiles, the flux or other parameters of

engineering interest within a diffusing system.

Q) Component mass continuity equation:

Consider the control volume, Ax Ay Az (Fig. 1)
Apply the law of conservation of mass to this control volume:
[in —out + generation — consumption = accumulation]

Note: in the total continuity equation there is no generation or consumption terms



direction in out in - out
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If A is produced within the control volume by a chemical reaction at a rate r4

(mass/(volume)(time)

Rate of production of A (generation) =1, AxAyAz

Put all terms in the equation: in — out + generation — consumption = accumulation

(nA_x ‘x — Ny ’HM) AyAz + (nA_y |y — MNyy |y+Ay) AxAz + (nA,Z |Z — Ny, |Z+Az) AxAy + 14 AxAyAz = AxAyAzaaLtA

Dividing each term in the above equation by AxAyAz:

(nA,x ‘x_ nax ’x+Ax) + (nA,y |y_ nay |y+Ay) + (nA,z |z_ NAz |Z+AZ) 4= dpa

‘r‘ =
Ax Ay Az AT 5t

Take the limit as Ax, Ay, and Az approach zero:

F) ) F) _9pa

— Ny~ — Ny ~— Ny, +Ty=—=
ax AX gy AY gz Az T TAT gy

] ] ] 90,
anA’x + a—yTLA’y + EnA,z +W — Ty = 0

(1)

Equation 1 is the component mass continuity equation and it can be written in the form:

> 0pa
V.nA-l- W_ Ty = 0

)

(The above equation can be written in different coordinate systems since it is written in a

vector form)




But from Fick’s law
Ny = —pDapVwy + pav

Substitute in equation 2 by this value we can get the equation:

d
—V.pDsgVw, + V.pav + % —1,=0 (3)

Equation 3 is a general equation used to describe concentration profiles (in mass basis)

within a diffusing system.

(i) Component molar continuity equation

Equations 1, 2 and 3 can be written in the form of molar units to get the component

continuity equation in molar basis by replacing:
Ny by Ny,p by ¢; wa by ya; pa by ca and vy by Ry

The different forms of the component molar continuity equation:

Ot Lo+ Ly, 4%
ax A gy YT a9z % ot

Equation 4 is the component molar continuity equation and it can be written in the form:

—Ry=0 4)

.N —— R, = 5
VN, + = =0 )

But from Fick’s law
NA == _CDABV)’A + CAV

Substitute in equation 5 by this value we can get the equation:

dc
—V.cDysVys + V.c V + a—;‘ — R, =0 (6)

Equation 6 is a general equation used to describe concentration profiles (in molar basis)

within a diffusing system.

Note: you may be given the general form and asked to apply specific conditions to get a

special form of the differential equation.



» Special forms of the component continuity equation

1. If the density and diffusion coefficient are constant (assumed to be constant)
For mass concentration equation 3 becomes

_ 2 9pa _  _
DABV pA+ pAV.V+VV.pA+ ot TA—O

For constant density V.v = 0 [from the total continuity equation] (page 3 no. b)

9]
o _DABVZPA + VV. pA + % - TA = 0
and for molar concentration equation 6 becomes
dcy
o _DABVZCA + VV CA + E - RA = O

2. If there is no consumption or generation term and the density and diffusion

coefficient are assumed constant
For mass concentration:

0
oW —DygV2ps +vV.py + % =0

For molar concentration:

_ 2 9ca _
DABV CA+VV.CA+ ot =0

3. If there is no fluid motion, no consumption or generation term, and constant density

and diffusivity
For mass concentration:

0pa
& ET DagV?pa4



For molar concentration:

W = DABVZCA (7)

Equation 7 referred to as Fick’s second law of diffusion

Fick’s second ‘‘law’’ of diffusion written in rectangular coordinates is

dep D*cu N D?cy  0%ca

ot ABlogx2 "oy o2

in cylindrical coordinates is
E‘)cA N 820,4 n 1 aCA 1 (‘}2(.‘,4 E)ECA
o MU Trar T2 g2 T a2

and in spherical coordinates is
oca 1 0 ([ ,0ca 1 9. Oca 1 Py
—— =D - -__ = e 6—— -
ot AB [r3 or (r or + r2sin6 06 st oo + r2sin? @ O¢?

Note: what are the conditions at which there is no fluid motion? (bulk motion = 0.0)
The assumption of no fluid motion (bulk motion) restricts its applicability to:

a) Diffusion in solid

b) Stationary (stagnant) liquid

c) Equimolar counterdiffusion (for binary system of gases or liquids where N, is equal
in magnitude but acting in the opposite direction to Ny

dy,
Ny = —cDyp 7 + ya(Ny + Np)

If Ny = —Njp the bulk motion term will be cancelled from the above equation

4. If there is no fluid motion, no consumption or generation term, constant density and

diffusivity and steady state conditions
For mass concentration:
V2p, =0
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For mass concentration:
VZCA =0

Note: see page 438 in the reference book for the differential equation of mass transfer in

different coordinate systems.

The general differential equation for mass transfer of component A, or the equation of

continuity of A, written in rectangular coordinates is

s [ONax ONu, ONa,
A , Il =R
(9I+l8x+8y+(9z 4

in cylindrical coordinates is

ac,q 10 13NA9 8NA,z o
i l oM+ g az]_RA

and in spherical coordinates is

dep [10 , 1 1 ONay
8t+l 8( FNar) + o Q%WMSI Nt g 8@‘)] Ry

> Initial and Boundary conditions

To describe a mass transfer process by the differential equations of mass transfer the

initial and boundary conditions must be specified.

Initial and boundary conditions are used to determine integration constants associated

with the mathematical solution of the differential equations for mass transfer

1. Initial conditions:

It means the concentration of the diffusing species at the start (t = 0) expressed in mass or

molar units.
att =0cy = Ca, (molar units)
att =0p, = Pa, (mass units)

where ¢, and p,  are constant (defined values)
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Note: Initial conditions are associated only with unsteady-state or pseudo-steady-state

processes.

2. Boundary conditions:

It means the concentration is specified (known) at a certain value of coordinate (X, y or

2).

Concentration is expressed in terms of different units, for example, molar
concentration c,, mass concentration p,, gas mole fraction y,, liquid mole fraction x,,

etc.

Types of boundary conditions:

(1) The concentration of the transferring species A at a boundary surface is specified.

(The concentration of the species is known at the interface)
Examples:

l. For a liquid mixture in contact with a pure solid A, (liquid-solid interface) the
concentration of species A in the liquid at the surface is the solubility limit of A in
the liquid, c4,

. For a contacting gas and liquid, (gas-liquid) where transferring species A is
present in both phases, there are two ways to specify the concentration at the gas—
liquid interface.

Q) if both of the species in the liquid phase are volatile, then the boundary condition

at the gas—liquid surface is defined for an ideal liquid mixture by Raoult’s law

Pag, = XaPa

and from Dalton’s law
_ DPa,
p

VA

or the surface concentration by the ideal gas law

Pag
“4s = Rr



(i) for solutions where species A is only weakly soluble in the liquid, Henry’s law
may be used to relate the mole fraction of A in the liquid to the partial pressure of
A in the gas
pa=H"- x,
H: Henry’s constant

(iii)  at gas solid interface

CAsotia = S Pa
Ca,,.q- 1S the molar concentration of A within the solid at the interface in units

of kg mol/m® and p, is the partial pressure of gas phase species A over the
solid in units of Pa.
S: solubility constant (partition coefficient)

(2) A reacting surface boundary is specified

— n
Ny |z=o = kecy,
where k. is a surface reaction rate constant with units of m/s. n is the reaction order

Note: the reaction may be so rapid that ¢, = 0 if species A is the limiting reagent in the

chemical reaction.
(3) The flux of the transferring species is zero at an impermeable boundary

_ dcy | _
NA z=0 — _DABa_Z z=0 — 0

dcy
or E |Z=O =0
where the impermeable boundary or the centerline of symmetry is located at z = 0

(4) The convective mass flux at the boundary surface is specified

Ny |z=0 =k (CAS - CAOO)

Where k is the convection mass transfer coefficient
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Solved problems:

Problem 1:

The following sketch illustrates the gas diffusion in the neighborhood of a catalytic
surface. Hot gases of heavy hydrocarbons diffuse to the catalytic surface where they are
cracked into lighter compounds by the reaction: H — 2L, the light products diffuse back

into the gas stream.

a. Reduce the general differential equation for mass transfer to write the specific
differential equation that will describe this steady-state transfer process if the catalyst
is considered a flat surface. List all of the assumptions you have made in simplifying
the general differential equation.

b. Determine the Fick’s law relationship in terms of only compound H and insert it into
the differential equation you obtained in part (a).

c. Repeat the solution for spherical catalyst surface.
Solution

a. The specific differential equation

Assumptions: steady state, unidirectional mass transfer.

aN +aN +aN +ac“‘ R,=0
ax 4 oy M oz M ot AT

Apply these assumptions on the general equation we get the specific differential equation:
a
E NH,Z + RH = 0

b. Fick’s law relationship in terms of only compound H

dy
i + yy(Ny + Np)

Ny = —cDy, dz
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but NL = _ZNH
Fick’s law in terms of H

cDy, dyy

Ny= ———& 28
H (1+yy) dz

Problem 2:

A hemispherical droplet of liquid water, lying on a flat surface, evaporates by molecular
diffusion through still air surrounding the droplet. The droplet initially has a radius R. As
the liquid water slowly evaporates, the droplet shrinks slowly with time, but the flux of
the water vapor is at a nominal steady state. The temperature of the droplet and the
surrounding still air are kept constant. The air contains water vapor at an infinitely long

distance from the droplet’s surface.

a. After drawing a picture of the physical process, select a coordinate system that
will best describe this diffusion process, list at least five reasonable assumptions
for the mass-transfer aspects of the water-evaporation process and simplify the
general differential equation for mass transfer in terms of the flux N,.

b. What is the simplified differential form of Fick’s equation for water vapor

(species A)?
Solution:

a. The coordinate system that will describe

'\Tf

ey

Basic assumptions:

1. Steady state conditions 2. No chemical reaction
3. Constant pressure and temperature 4. One dimensional mass transfer (r direction)
5. NAiT == O
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Apply these assumptions on the general differential equation:

v+ AR 0
Y| at A —
-'-V.IVA=O

For spherical coordinates and mass transfer in r-direction

1d
r—ZETNAZO

b. The simplified differential form of Fick’s equation for water vapor (species A)?

Assume water is A and air is B

dya
Ny = —cDyp I + ya(Ny + Np)

Ny =0
N, = __CPas aYa
4 (1—yy) dr

Problem 3:

A large deep lake, which initially had a uniform oxygen concentration of 1kg/m?3, has its
surface concentration suddenly raised and maintained at 9 kg/m?® concentration level.
Reduce the general differential equation for mass transfer to write the specific differential

equation for

a. the transfer of oxygen into the lake without the presence of a chemical reaction;
b. the transfer of oxygen into the lake that occurs with the simultaneous

disappearance of oxygen by a first-order biological reaction.
Solution:
Assume oxygen = A and water = B

a. the transfer of oxygen into the lake without the presence of a chemical reaction
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dcy

V.N
at ¢

RA=O

Basic assumptions:

1. no chemical reaction occur
2. For deep lake (stationary liquid) we can assume v =0

3. Unidirectional mass transfer (assume in z direction)

dN, Odc,
Az o
But
dy,
NA = —CDABE‘F CAV
Since the liquid is stationary
dy,
W Ny, = —cDjo ——
A Clxp dz
dNA _ dZCA
dz 4B dz2
dcy d?cy
at ~ 4B gz2

b. The transfer of oxygen into the lake that occurs with the simultaneous disappearance

of oxygen by a first-order biological reaction.
Basic assumptions:

1. chemical reaction occur (—R, = k,.c,)
2. For deep lake (stationary liquid) we can assume v =0
3. Unidirectional mass transfer (assume in z direction)

d%c, Ocy

ABW‘F at +erA =0

where k,.is the reaction rate constant
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Problem 4:

A liquid flows over a thin, flat sheet of a slightly soluble solid. Over the region in which
diffusion is occurring, the liquid velocity may be assumed to be parallel to the plate and
to be given by V, = ay, where y is the vertical distance from the plate and a is a constant.
Show that the equation governing the mass transfer, with certain simplifying

assumptions, is

&y dc de
DJ“\B( (A-{— (A) :a}rﬂ

oz 9y? dx

List the simplifying assumptions, and propose reasonable boundary conditions.
Solution:
Basic assumptions:

Steady state conditions
Mass transfer in x and y directions
No chemical reaction occur

Constant temperature and pressure (constant concentration and diffusivity)

ok~ w0 N PE

Velocity in y direction =0

Apply these assumptions on the general differential equation:

;—xNA,x+ainA,y + 2Ny, + 224 Ry =0
o Wax | WNay _ (i)
ox dy
Npx = —CDyp % + il
dcy

“ Nyy = —Dyp E + aycy

N D dey + ¢,V
= —Dyp—+ ¢
Ay 'AB dy AVy
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But ;, = 0 (based on the assumptions)

. dCA
RS NA,y = _DABE

Substitute by the values of N, , and Ny ,, in equation (i)

aZCA aCA aZCA
D gz TG~ DABa_yz =0

ach+ach 0y
4B 52 T gyz | T Yoy

Boundary conditions:

1 cy=cy,aty =0
2. CA=Oaty = 00
3. ¢g=0atx =0

Note:

The specific differential equation of mass transfer for a given system can be obtained by

two methods:

1. Select the general equation according to the system coordinates and omit the
unnecessary terms

2. Make a mass balance over a control volume, divide by the volume and take limits
as values of length approaches zero
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Supplementary data:

The general differential equation for mass transfer of component A, in rectangular

coordinates is

(?CA t)NM 8NA“- (?NA =
dca . ) zl _p
aﬁlax oy T 8z] 4

in cylindrical coordinates is

dex [10 1ONgg  ONag|
§+l;§(w“)+; o ] ~fa

and in spherical coordinates is
86‘,4 1 0
ot |rtor

6 ] JN
(PNp,) + ———=(Nagsinf) + "‘“”1 = Ra

rsin 6 00 rsinf d¢

17



