
M O M E N T U M  A N A LY S I S  
O F  F L O W  S Y S T E M S

W
hen dealing with engineering problems, it is desirable to obtain

fast and accurate solutions at minimal cost. Most engineering

problems, including those associated with fluid flow, can be ana-

lyzed using one of three basic approaches: differential, experimental, and

control volume. In differential approaches, the problem is formulated accu-

rately using differential quantities, but the solution of the resulting differen-

tial equations is difficult, usually requiring the use of numerical methods

with extensive computer codes. Experimental approaches complemented

with dimensional analysis are highly accurate, but they are typically time-

consuming and expensive. The finite control volume approach described in

this chapter is remarkably fast and simple and usually gives answers that are

sufficiently accurate for most engineering purposes. Therefore, despite the

approximations involved, the basic finite control volume analysis performed

with a paper and pencil has always been an indispensable tool for engineers.

In Chap. 5, the control volume mass and energy analysis of fluid flow

systems was presented. In this chapter, we present the finite control volume

momentum analysis of fluid flow problems. First we give an overview of

Newton’s laws and the conservation relations for linear and angular momen-

tum. Then using the Reynolds transport theorem, we develop the linear

momentum and angular momentum equations for control volumes and use

them to determine the forces and torques associated with fluid flow.
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CHAPTER

6
OBJECTIVES

When you finish reading this chapter, you

should be able to

� Identify the various kinds of

forces and moments acting on 

a control volume

� Use control volume analysis to

determine the forces associated

with fluid flow

� Use control volume analysis to

determine the moments caused

by fluid flow and the torque

transmitted
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6–1 � NEWTON’S LAWS AND CONSERVATION 
OF MOMENTUM

Newton’s laws are relations between motions of bodies and the forces act-

ing on them. Newton’s first law states that a body at rest remains at rest,

and a body in motion remains in motion at the same velocity in a straight

path when the net force acting on it is zero. Therefore, a body tends to pre-

serve its state of inertia. Newton’s second law states that the acceleration of

a body is proportional to the net force acting on it and is inversely propor-

tional to its mass. Newton’s third law states that when a body exerts a force

on a second body, the second body exerts an equal and opposite force on

the first. Therefore, the direction of an exposed reaction force depends on

the body taken as the system.

For a rigid body of mass m, Newton’s second law is expressed as

Newton’s second law: (6–1)

where F
→

is the net force acting on the body and a
→

is the acceleration of the

body under the influence of F
→

.

The product of the mass and the velocity of a body is called the linear

momentum or just the momentum of the body. The momentum of a rigid

body of mass m moving with a velocity V
→

is mV
→

(Fig. 6–1). Then Newton’s

second law expressed in Eq. 6–1 can also be stated as the rate of change of

the momentum of a body is equal to the net force acting on the body (Fig.

6–2). This statement is more in line with Newton’s original statement of the

second law, and it is more appropriate for use in fluid mechanics when

studying the forces generated as a result of velocity changes of fluid

streams. Therefore, in fluid mechanics, Newton’s second law is usually

referred to as the linear momentum equation.

The momentum of a system remains constant when the net force acting

on it is zero, and thus the momentum of such systems is conserved. This is

known as the conservation of momentum principle. This principle has

proven to be a very useful tool when analyzing collisions such as those

between balls; between balls and rackets, bats, or clubs; and between atoms

or subatomic particles; and explosions such as those that occur in rockets,

missiles, and guns. The momentum of a loaded rifle, for example, must be

zero after shooting since it is zero before shooting, and thus the rifle must

have a momentum equal to that of the bullet in the opposite direction so that

the vector sum of the two is zero.

Note that force, acceleration, velocity, and momentum are vector quanti-

ties, and as such they have direction as well as magnitude. Also, momentum

is a constant multiple of velocity, and thus the direction of momentum is the

direction of velocity. Any vector equation can be written in scalar form for a

specified direction using magnitudes, e.g., Fx � max � d(mVx)/dt in the x-

direction.

The counterpart of Newton’s second law for rotating rigid bodies is

expressed as M
→

� Ia
→

, where M
→

is the net moment or torque applied on the

body, I is the moment of inertia of the body about the axis of rotation, and a
→

is the angular acceleration. It can also be expressed in terms of the rate of

change of angular momentum dH
→

/dt as

F
→

� ma
→

� m  
dV

→

dt
�

d(mV
→

)

dt

V

mV

m

m

→

→

FIGURE 6–1

Linear momentum is the product of

mass and velocity, and its direction 

is the direction of velocity.

Net force

Rate of change

of momentum

= ma = m
dt dt

m 

FIGURE 6–2

Newton’s second law is also expressed

as the rate of change of the momentum

of a body is equal to the net force

acting on it.
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Angular momentum equation: (6–2)

where v
→

is the angular velocity. For a rigid body rotating about a fixed x-axis,

the angular momentum equation can be written in scalar form as

Angular momentum about x-axis: (6–3)

The angular momentum equation can be stated as the rate of change of

the angular momentum of a body is equal to the net torque acting on it

(Fig. 6–3).

The total angular momentum of a rotating body remains constant when

the net torque acting on it is zero, and thus the angular momentum of such

systems is conserved. This is known as the conservation of angular momen-

tum principle and is expressed as Iv � constant. Many interesting phenom-

ena such as ice skaters spinning faster when they bring their arms close to

their bodies and divers rotating faster when they curl after the jump can be

explained easily with the help of the conservation of angular momentum

principle (in both cases, the moment of inertia I is decreased and thus the

angular velocity v is increased as the outer parts of the body are brought

closer to the axis of rotation).

6–2 � CHOOSING A CONTROL VOLUME

We now briefly discuss how to wisely select a control volume. A control

volume can be selected as any arbitrary region in space through which fluid

flows, and its bounding control surface can be fixed, moving, and even

deforming during flow. The application of a basic conservation law is sim-

ply a systematic procedure for bookkeeping or accounting of the quantity

under consideration, and thus it is extremely important that the boundaries

of the control volume are well defined during an analysis. Also, the flow

rate of any quantity into or out of a control volume depends on the flow

velocity relative to the control surface, and thus it is essential to know if the

control volume remains at rest during flow or if it moves.

Many flow systems involve stationary hardware firmly fixed to a station-

ary surface, and such systems are best analyzed using fixed control volumes.

When determining the reaction force acting on a tripod holding the nozzle

of a hose, for example, a natural choice for the control volume is one that

passes perpendicularly through the nozzle exit flow and through the bottom

of the tripod legs (Fig. 6–4a). This is a fixed control volume, and the water

velocity relative to a fixed point on the ground is the same as the water

velocity relative to the nozzle exit plane.

When analyzing flow systems that are moving or deforming, it is usually

more convenient to allow the control volume to move or deform. When

determining the thrust developed by the jet engine of an airplane cruising at

constant velocity, for example, a wise choice of control volume is one that

encloses the airplane and cuts through the nozzle exit plane (Fig. 6–4b). The

control volume in this case moves with velocity V
→

CV, which is identical to

the cruising velocity of the airplane relative to a fixed point on earth. When

determining the flow rate of exhaust gases leaving the nozzle, the proper

Mx � Ix  
dvx

dt
�

dHx

dt

M
→

� Ia
→

� I  
dv

→

dt
�

d(Iv
→

)

dt
�

dH
→

dt

  
= I  = I

dt dt

ω dH

dt

ω 

Net torque

Rate of change

of angular momentum

FIGURE 6–3

The rate of change of the angular

momentum of a body is equal to 

the net torque acting on it.
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velocity to use is the velocity of the exhaust gases relative to the nozzle exit

plane, that is, the relative velocity V
→

r. Since the entire control volume moves

at velocity V
→

CV, the relative velocity becomes V
→

r � V
→

� V
→

CV, where V
→

is

the absolute velocity of the exhaust gases, i.e., the velocity relative to a

fixed point on earth. Note that V
→

r is the fluid velocity expressed relative to a

coordinate system moving with the control volume. Also, this is a vector

equation, and velocities in opposite directions have opposite signs. For

example, if the airplane is cruising at 500 km/h to the left, and the velocity

of the exhaust gases is 800 km/h to the right relative to the ground, the

velocity of the exhaust gases relative to the nozzle exit is

That is, the exhaust gases leave the nozzle at 1300 km/h to the right relative

to the nozzle exit (in the direction opposite to that of the airplane); this is

the velocity that should be used when evaluating the outflow of exhaust

gases through the control surface (Fig. 6–4b). Note that the exhaust gases

would appear motionless to an observer on the ground if the relative veloc-

ity were equal in magnitude to the airplane velocity.

When analyzing the purging of exhaust gases from a reciprocating inter-

nal combustion engine, a wise choice for the control volume is one that

comprises the space between the top of the piston and the cylinder head

(Fig. 6–4c). This is a deforming control volume, since part of the control

surface moves relative to other parts. The relative velocity for an inlet or

outlet on the deforming part of a control surface (there are no such inlets

or outlets in Fig. 6–4c) is then given by V
→

r � V
→

� V
→

CS where V
→

is the

absolute fluid velocity and V
→

CS is the control surface velocity, both relative

to a fixed point outside the control volume. Note that V
→

CS � V
→

CV for mov-

ing but nondeforming control volumes, and V
→

CS � V
→

CV � 0 for fixed ones.

6–3 � FORCES ACTING ON A CONTROL VOLUME

The forces acting on a control volume consist of body forces that act

throughout the entire body of the control volume (such as gravity, electric,

and magnetic forces) and surface forces that act on the control surface (such

as pressure and viscous forces and reaction forces at points of contact).

In control volume analysis, the sum of all forces acting on the control vol-

ume at a particular instant in time is represented by � F
→

and is expressed as

Total force acting on control volume: (6–4)

Body forces act on each volumetric portion of the control volume. The body

force acting on a differential element of fluid of volume dV within the con-

trol volume is shown in Fig. 6–5, and we must perform a volume integral to

account for the net body force on the entire control volume. Surface forces

act on each portion of the control surface. A differential surface element of

area dA and unit outward normal n
→

on the control surface is shown in Fig.

6–5, along with the surface force acting on it. We must perform an area

integral to obtain the net surface force acting on the entire control surface.

As sketched, the surface force may act in a direction independent of that of

the outward normal vector.

a F
→

� a F
→

body � a F
→

surface

V
→

r � V
→

� V
→

CV � 800i
→

� (�500i
→

) � 1300i
→

 km/h

V

V

(a)

(b)

(c)

CV

V

V

V

CV

r

r
Moving control volume

Deforming

control volume

Fixed control volume

x

x

y

VCS

→

→

→

→

→

→

FIGURE 6–4

Examples of (a) fixed, (b) moving,

and (c) deforming control volumes.
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The most common body force is that of gravity, which exerts a down-

ward force on every differential element of the control volume. While other

body forces, such as electric and magnetic forces, may be important in some

analyses, we consider only gravitational forces here.

The differential body force dF
→

body � dF
→

gravity acting on the small fluid ele-

ment shown in Fig. 6–6 is simply its weight,

Gravitational force acting on a fluid element: (6–5)

where r is the average density of the element and g
→

is the gravitational vec-

tor. In Cartesian coordinates we adopt the convention that g
→

acts in the neg-

ative z-direction, as in Fig. 6–6, so that

Gravitational vector in Cartesian coordinates: (6–6)

Note that the coordinate axes in Fig. 6–6 have been rotated from their usual

orientation so that the gravity vector acts downward in the �z-direction. On

earth at sea level, the gravitational constant g is equal to 9.807 m/s2. Since

gravity is the only body force being considered, integration of Eq. 6–5

yields

Total body force acting on control volume: (6–7)

Surface forces are not as simple to analyze since they consist of both nor-

mal and tangential components. Furthermore, while the physical force act-

ing on a surface is independent of orientation of the coordinate axes, the

description of the force in terms of its coordinate components changes with

orientation (Fig. 6–7). In addition, we are rarely fortunate enough to have

each of the control surfaces aligned with one of the coordinate axes. While

not desiring to delve too deeply into tensor algebra, we are forced to define

a second-order tensor called the stress tensor sij in order to adequately

describe the surface stresses at a point in the flow,

Stress tensor in Cartesian coordinates: (6–8)

The diagonal components of the stress tensor, sxx, syy, and szz, are called

normal stresses; they are composed of pressure (which always acts

inwardly normal) and viscous stresses. Viscous stresses are discussed in

more detail in Chap. 9. The off-diagonal components, sxy, szx, etc., are

called shear stresses; since pressure can act only normal to a surface, shear

stresses are composed entirely of viscous stresses.

When the face is not parallel to one of the coordinate axes, mathematical

laws for axes rotation and tensors can be used to calculate the normal and

tangential components acting at the face. In addition, an alternate notation

called tensor notation is convenient when working with tensors but is usu-

ally reserved for graduate studies. (For a more in-depth analysis of tensors

and tensor notation see, for example, Kundu, 1990.)

In Eq. 6–8, sij is defined as the stress (force per unit area) in the j-direction

acting on a face whose normal is in the i-direction. Note that i and j are

merely indices of the tensor and are not the same as unit vectors i
→

and j
→

. For

example, sxy is defined as positive for the stress pointing in the y-direction

sij � £sxx

syx

szx

sxy

syy

szy

sxz

syz

szz

≥

a F
→

body � �
CV

 rg
→
 dV � mCVg

→

g
→

� � gk
→

dF
→

gravity � rg
→
 dV

body

Control volume (CV)

Control surface (CS)

n

dF

surfacedF

dA

dV

→

→

→

FIGURE 6–5

The total force acting on a control

volume is composed of body forces

and surface forces; body force is

shown on a differential volume

element, and surface force is shown 

on a differential surface element.

g

dFbody = dFgravity = rg dV
z, k

y, j

x, i

dy

dz

dx

→

→→→

→

→

→

dV,r

FIGURE 6–6

The gravitational force acting on a

differential volume element of fluid is 

equal to its weight; the axes have been

rotated so that the gravity vector acts

downward in the negative z-direction.
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on a face whose outward normal is in the x-direction. This component of the

stress tensor, along with the other eight components, is shown in Fig. 6–8

for the case of a differential fluid element aligned with the axes in Cartesian

coordinates. All the components in Fig. 6–8 are shown on positive faces

(right, top, and front) and in their positive orientation by definition. Positive

stress components on the opposing faces of the fluid element (not shown)

point in exactly opposite directions.

The dot product of a second-order tensor and a vector yields a second

vector; this operation is often called the contracted product or the inner

product of a tensor and a vector. In our case, it turns out that the inner

product of the stress tensor sij and the unit outward normal vector n
→

of a

differential surface element yields a vector whose magnitude is the force per

unit area acting on the surface element and whose direction is the direction

of the surface force itself. Mathematically we write

Surface force acting on a differential surface element: (6–9)

Finally, we integrate Eq. 6–9 over the entire control surface,

Total surface force acting on control surface: (6–10)

Substitution of Eqs. 6–7 and 6–10 into Eq. 6–4 yields

(6–11)

This equation turns out to be quite useful in the derivation of the differen-

tial form of conservation of linear momentum, as discussed in Chap. 9. For

practical control volume analysis, however, it is rare that we need to use Eq.

6–11, especially the cumbersome surface integral that it contains.

A careful selection of the control volume enables us to write the total

force acting on the control volume, � F
→

, as the sum of more readily avail-

able quantities like weight, pressure, and reaction forces. We recommend

the following for control volume analysis:

Total force: (6–12)

total force body force surface forces

The first term on the right-hand side of Eq. 6–12 is the body force weight,

since gravity is the only body force we are considering. The other three

terms combine to form the net surface force; they are pressure forces, vis-

cous forces, and “other” forces acting on the control surface. � F
→

other is com-

posed of reaction forces required to turn the flow; forces at bolts, cables,

struts, or walls through which the control surface cuts; etc.

All these surface forces arise as the control volume is isolated from its

surroundings for analysis, and the effect of any detached object is accounted

for by a force at that location. This is similar to drawing a free-body dia-

gram in your statics and dynamics classes. We should choose the control

volume such that forces that are not of interest remain internal, and thus

they do not complicate the analysis. A well-chosen control volume exposes

a F
→

� a F
→

gravity � a F
→

pressure � a F
→

viscous � a F
→

other

a F
→

� a F
→

body � a F
→

surface � �
CV

rg
→
 dV � �

CS

 sij � n
→
 dA

a F
→

surface � �
CS

 sij � n
→
 dA

dF
→

surface � sij � n
→
 dA

Control
surface

y

x

(a)

(b)

dFsurface

dFsurface, y

dFsurface, x

dFsurface, normal

n

dFsurface, tangential

dA

Control
surface

y

x

dFsurface

dFsurface, y

dFsurface, x

dFsurface, normal

n

dFsurface, tangential

dA

→

→

→

→

FIGURE 6–7

When coordinate axes are rotated (a)

to (b), the components of the surface

force change, even though the force

itself remains the same; only two

dimensions are shown here.
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only the forces that are to be determined (such as reaction forces) and a

minimum number of other forces.

Only external forces are considered in the analysis. The internal forces

(such as the pressure force between a fluid and the inner surfaces of the

flow section) are not considered in a control volume analysis unless they are

exposed by passing the control surface through that area.

A common simplication in the application of Newton’s laws of motion is

to subtract the atmospheric pressure and work with gage pressures. This is

because atmospheric pressure acts in all directions, and its effect cancels out

in every direction (Fig. 6–9). This means we can also ignore the pressure

forces at outlet sections where the fluid is discharged to the atmosphere

since the discharge pressures in such cases will be very near atmospheric

pressure at subsonic velocities.

As an example of how to wisely choose a control volume, consider con-

trol volume analysis of water flowing steadily through a faucet with a par-

tially closed gate valve spigot (Fig. 6–10). It is desired to calculate the net

force on the flange to ensure that the flange bolts are strong enough. There

are many possible choices for the control volume. Some engineers restrict

their control volumes to the fluid itself, as indicated by CV A (the colored

control volume). With this control volume, there are pressure forces that

vary along the control surface, there are viscous forces along the pipe wall

and at locations inside the valve, and there is a body force, namely, the

weight of the water in the control volume. Fortunately, to calculate the net

force on the flange, we do not need to integrate the pressure and viscous

stresses all along the control surface. Instead, we can lump the unknown

pressure and viscous forces together into one reaction force, representing

the net force of the walls on the water. This force, plus the weight of the

faucet and the water, is equal to the net force on the flange. (We must be

very careful with our signs, of course.)

When choosing a control volume, you are not limited to the fluid alone.

Often it is more convenient to slice the control surface through solid objects

such as walls, struts, or bolts as illustrated by CV B (the gray control vol-

ume) in Fig. 6–10. A control volume may even surround an entire object,

like the one shown here. Control volume B is a wise choice because we are

not concerned with any details of the flow or even the geometry inside the

control volume. For the case of CV B, we assign a net reaction force acting

at the portions of the control surface that slice through the flange. Then, the

only other things we need to know are the gage pressure of the water at

the flange (the inlet to the control volume) and the weights of the water and

the faucet assembly. The pressure everywhere else along the control surface

is atmospheric (zero gage pressure) and cancels out. This problem is revis-

ited in Section 6–4, Example 6–7.

6–4 � THE LINEAR MOMENTUM EQUATION

Newton’s second law for a system of mass m subjected to a net force F
→

is

expressed as

(6–13)a F
→

� ma
→

� m 
dV

→

dt
�

d

dt
 (mV

→

)

dy

y

x
z

dz

dx

sxz

sxx

sxy

syz

syy

syx

szy

szx

szz

FIGURE 6–8

Components of the stress tensor in

Cartesian coordinates on the right,

top, and front faces.

FR

P1

W

Patm

Patm

P1 (gage)

With atmospheric

pressure considered

With atmospheric

pressure cancelled out

FR

W

FIGURE 6–9

Atmospheric pressure acts in all

directions, and thus it can be ignored

when performing force balances since

its effect cancels out in every direction.

Wfaucet

Wwater

CV B

Out

Spigot

In

Bolts

x

z

CV A

FIGURE 6–10

Cross section through a faucet

assembly, illustrating the importance

of choosing a control volume wisely;

CV B is much easier to work with 

than CV A.
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where mV
→

is the linear momentum of the system. Noting that both the den-

sity and velocity may change from point to point within the system, New-

ton’s second law can be expressed more generally as

(6–14)

where dm � rdV is the mass of a differential volume element dV, and 

rV
→

dV is its momentum. Therefore, Newton’s second law can be stated as

the sum of all external forces acting on a system is equal to the time rate of

change of linear momentum of the system. This statement is valid for a

coordinate system that is at rest or moves with a constant velocity, called an

inertial coordinate system or inertial reference frame. Accelerating systems

such as aircraft during takeoff are best analyzed using noninertial (or accel-

erating) coordinate systems fixed to the aircraft. Note that Eq. 6–14 is a

vector relation, and thus the quantities F
→

and V
→

have direction as well as

magnitude.

Equation 6–14 is for a given mass of a solid or fluid and is of limited use

in fluid mechanics since most flow systems are analyzed using control vol-

umes. The Reynolds transport theorem developed in Section 4–5 provides

the necessary tools to shift from the system formulation to the control vol-

ume formulation. Setting b � V
→

and thus B � mV
→

, the Reynolds transport

theorem can be expressed for linear momentum as (Fig. 6–11)

(6–15)

But the left-hand side of this equation is, from Eq. 6–13, equal to �F
→

. Sub-

stituting, the general form of the linear momentum equation that applies to

fixed, moving, or deforming control volumes is obtained to be

General: (6–16)

which can be stated as

Here V
→

r � V
→

� V
→

CS is the fluid velocity relative to the control surface (for

use in mass flow rate calculations at all locations where the fluid crosses the

control surface), and V
→

is the fluid velocity as viewed from an inertial refer-

ence frame. The product r(V
→

r · n
→
) dA represents the mass flow rate through

area element dA into or out of the control volume.

For a fixed control volume (no motion or deformation of control volume),

V
→

r � V
→

and the linear momentum equation becomes

Fixed CV: (6–17)

Note that the momentum equation is a vector equation, and thus each term

should be treated as a vector. Also, the components of this equation can be

resolved along orthogonal coordinates (such as x, y, and z in the Cartesian

a F
→

�
d

dt
 �

CV

 rV
→

 dV � �
CS

 rV
→

(V
→

� n
→
) dA

£The sum of all

external forces

acting on a CV

≥ � £ The time rate of change

of the linear momentum

of the contents of the CV

≥ � £ The net flow rate of

linear momentum out of the

control surface by mass flow

≥

a F
→

�
d

dt
 �

CV

 rV
→

 dV � �
CS

 rV
→

(V
→

r � n
→
) dA

d(mV
→

)sys

dt
�

d

dt
 �

CV

 rV
→

 dV � �
CS

 rV
→

 (V
→

r � n
→
) dA

a F
→

�
d

dt�
sys

 rV
→

 dV
= +rb dV

B = mV

dBsys

dt
V

d

dt
CV

rb(  r · n ) dA

CS

= +rV dV

d(mV )sys

dt
V

d

dt
CV

rV(  r · n ) dA

CS

b = V b = V

→→

→ →

→

→ → → →

→

FIGURE 6–11

The linear momentum equation 

is obtained by replacing B in the

Reynolds transport theorem by the

momentum mV
→

, and b by the

momentum per unit mass V
→

.
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coordinate system) for convenience. The force F
→

in most cases consists of

weights, pressure forces, and reaction forces (Fig. 6–12). The momentum

equation is commonly used to calculate the forces (usually on support sys-

tems or connectors) induced by the flow.

Special Cases
During steady flow, the amount of momentum within the control volume

remains constant, and thus the time rate of change of linear momentum of the

contents of the control volume (the second term of Eq. 6–16) is zero. It gives

Steady flow: (6–18)

Most momentum problems considered in this text are steady.

While Eq. 6–17 is exact for fixed control volumes, it is not always conve-

nient when solving practical engineering problems because of the integrals.

Instead, as we did for conservation of mass, we would like to rewrite Eq.

6–17 in terms of average velocities and mass flow rates through inlets and

outlets. In other words, our desire is to rewrite the equation in algebraic

rather than integral form. In many practical applications, fluid crosses the

boundaries of the control volume at one or more inlets and one or more out-

lets, and carries with it some momentum into or out of the control volume.

For simplicity, we always draw our control surface such that it slices normal

to the inflow or outflow velocity at each such inlet or outlet (Fig. 6–13).

The mass flow rate m
.

into or out of the control volume across an inlet or

outlet at which r is nearly constant is

Mass flow rate across an inlet or outlet: (6–19)

Comparing Eq. 6–19 to Eq. 6–17, we notice an extra velocity in the control

surface integral of Eq. 6–17. If V
→

were uniform (V
→

� V
→

avg) across the inlet

or outlet, we could simply take it outside the integral. Then we could write

the rate of inflow or outflow of momentum through the inlet or outlet in

simple algebraic form,

Momentum flow rate across a uniform inlet or outlet:

(6–20)

The uniform flow approximation is reasonable at some inlets and outlets,

e.g., the well-rounded entrance to a pipe, the flow at the entrance to a wind

tunnel test section, and a slice through a water jet moving at nearly uniform

speed through air (Fig. 6–14). At each such inlet or outlet, Eq. 6–20 can be

applied directly.

Momentum-Flux Correction Factor, B
Unfortunately, the velocity across most inlets and outlets of practical engi-

neering interest is not uniform. Nevertheless, it turns out that we can still

convert the control surface integral of Eq. 6–17 into algebraic form, but a

�
Ac

 rV
→

(V
→

� n
→
) dAc � rVavg  AcV

→

avg � m
#

V
→

avg

m
#

� �
Ac

 r(V
→

� n
→
) dAc � rVavg Ac

a F
→

� �
CS

 rV
→

 (V
→

r � n
→
) dA

FR1

FR2
P2,gageA2 P1,gageA1

A2

An 180° elbow supported by the ground

(Pressure
force)

CS(Reaction
force)

(Reaction force)

A1

W (Weight)

FIGURE 6–12

In most flow systems, the force F
→

consists of weights, pressure forces,

and reaction forces. Gage pressures

are used here since atmospheric

pressure cancels out on all sides 

of the control surface.

Vavg,4m4,⋅

m3,⋅ Vavg,3

→

→Vavg,5m5,⋅ →

→

→

Vavg,1m1,⋅

Vavg,2m2,⋅

In

In

Out

Out

Out

Fixed

control

volume

FIGURE 6–13

In a typical engineering problem,

the control volume may contain 

many inlets and outlets; at each inlet

or outlet we define the mass flow 

rate m
.

and the average velocity V
→

avg.
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dimensionless correction factor b, called the momentum-flux correction

factor, is required, as first shown by the French scientist Joseph Boussinesq

(1842–1929). The algebraic form of Eq. 6–17 for a fixed control volume is

then written as

(6–21)

where a unique value of momentum-flux correction factor is applied to each

inlet and outlet in the control surface. Note that b � 1 for the case of uni-

form flow over an inlet or outlet, as in Fig. 6–14. For the general case, we

define b such that the integral form of the momentum flux into or out of the

control surface at an inlet or outlet of cross-sectional area Ac can be

expressed in terms of mass flow rate m
.

through the inlet or outlet and aver-

age velocity V
→

avg through the inlet or outlet,

Momentum flux across an inlet or outlet: (6–22)

For the case in which density is uniform over the inlet or outlet and V
→

is in

the same direction as V
→

avg over the inlet or outlet, we solve Eq. 6–22 for b,

(6–23)

where we have substituted rVavg Ac for m· in the denominator. The densities

cancel and since Vavg is constant, it can be brought inside the integral. Fur-

thermore, if the control surface slices normal to the inlet or outlet area, we

have (V
→

· n
→
) dAc � V dAc. Then, Eq. 6–23 simplifies to

Momentum-flux correction factor: (6–24)

It turns out that for any velocity profile you can imagine, b is always greater

than or equal to unity.

b�
1

Ac

 �
Ac

 a V

Vavg

b 2

 dAc

b�

�
Ac

 rV(V
→

� n
→
) dAc

m
#

Vavg

�

�
Ac

 rV(V
→

� n
→
) dAc

rVavg AcVavg

�
Ac

 rV
→

(V
→

� n
→
) dAc � bm

#

V
→

avg

a F
→

�
d

dt
 �

CV

 rV
→

 dV � a
out

bm
#

V
→

avg � a
in

bm
#

V
→

avg

Vavg Vavg

CV CV CV

Nozzle

(a) (b) (c)

Vavg

FIGURE 6–14

Examples of inlets or outlets 

in which the uniform flow

approximation is reasonable:

(a) the well-rounded entrance to 

a pipe, (b) the entrance to a wind

tunnel test section, and (c) a slice

through a free water jet in air.
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EXAMPLE 6–1 Momentum-Flux Correction Factor 

for Laminar Pipe Flow

Consider laminar flow through a very long straight section of round pipe. It is

shown in Chap. 8 that the velocity profile through a cross-sectional area of

the pipe is parabolic (Fig. 6–15), with the axial velocity component given by

(1)

where R is the radius of the inner wall of the pipe and Vavg is the average

velocity. Calculate the momentum-flux correction factor through a cross sec-

tion of the pipe for the case in which the pipe flow represents an outlet of

the control volume, as sketched in Fig. 6–15.

SOLUTION For a given velocity distribution we are to calculate the momen-

tum-flux correction factor.

Assumptions 1 The flow is incompressible and steady. 2 The control volume

slices through the pipe normal to the pipe axis, as sketched in Fig. 6–15.

Analysis We substitute the given velocity profile for V in Eq. 6–24 and inte-

grate, noting that dAc � 2pr dr,

(2)

Defining a new integration variable y � 1 � r 2/R2 and thus dy � �2r dr/R 2

(also, y � 1 at r � 0, and y � 0 at r � R) and performing the integration,

the momentum-flux correction factor for fully developed laminar flow

becomes

Laminar flow: (3)

Discussion We have calculated b for an outlet, but the same result would

have been obtained if we had considered the cross section of the pipe as an

inlet to the control volume.

From Example 6–1 we see that b is not very close to unity for fully devel-

oped laminar pipe flow, and ignoring b could potentially lead to significant

error. If we were to perform the same kind of integration as in Example 6–1

but for fully developed turbulent rather than laminar pipe flow, we would

find that b ranges from about 1.01 to 1.04. Since these values are so close

to unity, many practicing engineers completely disregard the momentum-

flux correction factor. While the neglect of b in turbulent flow calculations

may have an insignificant effect on the final results, it is wise to keep it in

our equations. Doing so not only improves the accuracy of our calculations,

but reminds us to include the momentum-flux correction factor when solv-

ing laminar flow control volume problems.

For turbulent flow b may have an insignificant effect at inlets and outlets, but
for laminar flow b may be important and should not be neglected. It is wise
to include b in all momentum control volume problems.

b � �4 �
0

1

 y 2 dy � �4 cy 3

3
d 0

1

�
4

3

b �
1

Ac

 �
Ac

 a V

Vavg

b 2

 dAc �
4

pR2
 �

R

0

 a1 �
r 2

R2
b 2

2pr dr

V � 2Vavga1 �
r 2

R2
b

Vavg

VR

r

CV

FIGURE 6–15

Velocity profile over a cross section 

of a pipe in which the flow is fully

developed and laminar.
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Steady Flow
If the flow is also steady, the time derivative term in Eq. 6–21 vanishes and

we are left with

Steady linear momentum equation: (6–25)

where we dropped the subscript “avg” from average velocity. Equation 6–25

states that the net force acting on the control volume during steady flow is

equal to the difference between the rates of outgoing and incoming momen-

tum flows. This statement is illustrated in Fig. 6–16. It can also be expressed

for any direction, since Eq. 6–25 is a vector equation.

Steady Flow with One Inlet and One Outlet
Many practical problems involve just one inlet and one outlet (Fig. 6–17).

The mass flow rate for such single-stream systems remains constant, and

Eq. 6–25 reduces to

One inlet and one outlet: (6–26)

where we have adopted the usual convention that subscript 1 implies the

inlet and subscript 2 the outlet, and V
→

1 and V
→

2 denote the average velocities

across the inlet and outlet, respectively.

We emphasize again that all the preceding relations are vector equations,

and thus all the additions and subtractions are vector additions and subtrac-

tions. Recall that subtracting a vector is equivalent to adding it after revers-

ing its direction (Fig. 6–18). Also, when writing the momentum equation

along a specified coordinate (such as the x-axis), we use the projections of

the vectors on that axis. For example, Eq. 6–26 can be written along the x-

coordinate as

Along x-coordinate: (6–27)

where � Fx is the vector sum of the x-components of the forces, and V2, x and

V1, x are the x-components of the outlet and inlet velocities of the fluid

stream, respectively. The force or velocity components in the positive x-

direction are positive quantities, and those in the negative x-direction are

negative quantities. Also, it is good practice to take the direction of

unknown forces in the positive directions (unless the problem is very

straightforward). A negative value obtained for an unknown force indicates

that the assumed direction is wrong and should be reversed.

Flow with No External Forces
An interesting situation arises when there are no external forces such as

weight, pressure, and reaction forces acting on the body in the direction of

motion—a common situation for space vehicles and satellites. For a control

volume with multiple inlets and outlets, Eq. 6–21 reduces in this case to

No external forces: (6–28)

This is an expression of the conservation of momentum principle, which can

be stated as in the absence of external forces, the rate of change of the

momentum of a control volume is equal to the difference between the rates

of incoming and outgoing momentum flow rates.

0 �
d(mV

→

)CV

dt
� a

out

bm
#

V
→

� a
in

bm
#

V
→

a Fx � m
#

(b2V2, x � b1V1, x)

a F
→

� m 
#

(b2V
→

2 � b1V
→

1)

a F
→

� a
out

b m
#

V
→

� a
in

b m
#

V
→

In

In

Out

out in

Fixed
control
volume

Out

Out
V3b3m3

⋅

Vbm⋅
→

→

V4b4m4
⋅V5b5m5

⋅ →→

V2b2m2
⋅ →

V1b1m1
⋅ →

Σ ΣF = Vbm⋅
→

Σ
→

–

F
→

Σ

FIGURE 6–16

The net force acting on the control

volume during steady flow is equal to

the difference between the outgoing

and the incoming momentum fluxes.

V2b2m⋅

V1b1m⋅
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Out

Fixed
control
volume

ΣF
2

1

m⋅
→→

ΣF = (b2V2 – b1V1)
→

→

→

→

FIGURE 6–17

A control volume with only one inlet

and one outlet.

(Reaction force)

Support

Water flow
CS

Note: V2 ≠ V1 even if |V2| = |V1|

u

u
FR

FR
→

→ → → →

V1b1m⋅
→

V2b2m⋅
→

V2b2m⋅
→

V1–b1m⋅
→

FIGURE 6–18

The determination by vector addition of

the reaction force on the support caused

by a change of direction of water.
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When the mass m of the control volume remains nearly constant, the first

term of the Eq. 6–28 simply becomes mass times acceleration since

Therefore, the control volume in this case can be treated as a solid body, with

a net force or thrust of

Thrust: (6–29)

acting on the body. This approach can be used to determine the linear accel-

eration of space vehicles when a rocket is fired (Fig. 6–19).

EXAMPLE 6–2 The Force to Hold a Deflector Elbow in Place

A reducing elbow is used to deflect water flow at a rate of 14 kg/s in a hori-

zontal pipe upward 30° while accelerating it (Fig. 6–20). The elbow dis-

charges water into the atmosphere. The cross-sectional area of the elbow is

113 cm2 at the inlet and 7 cm2 at the outlet. The elevation difference

between the centers of the outlet and the inlet is 30 cm. The weight of the

elbow and the water in it is considered to be negligible. Determine (a) the

gage pressure at the center of the inlet of the elbow and (b) the anchoring

force needed to hold the elbow in place.

SOLUTION A reducing elbow deflects water upward and discharges it to the

atmosphere. The pressure at the inlet of the elbow and the force needed to

hold the elbow in place are to be determined.

Assumptions 1 The flow is steady, and the frictional effects are negligible.

2 The weight of the elbow and the water in it is negligible. 3 The water is

discharged to the atmosphere, and thus the gage pressure at the outlet is

zero. 4 The flow is turbulent and fully developed at both the inlet and outlet

of the control volume, and we take the momentum-flux correction factor to

be b � 1.03.

Properties We take the density of water to be 1000 kg/m3.

Analysis (a) We take the elbow as the control volume and designate the

inlet by 1 and the outlet by 2. We also take the x- and z-coordinates as

shown. The continuity equation for this one-inlet, one-outlet, steady-flow sys-

tem is m
.
1 � m

.
2 � m

.
� 14 kg/s. Noting that m

.
� rAV, the inlet and outlet

velocities of water are

 V2 �
m
#

rA2

�
14 kg/s

(1000 kg/m3)(7 � 10�4 m2)
� 20.0 m/s 

 V1 �
m
#

rA1

�
14 kg/s

(1000 kg/m3)(0.0113 m2)
� 1.24 m/s 

F
→

body � mbodya
→

� a
in

bm
#

V
→

� a
out

bm
#

V
→

d(mV
→

)CV

dt
� mCV 

dV
→

CV

dt
� (ma

→
)CV

L = 2 m

V0 = 2000 m/s

FIGURE 6–19

The thrust needed to lift the space

shuttle is generated by the rocket

engines as a result of momentum

change of the fuel as it is accelerated

from about zero to an exit speed of

about 2000 m/s after combustion.

NASA

FRz

FRx

Patm

30°

30 cm

P1,gage

z

x

1

2
·

mV1
·

mV2

→

→

FIGURE 6–20

Schematic for Example 6–2.
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We use the Bernoulli equation (Chap. 5) as a first approximation to calculate

the pressure. In Chap. 8 we will learn how to account for frictional losses

along the walls. Taking the center of the inlet cross section as the reference

level (z1 � 0) and noting that P2 � Patm, the Bernoulli equation for a stream-

line going through the center of the elbow is expressed as

(b) The momentum equation for steady one-dimensional flow is

We let the x- and z-components of the anchoring force of the elbow be FRx

and FRz, and assume them to be in the positive direction. We also use gage

pressure since the atmospheric pressure acts on the entire control surface.

Then the momentum equations along the x- and z-axes become

Solving for FRx and FRz, and substituting the given values,

The negative result for FRx indicates that the assumed direction is wrong,

and it should be reversed. Therefore, FRx acts in the negative x-direction.

Discussion There is a nonzero pressure distribution along the inside walls of

the elbow, but since the control volume is outside the elbow, these pressures

do not appear in our analysis. The actual value of P1, gage will be higher than

that calculated here because of frictional and other irreversible losses in the

elbow.

EXAMPLE 6–3 The Force to Hold a Reversing Elbow in Place

The deflector elbow in Example 6–2 is replaced by a reversing elbow such that

the fluid makes a 180° U-turn before it is discharged, as shown in Fig. 6–21.

 FRz � bm
#

V2 sin u� (1.03)(14 kg/s)(20 sin 30� m/s)a 1 N

1 kg � m/s2
b � 144 N 

 � 232 � 2285 � �2053 N 

   � (202,200 N/m2)(0.0113 m2) 

 � 1.03(14 kg/s)3(20 cos 30� � 1.24) m/s4a 1 N

1 kg � m/s2
b  

 FRx � bm
#

(V2 cos u � V1) � P1, gageA1 

 FRz � bm
#

V2 sin u

 FRx � P1, gageA1 � bm
#

V2 cos u � bm
#

V1

a F
→

� a
out

bm
#

V
→

� a
in

bm
#

V
→

 P1, gage � 202.2 kN/m2 � 202.2 kPa  (gage) 

 � a(20 m/s)2 � (1.24 m/s)2

2(9.81 m/s2)
� 0.3 � 0b a 1 kN

1000 kg � m/s2
b  

 P1 � Patm � (1000 kg/m3)(9.81 m/s2) 

 P1 � P2 � rgaV 2
2 � V 2

1

2g
� z2 � z1b  

 
P1

rg
�

V 2
1

2g
� z1 �

P2
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V 2
2

2g
� z2 
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mV2
·

mV1
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→

FIGURE 6–21

Schematic for Example 6–3.
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The elevation difference between the centers of the inlet and the exit sec-

tions is still 0.3 m. Determine the anchoring force needed to hold the elbow

in place.

SOLUTION The inlet and the outlet velocities and the pressure at the inlet

of the elbow remain the same, but the vertical component of the anchoring

force at the connection of the elbow to the pipe is zero in this case (FRz � 0)

since there is no other force or momentum flux in the vertical direction (we

are neglecting the weight of the elbow and the water). The horizontal compo-

nent of the anchoring force is determined from the momentum equation

written in the x-direction. Noting that the outlet velocity is negative since it

is in the negative x-direction, we have

Solving for FRx and substituting the known values,

Therefore, the horizontal force on the flange is 2591 N acting in the nega-

tive x-direction (the elbow is trying to separate from the pipe). This force is

equivalent to the weight of about 260 kg mass, and thus the connectors

(such as bolts) used must be strong enough to withstand this force.

Discussion The reaction force in the x-direction is larger than that of Exam-

ple 6–2 since the walls turn the water over a much greater angle. If the

reversing elbow is replaced by a straight nozzle (like one used by firefighters)

such that water is discharged in the positive x-direction, the momentum

equation in the x-direction becomes

since both V1 and V2 are in the positive x-direction. This shows the impor-

tance of using the correct sign (positive if in the positive direction and nega-

tive if in the opposite direction) for velocities and forces.

EXAMPLE 6–4 Water Jet Striking a Stationary Plate

Water is accelerated by a nozzle to an average speed of 20 m/s, and strikes

a stationary vertical plate at a rate of 10 kg/s with a normal velocity of

20 m/s (Fig. 6–22). After the strike, the water stream splatters off in all

directions in the plane of the plate. Determine the force needed to prevent

the plate from moving horizontally due to the water stream.

SOLUTION A water jet strikes a vertical stationary plate normally. The force

needed to hold the plate in place is to be determined.

Assumptions 1 The flow of water at nozzle outlet is steady. 2 The water

splatters in directions normal to the approach direction of the water jet. 3

The water jet is exposed to the atmosphere, and thus the pressure of the

water jet and the splattered water leaving the control volume is atmospheric

pressure, which is disregarded since it acts on the entire system. 4 The ver-

tical forces and momentum fluxes are not considered since they have no

FRx � P1, gage A1 � bm
#

V2 � bm
#

V1  →   FRx � bm
#

(V2 � V1) � P1, gage A1

 � �306 � 2285 � �2591 N

 � �(1.03)(14 kg/s)3(20 � 1.24) m/s4a 1 N

1 kg � m/s2
b�(202,200 N/m2)(0.0113 m2)

FRx � �bm
#

(V2 � V1) � P1, gageA1 

FRx � P1, gageA1 � b2m
#

(�V2) � b1m
#

V1 � �bm
#

(V2 � V1)
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V2

1

→

→

FIGURE 6–22

Schematic for Example 6–4.
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effect on the horizontal reaction force. 5 The effect of the momentum-flux

correction factor is negligible, and thus b � 1.

Analysis We draw the control volume for this problem such that it contains

the entire plate and cuts through the water jet and the support bar normally.

The momentum equation for steady one-dimensional flow is given as

Writing it for this problem along the x-direction (without forgetting the nega-

tive sign for forces and velocities in the negative x-direction) and noting that

V1, x � V1 and V2, x � 0 gives

Substituting the given values,

Therefore, the support must apply a 200-N horizontal force (equivalent to

the weight of about a 20-kg mass) in the negative x-direction (the opposite

direction of the water jet) to hold the plate in place.

Discussion The plate absorbs the full brunt of the momentum of the water

jet since the x-direction momentum at the outlet of the control volume is

zero. If the control volume were drawn instead along the interface between

the water and the plate, there would be additional (unknown) pressure forces

in the analysis. By cutting the control volume through the support, we avoid

having to deal with this additional complexity. This is an example of a “wise”

choice of control volume.

EXAMPLE 6–5 Power Generation and Wind Loading 

of a Wind Turbine

A wind generator with a 30-ft-diameter blade span has a cut-in wind speed

(minimum speed for power generation) of 7 mph, at which velocity the tur-

bine generates 0.4 kW of electric power (Fig. 6–23). Determine (a) the effi-

ciency of the wind turbine–generator unit and (b) the horizontal force exerted

by the wind on the supporting mast of the wind turbine. What is the effect of

doubling the wind velocity to 14 mph on power generation and the force

exerted? Assume the efficiency remains the same, and take the density of air

to be 0.076 lbm/ft3.

SOLUTION The power generation and loading of a wind turbine are to be

analyzed. The efficiency and the force exerted on the mast are to be deter-

mined, and the effects of doubling the wind velocity are to be investigated.

Assumptions 1 The wind flow is steady and incompressible. 2 The efficiency

of the turbine–generator is independent of wind speed. 3 The frictional

effects are negligible, and thus none of the incoming kinetic energy is con-

verted to thermal energy. 4 The average velocity of air through the wind tur-

bine is the same as the wind velocity (actually, it is considerably less—see

the discussion that follows the example). 5 The wind flow is uniform and

thus the momentum-flux correction factor is b � 1.

FR � bm
#

V
→

1 � (1)(10 kg/s)(20 m/s)a 1 N

1 kg � m/s2
b � 200 N

�FR � 0 � bm
#

V
→

1

a F
→

� a
out

bm
#

V
→

� a
in

bm
#

V
→
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FIGURE 6–23

Schematic for Example 6–5.
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Properties The density of air is given to be 0.076 lbm/ft3.

Analysis Kinetic energy is a mechanical form of energy, and thus it can be

converted to work entirely. Therefore, the power potential of the wind is

proportional to its kinetic energy, which is V 2/2 per unit mass, and thus

the maximum power is m
.
V 2/2 for a given mass flow rate:

Therefore, the available power to the wind turbine is 1.225 kW at the wind

velocity of 7 mph. Then the turbine–generator efficiency becomes

(or 32.7%)

(b) The frictional effects are assumed to be negligible, and thus the portion

of incoming kinetic energy not converted to electric power leaves the wind

turbine as outgoing kinetic energy. Noting that the mass flow rate remains

constant, the exit velocity is determined to be

or

We draw a control volume around the wind turbine such that the wind is

normal to the control surface at the inlet and the outlet and the entire con-

trol surface is at atmospheric pressure. The momentum equation for steady

one-dimensional flow is given as

Writing it along the x-direction and noting that b � 1, V 1, x � V 1, and V 2, x

� V 2 give

Substituting the known values gives

 � �31.5 lbf

 FR � m
#

(V2 � V1) � (551.7 lbm/s)(8.43 � 10.27 ft/s) a 1 lbf

32.2 lbm � ft/s2
b

FR � m
#

V2 � m
#

V1 � m
#

(V2 � V1)

a F
→

� a
out

bm
#

V
→

� a
in

bm
#

V
→

V2 � V121 � hwind turbine � (10.27 ft/s)21 � 0.327 � 8.43 ft/s

m
#

ke2 � m
#

ke1(1 � hwind turbine) →    m 
#

V 2
2

2
� m 
#

V 2
1

2
 (1 � hwind turbine)

hwind turbine �
W
#

act

W
#

max

�
0.4 kW

1.225 kW
� 0.327

 � 1.225 kW 

 � (551.7 lbm/s) 
(10.27 ft/s)2

2
 a 1 lbf

32.2 lbm � ft/s2
b a 1 kW

737.56 lbf � ft/s
b  

 W
#

max � m
#

ke1 � m 
#

V 2
1

2
 

 m
#

� r1V1A1 � r1V1 
pD2

4
� (0.076 lbm/ft3)(10.27 ft/s) 

p(30 ft)2

4
� 551.7 lbm/s 

 V1 � (7 mph)a1.4667 ft/s

1 mph
b � 10.27 ft/s 
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The negative sign indicates that the reaction force acts in the negative x-

direction, as expected. Then the force exerted by the wind on the mast

becomes Fmast � �FR � 31.5 lbf.

The power generated is proportional to V 3 since the mass flow rate is pro-

portional to V and the kinetic energy to V 2. Therefore, doubling the wind

velocity to 14 mph will increase the power generation by a factor of 23 � 8

to 0.4 � 8 � 3.2 kW. The force exerted by the wind on the support mast is

proportional to V 2. Therefore, doubling the wind velocity to 14 mph will

increase the wind force by a factor of 22 � 4 to 31.5 � 4 � 126 lbf.

Discussion To gain more insight into the operation of devices with propellers

or turbines such as helicopters, wind turbines, hydraulic turbines, and turbo-

fan engines, we reconsider the wind turbine and draw two streamlines, as

shown in Fig. 6–24. (In the case of power-consuming devices such as a fan

and a helicopter, the streamlines converge rather than diverge since the exit

velocity will be higher and thus the exit area will be lower.) The upper and

lower streamlines can be considered to form an “imaginary duct” for the

flow of air through the turbine. Sections 1 and 2 are sufficiently far from the

turbine so that P1 � P2 � Patm. The momentum equation for this large con-

trol volume between sections 1 and 2 was obtained to be

(1)

The smaller control volume between sections 3 and 4 encloses the turbine,

and A3 � A4 � A and V 3 � V 4 since it is so slim. The turbine is a device

that causes a pressure change, and thus the pressures P3 and P4 are differ-

ent. The momentum equation applied to the smaller control volume gives

(2)

The Bernoulli equation is not applicable between sections 1 and 2 since the

path crosses a turbine, but it is applicable separately between sections 1

and 3 and sections 4 and 2:

Adding these two equations and noting that z1 � z2 � z3 � z4, V 3 � V 4,

and P1 � P2 � Patm gives

(3)

Substituting m
.

� rAV 3 into Eq. 1 and then combining it with Eqs. 2 and 3

gives

(4)

Thus we conclude that the average velocity of a fluid through a turbine is the

arithmetic average of the upstream and downstream velocities. Of course, the

validity of this result is limited by the applicability of the Bernoulli equation.

Now back to the wind turbine. The velocity through the turbine can be

expressed as V 3 � V 1(1 � a), where a � 1 since V 3 � V 1. Combining this

expression with Eq. 4 gives V 2 � V 1(1 � 2a). Also, the mass flow rate

through the turbine becomes m
.

� rAV 3 � rAV 1(1 � a). When the frictional

V3 �
V1 � V2

2

V 2
2 � V 2

1

2
�

P4 � P3

r

P1

rg
�

V 2
1

2g
� z1 �

P3

rg
�

V 2
3

2g
� z3  and  P4

rg
�

V 2
4

2g
� z4 �

P2

rg
�

V 2
2

2g
� z2

FR � P3 A � P4 A � 0  →   FR � (P4 � P3)A

FR � m
#

(V2 � V1)
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FIGURE 6–24

The large and small control volumes

for the analysis of a wind turbine

bounded by upper and lower

streamlines.
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effects and losses are neglected, the power generated by a wind turbine is

simply the difference between the incoming and the outgoing kinetic energies:

Dividing this by the available power of the wind W
.
max � m

.
V 2

1/2 gives the effi-

ciency of the wind turbine in terms of a,

The value of a that maximizes the efficiency is determined by setting the

derivative of hwind turbine with respect to a equal to zero and solving for a. It

gives a � 1/3. Substituting this value into the efficiency relation just pre-

sented gives hwind turbine � 16/27 � 0.593, which is the upper limit for the

efficiency of wind turbines and propellers. This is known as the Betz limit.

The efficiency of actual wind turbines is about half of this ideal value.

EXAMPLE 6–6 Repositioning of a Satellite

An orbiting satellite has a mass of msat � 5000 kg and is traveling at a con-

stant velocity of V 0. To alter its orbit, an attached rocket discharges mf

� 100 kg of gases from the reaction of solid fuel at a velocity Vf � 3000 m/s

relative to the satellite in a direction opposite to V0 (Fig. 6–25). The fuel

discharge rate is constant for 2 s. Determine (a) the acceleration of the

satellite during this 2-s period, (b) the change of velocity of the satellite dur-

ing this time period, and (c) the thrust exerted on the satellite.

SOLUTION The rocket of a satellite is fired in the opposite direction to

motion. The acceleration, the velocity change, and the thrust are to be

determined.

Assumptions 1 The flow of combustion gases is steady and one-dimensional

during the firing period. 2 There are no external forces acting on the satel-

lite, and the effect of the pressure force at the nozzle exit is negligible.

3 The mass of discharged fuel is negligible relative to the mass of the satel-

lite, and thus the satellite may be treated as a solid body with a constant

mass. 4 The nozzle is well-designed such that the effect of the momentum-

flux correction factor is negligible, and thus b � 1.

Analysis (a) We choose a reference frame in which the control volume

moves with the satellite. Then the velocities of fluid streams become simply

their velocities relative to the moving body. We take the direction of motion

of the satellite as the positive direction along the x-axis. There are no exter-

nal forces acting on the satellite and its mass is nearly constant. Therefore,

the satellite can be treated as a solid body with constant mass, and the

momentum equation in this case is simply Eq. 6–28,

0 �
d(mV

→

)CV

dt
� a

out

bm
#

V
→

� a
in

bm
#

V
→  →   msat

dV
→

sat

dt
� �m

#

fV
→

f

hwind turbine �
W
#

W
#

max

�
2rAV 3

1a(1 � a)2

(rAV1)V
2
1/2

 � 2rAV 3
1a(1 � a)2

 W
#

� m
#

(ke1 � ke2) �
m
#

(V 2
1 � V 2

2)

2
�
rAV1(1 � a)3V 2

1 � V 2
1(1 � 2a)24

2
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FIGURE 6–25

Schematic for Example 6–6.
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Noting that the motion is on a straight line and the discharged gases move

in the negative x-direction, we can write the momentum equation using mag-

nitudes as

Substituting, the acceleration of the satellite during the first 2 s is deter-

mined to be

(b) Knowing acceleration, which is constant, the velocity change of the satel-

lite during the first 2 s is determined from the definition of acceleration asat

� dVsat /dt to be

(c) The thrust exerted on the satellite is, from Eq. 6–29,

Discussion Note that if this satellite were attached somewhere, it would

exert a force of 150 kN (equivalent to the weight of 15 tons of mass) to its

support. This can be verified by taking the satellite as the system and apply-

ing the momentum equation.

EXAMPLE 6–7 Net Force on a Flange

Water flows at a rate of 18.5 gal/min through a flanged faucet with a par-

tially closed gate valve spigot (Fig. 6–26). The inner diameter of the pipe at

the location of the flange is 0.780 in (� 0.0650 ft), and the pressure at

that location is measured to be 13.0 psig. The total weight of the faucet

assembly plus the water within it is 12.8 lbf. Calculate the net force on the

flange.

SOLUTION Water flow through a flanged faucet is considered. The net force

acting on the flange is to be calculated.

Assumptions 1 The flow is steady and incompressible. 2 The flow at the

inlet and at the outlet is turbulent and fully developed so that the momentum-

flux correction factor is about 1.03. 3 The pipe diameter at the outlet of the

faucet is the same as that at the flange.

Properties The density of water at room temperature is 62.3 lbm/ft3.

Analysis We choose the faucet and its immediate surroundings as the con-

trol volume, as shown in Fig. 6–26 along with all the forces acting on it.

These forces include the weight of the water and the weight of the faucet

assembly, the gage pressure force at the inlet to the control volume, and the

Fsat � 0 � m
#

f (�Vf ) � �(100/2 kg/s)(�3000 m/s)a 1 kN

1000 kg � m/s2
b � 150 kN

dVsat � asat dt  →   �Vsat � asat  �t � (30 m/s2)(2 s) � 60 m/s

asat �
dVsat

dt
�

mf /�t

msat

 Vf �
(100 kg)/(2 s)

5000 kg
 (3000 m/s) � 30 m/s2

msat 
dVsat

dt
� m
#

f Vf  →   
dVsat

dt
�

m
#

f

msat

 Vf �
mf /�t

msat

 Vf
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FIGURE 6–26

Control volume for Example 6–7 with

all forces shown; gage pressure is used

for convenience.
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net force of the flange on the control volume, which we call F
→

R. We use gage

pressure for convenience since the gage pressure on the rest of the control

surface is zero (atmospheric pressure). Note that the pressure through the

outlet of the control volume is also atmospheric since we are assuming

incompressible flow; hence, the gage pressure is also zero through the outlet.

We now apply the control volume conservation laws. Conservation of mass

is trivial here since there is only one inlet and one outlet; namely, the mass

flow rate into the control volume is equal to the mass flow rate out of the

control volume. Also, the outflow and inflow average velocities are identical

since the inner diameter is constant and the water is incompressible, and

are determined to be

Also,

Next we apply the momentum equation for steady flow,

We let the x- and z-components of the force acting on the flange be FRx and

FRz, and assume them to be in the positive directions. The magnitude of the

velocity in the x-direction is �V1 at the inlet, but zero at the outlet. The

magnitude of the velocity in the z-direction is zero at the inlet, but �V2 at

the outlet. Also, the weight of the faucet assembly and the water within it

acts in the �z-direction as a body force. No pressure or viscous forces act on

the chosen control volume in the z-direction.

The momentum equations along the x- and z-directions become

Solving for FRx and FRz, and substituting the given values,

Then the net force of the flange on the control volume can be expressed in

vector form as

F
→

R � FRx i
→

� FRz k
→

� �7.20 i
→

� 11.8 k
→ lbf

 � �(2.568 lbm/s)(12.42 ft/s)a 1 lbf

32.2 lbm � ft/s2
b � 12.8 lbf � 11.8 lbf

 FRz � �m
#

V2 � Wfaucet�water 

 � �7.20 lbf

 � �(2.568 lbm/s)(12.42 ft/s)a 1 lbf

32.2 lbm � ft/s2
b � (13 lbf/in2) 

p(0.780 in)2

4

 FRx � �m
#

V1 � P1, gageA1 

 FRz � Wfaucet � Wwater � m
#

(�V2) � 0

 FRx � P1, gageA1 � 0 � m
#

(�V1)

a F
→

� a
out

bm
#

V
→

� a
in

bm
#

V
→

m
#

� rV
#

� (62.3 lbm/ft3)(18.5 gal/min)a0.1337 ft3

1 gal
b a1 min

60 s
b � 2.568 lbm/s

V2 � V1 � V �
V
#

Ac

�
V
#

pD2/4
�

18.5 gal/min

p(0.065 ft)2/4
 a0.1337 ft3

1 gal
b a1 min

60 s
b � 12.42 ft/s
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From Newton’s third law, the force the faucet assembly exerts on the flange

is the negative of F
→

R,

Discussion The faucet assembly pulls to the right and down; this agrees

with our intuition. Namely, the water exerts a high pressure at the inlet, but

the outlet pressure is atmospheric. In addition, the momentum of the water

at the inlet in the x-direction is lost in the turn, causing an additional force

to the right on the pipe walls. The faucet assembly weighs much more than

the momentum effect of the water, so we expect the force to be downward.

Note that labeling forces such as “faucet on flange” clarifies the direction of

the force.

6–5 � REVIEW OF ROTATIONAL MOTION 
AND ANGULAR MOMENTUM

The motion of a rigid body can be considered to be the combination of the

translational motion of its center of mass and rotational motion about its

center of mass. The translational motion can be analyzed using the linear

momentum equation, Eq. 6–16. Now we discuss the rotational motion—a

motion during which all points in the body move in circles about the axis of

rotation. Rotational motion is described with angular quantities such as the

angular distance u, angular velocity v, and angular acceleration a.

The amount of rotation of a point in a body is expressed in terms of the

angle u swept by a line of length r that connects the point to the axis of rota-

tion and is perpendicular to the axis. The angle u is expressed in radians (rad),

which is the arc length corresponding to u on a circle of unit radius. Noting

that the circumference of a circle of radius r is 2pr, the angular distance trav-

eled by any point in a rigid body during a complete rotation is 2p rad. The

physical distance traveled by a point along its circular path is l � ur, where r

is the normal distance of the point from the axis of rotation and u is the angu-

lar distance in rad. Note that 1 rad corresponds to 360/(2p) � 57.3°.

Angular velocity v is the angular distance traveled per unit time, and

angular acceleration a is the rate of change of angular velocity. They are

expressed as (Fig. 6–27),

(6–30)

or

(6–31)

where V is the linear velocity and at is the linear acceleration in the tangen-

tial direction for a point located at a distance r from the axis of rotation.

Note that v and a are the same for all points of a rotating rigid body, but V

and at are not (they are proportional to r).

V � rv  and  at � ra

v �
du

dt
�

d(l/r)

dt
�

1

r
 
dl

dt
�

V

r
  and  a�

dv

dt
�

d 2u

dt 2
�

1

r
 
dV

dt
�

at

r

F
→

faucet on flange � �F
→

R � 7.20 i
→

� 11.8k
→ lbf
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r

V = rv
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FIGURE 6–27

The relations between angular

distance u, angular velocity v,

and linear velocity V.

cen72367_ch06.qxd  10/29/04  2:26 PM  Page 248



Newton’s second law requires that there must be a force acting in the tan-

gential direction to cause angular acceleration. The strength of the rotating

effect, called the moment or torque, is proportional to the magnitude of the

force and its distance from the axis of rotation. The perpendicular distance

from the axis of rotation to the line of action of the force is called the

moment arm, and the torque M acting on a point mass m at a normal dis-

tance r from the axis of rotation is expressed as

(6–32)

The total torque acting on a rotating rigid body about an axis can be deter-

mined by integrating the torques acting on differential masses dm over the

entire body to give

Torque: (6–33)

where I is the moment of inertia of the body about the axis of rotation,

which is a measure of the inertia of a body against rotation. The relation M

� Ia is the counterpart of Newton’s second law, with torque replacing

force, moment of inertia replacing mass, and angular acceleration replacing

linear acceleration (Fig. 6–28). Note that unlike mass, the rotational inertia

of a body also depends on the distribution of the mass of the body with

respect to the axis of rotation. Therefore, a body whose mass is closely

packed about its axis of rotation has a small resistance against angular

acceleration, while a body whose mass is concentrated at its periphery has a

large resistance against angular acceleration. A flywheel is a good example

of the latter.

The linear momentum of a body of mass m having a velocity V is mV, and

the direction of linear momentum is identical to the direction of velocity.

Noting that the moment of a force is equal to the product of the force and

the normal distance, the moment of momentum, called the angular

momentum, of a point mass m about an axis can be expressed as H � rmV

� r2mv, where r is the normal distance from the axis of rotation to the line

of action of the momentum vector (Fig. 6–29). Then the total angular

momentum of a rotating rigid body can be determined by integration to be

Angular momentum: (6–34)

where again I is the moment of inertia of the body about the axis of rota-

tion. It can also be expressed in vector form as

(6–35)

Note that the angular velocity v
→

is the same at every point of a rigid body.

Newton’s second law F
→

� ma
→

was expressed in terms of the rate of change

of linear momentum in Eq. 6–1 as F
→

� d(mV
→

)/dt. Likewise, the counterpart

of Newton’s second law for rotating bodies M
→

� Ia
→

is expressed in Eq. 6–2

in terms of the rate of change of angular momentum as

Angular momentum equation: (6–36)

where M
→

is the net torque applied on the body about the axis of rotation.

M
→

� Ia
→

� I  
dv

→

dt
�

d(Iv
→

)

dt
�

dH
→

dt

H
→

� Iv
→

H � �
mass

 r 2v dm � c�
mass

 r 2 dmdv � Iv

M � �
mass

 r 2a dm � c�
mass

 r 2 dmda � Ia

M � rFt � rmat � mr 2a
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Linear acceleration, Angular acceleration, 

Linear velocity, Angular velocity, 

Force, Torque, 

Moment of force, Moment of momentum, 

mV

Linear momentum Angular momentum

F = ma M = l

M = r  F H = r  mV

FIGURE 6–28

Analogy between corresponding 

linear and angular quantities.

H = rmV

 = rm(rv)

 = r2mv

 = Iv

v

r

m

mV = mrv

V = rv

FIGURE 6–29

Angular momentum of point mass m

rotating at angular velocity v at

distance r from the axis of rotation.
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The angular velocity of rotating machinery is typically expressed in rpm

(number of revolutions per minute) and denoted by n
.
. Noting that velocity is

distance traveled per unit time and the angular distance traveled during each

revolution is 2p, the angular velocity of rotating machinery is v � 2pn
.

rad/min or

Angular velocity versus rpm: (6–37)

Consider a constant force F acting in the tangential direction on the outer

surface of a shaft of radius r rotating at an rpm of n
.
. Noting that work W is

force times distance, and power W
.

is work done per unit time and thus force

times velocity, we have W
.
shaft � FV � Frv � Mv. Therefore, the power

transmitted by a shaft rotating at an rpm of n
.

under the influence of an

applied torque M is (Fig. 6–30)

Shaft power: (6–38)

The kinetic energy of a body of mass m during translational motion is KE

� mV2. Noting that V � rv, the rotational kinetic energy of a body of

mass m at a distance r from the axis of rotation is KE � mr2v2. The total

rotational kinetic energy of a rotating rigid body about an axis can be deter-

mined by integrating the rotational kinetic energies of differential masses

dm over the entire body to give

Rotational kinetic energy: (6–39)

where again I is the moment of inertia of the body and v is the angular

velocity.

During rotational motion, the direction of velocity changes even when its

magnitude remains constant. Velocity is a vector quantity, and thus a change

in direction constitutes a change in velocity with time, and thus accelera-

tion. This is called centripetal acceleration. Its magnitude is

Centripetal acceleration is directed toward the axis of rotation (opposite

direction of radial acceleration), and thus the radial acceleration is negative.

Noting that acceleration is a constant multiple of force, centripetal accelera-

tion is the result of a force acting on the body toward the axis of rotation,

known as the centripetal force, whose magnitude is Fr � mV 2/r. Tangential

and radial accelerations are perpendicular to each other (since the radial and

tangential directions are perpendicular), and the total linear acceleration is

determined by their vector sum, a
→

� a
→

t � a
→

r . For a body rotating at constant

angular velocity, the only acceleration is the centripetal acceleration. The

force that causes centripetal acceleration does not produce torque since its

line of action intersects the axis of rotation.

6–6 � THE ANGULAR MOMENTUM EQUATION

The linear momentum equation discussed in Section 6–4 is useful in deter-

mining the relationship between the linear momentum of flow streams and

the resultant forces. Many engineering problems involve the moment of the

ar �
V 2

r
� rv2

KEr �
1
2 Iv2

1
2

1
2

W
#

shaft � vM � 2pn
#

M  (W)

v �
2pn
#

60
  (rad/s)Wshaft = vM = 2pnM

⋅ ⋅

v = 2pn⋅

FIGURE 6–30

The relations between angular

velocity, rpm, and the power

transmitted through a shaft.

cen72367_ch06.qxd  10/29/04  2:26 PM  Page 250



251
CHAPTER 6

linear momentum of flow streams, and the rotational effects caused by

them. Such problems are best analyzed by the angular momentum equation,

also called the moment of momentum equation. An important class of fluid

devices, called turbomachines, which include centrifugal pumps, turbines,

and fans, is analyzed by the angular momentum equation.

The moment of a force F
→

about a point O is the vector (or cross) product

(Fig. 6–31) 

Moment of a force: (6–40)

where r
→

is the position vector from point O to any point on the line of

action of F
→

. The vector product of two vectors is a vector whose line of

action is normal to the plane that contains the crossed vectors (r
→

and F
→

in

this case) and whose magnitude is

Magnitude of the moment of a force: (6–41)

where u is the angle between the lines of action of the vectors r
→

and F
→

.

Therefore, the magnitude of the moment about point O is equal to the mag-

nitude of the force multiplied by the normal distance of the line of action of

the force from the point O. The sense of the moment vector M
→

is determined

by the right-hand rule: when the fingers of the right hand are curled in the

direction that the force tends to cause rotation, the thumb points the direc-

tion of the moment vector (Fig. 6–32). Note that a force whose line of

action passes through point O produces zero moment about point O.

Replacing the vector F
→

in Eq. 6–40 by the momentum vector mV
→

gives the

moment of momentum, also called the angular momentum, about a point O as

Moment of momentum: (6–42)

Therefore, r
→

� V
→

represents the angular momentum per unit mass, and the

angular momentum of a differential mass dm � r dV is dH
→

� (r
→

� V
→

)r dV.

Then the angular momentum of a system is determined by integration to be

Moment of momentum (system): (6–43)

The rate of change of the moment of momentum is

Rate of change of moment of momentum: (6–44)

The angular momentum equation for a system was expressed in Eq. 6–2 as

(6–45)

where aM
→

�a (r
→

� F
→

) is the net torque applied on the system, which is

the vector sum of the moments of all forces acting on the system, and

dH
→

sys /dt is the rate of change of the angular momentum of the system.

Equation 6–45 is stated as the rate of change of angular momentum of a

system is equal to the net torque acting on the system. This equation is valid

for a fixed quantity of mass and an inertial reference frame, i.e., a reference

frame that is fixed or moves with a constant velocity in a straight path.

aM
→

�
dH

→

sys

dt

dH
→

sys

dt
�

d

dt
 �

sys

 (r
→

� V
→

)r dV

H
→

sys � �
sys

 (r
→

� V
→

)r dV

H
→

� r
→

� mV
→

M � Fr sin u

M
→

� r
→

� F
→

Direction of

rotation

O

r

F

M = r × F

M = Fr sin

θ

θ

r sinθ

→ → →

→

→

FIGURE 6–31

The moment of a force F
→

about a

point O is the vector product of the

position vector r
→

and F
→

.

Sense of the

moment

F

M = r × F
→ →→

→
ω 

Axis of

rotation

r
→

FIGURE 6–32

The determination of the direction of

the moment by the right-hand rule.
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The general control volume formulation of the angular momentum equa-

tion is obtained by setting b � r
→

� V
→

and thus B � H
→

in the general

Reynolds transport theorem. It gives (Fig. 6–33)

(6–46)

The left-hand side of this equation is, from Eq. 6–45, equal to � M
→

. Substi-

tuting, the angular momentum equation for a general control volume (sta-

tionary or moving, fixed shape or distorting) is obtained to be

General: (6–47)

which can be stated as

Again, V
→

r � V
→

� V
→

CS is the fluid velocity relative to the control surface (for

use in mass flow rate calculations at all locations where the fluid crosses the

control surface), and V
→

is the fluid velocity as viewed from a fixed reference

frame. The product r(V
→

r · n
→
) dA represents the mass flow rate through dA

into or out of the control volume, depending on the sign.

For a fixed control volume (no motion or deformation of control volume),

V
→

r � V
→

and the angular momentum equation becomes

Fixed CV: (6–48)

Also, note that the forces acting on the control volume consist of body

forces that act throughout the entire body of the control volume such as grav-

ity, and surface forces that act on the control surface such as the pressure and

reaction forces at points of contact. The net torque consists of the moments

of these forces as well as the torques applied on the control volume.

Special Cases
During steady flow, the amount of angular momentum within the control

volume remains constant, and thus the time rate of change of angular

momentum of the contents of the control volume is zero. Then,

Steady flow: (6–49)

In many practical applications, the fluid crosses the boundaries of the control

volume at a certain number of inlets and outlets, and it is convenient to

replace the area integral by an algebraic expression written in terms of the

average properties over the cross-sectional areas where the fluid enters or

leaves the control volume. In such cases, the angular momentum flow rate can

be expressed as the difference between the angular momentums of outgoing

and incoming streams. Furthermore, in many cases the moment arm r
→

is

aM
→

� �
CS

 (r
→

� V
→

)r(V
→

r � n
→
) dA

aM
→

�
d

dt
 �

CV

  (r
→

� V
→

)r  dV � �
CS

 (r
→

� V
→

)r(V
→

� n
→
) dA

£ The sum of all

external moments

acting on a CV

≥ � £ The time rate of change 

of the angular momentum

of the contents of the CV

≥ � ± The net flow rate of

angular momentum

out of the control

surface by mass flow

≤

aM
→

�
d

dt
 �

CV

 (r
→

� V
→

)r dV � �
CS

 (r
→

� V
→

)r(V
→

r � n
→
) dA

dHsys

dt
�

d

dt
 �

CV

 (r
→

� V
→

)r dV � �
CS

 (r
→

� V
→

)r(V
→

r � n
→
) dA= +rb dV

B = H

dBsys

dt

d

dt
CV

rb(Vr · n ) dA

CS

= +(r � V)r dV

dH sys

dt

d

dt
CV

(r  � V)r(Vr · n) dA

CS

b =  r  � V b =  r � V

→

→ → →→

→ →→ → → →

→

FIGURE 6–33

The angular momentum equation 

is obtained by replacing B in the

Reynolds transport theorem by the

angular momentum H
→

, and b by 

the angular momentum per unit 

mass r
→

� V
→

.
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either constant along the inlet or outlet (as in radial flow turbomachines) or

is large compared to the diameter of the inlet or outlet pipe (as in rotating

lawn sprinklers). In such cases, the average value of r
→

is used throughout

the cross-sectional area of the inlet or outlet. Then, an approximate form of

the angular momentum equation in terms of average properties at inlets and

outlets becomes

(6–50)

You may be wondering why we don’t introduce a correction factor into Eq.

6–50, like we did for conservation of energy (Chap. 5) and for conservation

of linear momentum (Section 6–4). The reason is that such a correction fac-

tor would vary from problem to problem, depending on the geometry,

because of the cross product between r
→

and m
.
V
→

. Thus, whereas we can

readily calculate a kinetic energy flux correction factor and a momentum

flux correction factor for fully developed pipe flow that can be applied to

various problems, we cannot do so for angular momentum. Fortunately, in

many problems of practical engineering interest, the error associated with

using average values of radius and velocity is small, and the approximation

of Eq. 6–50 is reasonable.

If the flow is steady, Eq. 6–50 further reduces to (Fig. 6–34)

Steady flow: (6–51)

It states that the net torque acting on the control volume during steady flow

is equal to the difference between the outgoing and incoming angular

momentum flow rates. This statement can also be expressed for any speci-

fied direction.

In many problems, all the significant forces and momentum flows are in the

same plane, and thus all give rise to moments in the same plane and about the

same axis. For such cases, Eq. 6–51 can be expressed in scalar form as

(6–52)

where r represents the average normal distance between the point about

which moments are taken and the line of action of the force or velocity, pro-

vided that the sign convention for the moments is observed. That is, all

moments in the counterclockwise direction are positive, and all moments in

the clockwise direction are negative.

Flow with No External Moments
When there are no external moments applied, the angular momentum equa-

tion Eq. 6–50 reduces to

No external moments: (6–53)

This is an expression of the conservation of angular momentum principle,

which can be stated as in the absence of external moments, the rate of

change of the angular momentum of a control volume is equal to the differ-

ence between the incoming and outgoing angular momentum fluxes.

0 �
dH

→

CV

dt
� a

out

r
→

� m
#

V
→

� a
in

r
→

� m
#

V
→

aM � a
out

rm
#

V � a
in

rm
#

V

a M
→

 � a
out

r
→

� m
#

V
→

� a
in

r
→

� m
#

V
→

aM
→

�
d

dt
 �

CV

 (r
→

� V
→

)r dV � a
out

r
→

� m
#

V
→

� a
in

r
→

� m
#

V
→

FIGURE 6–34

The net torque acting on a control

volume during steady flow is equal to

the difference between the outgoing

and incoming angular momentum

flows.

	 M = 	 r  � m
•

V – 	 r � m
•

V
out in

→ → →→ →
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When the moment of inertia I of the control volume remains constant, the

first term of the last equation simply becomes moment of inertia times

angular acceleration, Ia
→

. Therefore, the control volume in this case can be

treated as a solid body, with a net torque of

(6–54)

(due to a change of angular momentum) acting on it. This approach can be

used to determine the angular acceleration of space vehicles and aircraft

when a rocket is fired in a direction different than the direction of motion.

Radial-Flow Devices
Many rotary-flow devices such as centrifugal pumps and fans involve flow

in the radial direction normal to the axis of rotation and are called radial-

flow devices. In a centrifugal pump, for example, the fluid enters the device

in the axial direction through the eye of the impeller, turns outward as it

flows through the passages between the blades of the impeller, collects in

the scroll, and is discharged in the tangential direction, as shown in Fig.

6–35. Axial-flow devices are easily analyzed using the linear momentum

equation. But radial-flow devices involve large changes in angular momen-

tum of the fluid and are best analyzed with the help of the angular momen-

tum equation. 

To analyze the centrifugal pump, we choose the annular region that

encloses the impeller section as the control volume, as shown in Fig. 6–36.

Note that the average flow velocity, in general, has normal and tangential

components at both the inlet and the outlet of the impeller section. Also,

when the shaft rotates at an angular velocity of v, the impeller blades have a

tangential velocity of vr1 at the inlet and vr2 at the outlet. For steady incom-

pressible flow, the conservation of mass equation can be written as

(6–55)

where b1 and b2 are the flow widths at the inlet where r � r1 and the out-

let where r � r2, respectively. (Note that the actual circumferential cross-

sectional area is somewhat less than 2prb since the blade thickness is not

zero.) Then the average normal components V1, n and V2, n of absolute veloc-

ity can be expressed in terms of the volumetric flow rate V
.

as

(6–56)V1, n �
V
#

2pr1b1

  and  V2, n �
V
#

2pr2b2

V
#

1 � V
#

2 � V
#   →   (2pr1b1)V1, n � (2pr2b2)V2, n

M
→

body
� I

body
a
→

� a
in

(r
→

� m
#

V
→

) � a
out

(r
→

� m
#

V
→

)
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FIGURE 6–35

Side and frontal views of a typical

centrifugal pump.
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FIGURE 6–36

An annular control volume that

encloses the impeller section of a

centrifugal pump.
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The normal velocity components V1, n and V2, n as well as pressure acting on

the inner and outer circumferential areas pass through the shaft center, and

thus they do not contribute to torque about the origin. Then only the tan-

gential velocity components contribute to torque, and the application of 

the angular momentum equation to the control 

volume gives

(6–57)

which is known as Euler’s turbine formula. When the angles a1 and a2

between the direction of absolute flow velocities and the radial direction are

known, it becomes

(6–58)

In the idealized case of the tangential fluid velocity being equal to the blade

angular velocity both at the inlet and the exit, we have V1, t � vr1 and V2, t

� vr2, and the torque becomes

(6–59)

where v � 2pn
.

is the angular velocity of the blades. When the torque is

known, the shaft power can be determined from W
.
shaft � vTshaft � 2pn

.
Tshaft.

EXAMPLE 6–8 Bending Moment Acting at the Base 

of a Water Pipe

Underground water is pumped to a sufficient height through a 10-cm-

diameter pipe that consists of a 2-m-long vertical and 1-m-long horizontal

section, as shown in Fig. 6–37. Water discharges to atmospheric air at an

average velocity of 3 m/s, and the mass of the horizontal pipe section when

filled with water is 12 kg per meter length. The pipe is anchored on the

ground by a concrete base. Determine the bending moment acting at the

base of the pipe (point A) and the required length of the horizontal section

that would make the moment at point A zero.

SOLUTION Water is pumped through a piping section. The moment acting

at the base and the required length of the horizontal section to make this

moment zero is to be determined.

Tshaft, ideal � m
#

v(r 2
2 � r 2

1)

Tshaft � m
#

(r2V2 sin a2 � r1V1 sin a1)

Tshaft � m
#

(r2V2, t � r1V1, t)

aM � a
out

rm
#

V � a
in

rm
#

V
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V

r1 = 0.5 m

2 m

1 m
3 m/s

MA

x

z

m⋅ 2

Vm⋅ 1

10 cm

A

r2 = 2 m

W

WA

FR
P1,gage A

A

→

→

    

FIGURE 6–37

Schematic for Example 6–8 and the

free-body diagram.

cen72367_ch06.qxd  10/29/04  2:26 PM  Page 255



Assumptions 1 The flow is steady. 2 The water is discharged to the atmo-

sphere, and thus the gage pressure at the outlet is zero. 3 The pipe diameter

is small compared to the moment arm, and thus we use average values of

radius and velocity at the outlet.

Properties We take the density of water to be 1000 kg/m3.

Analysis We take the entire L-shaped pipe as the control volume, and desig-

nate the inlet by 1 and the outlet by 2. We also take the x- and z-coordinates

as shown. The control volume and the reference frame are fixed.

The conservation of mass equation for this one-inlet, one-outlet, steady-

flow system is m
.

1 � m
.

2 � m
.
, and V1 � V2 � V since Ac � constant. The

mass flow rate and the weight of the horizontal section of the pipe are

To determine the moment acting on the pipe at point A, we need to take the

moment of all forces and momentum flows about that point. This is a

steady-flow problem, and all forces and momentum flows are in the same

plane. Therefore, the angular momentum equation in this case can be

expressed as

where r is the average moment arm, V is the average speed, all moments in

the counterclockwise direction are positive, and all moments in the clock-

wise direction are negative.

The free-body diagram of the L-shaped pipe is given in Fig. 6–37. Noting

that the moments of all forces and momentum flows passing through point A

are zero, the only force that yields a moment about point A is the weight W

of the horizontal pipe section, and the only momentum flow that yields a

moment is the outlet stream (both are negative since both moments are in

the clockwise direction). Then the angular momentum equation about point

A becomes

Solving for MA and substituting give

The negative sign indicates that the assumed direction for MA is wrong and

should be reversed. Therefore, a moment of 82.5 N · m acts at the stem of

the pipe in the clockwise direction. That is, the concrete base must apply a

82.5 N · m moment on the pipe stem in the clockwise direction to counter-

act the excess moment caused by the exit stream.

The weight of the horizontal pipe is w � W/L � 118 N per m length.

Therefore, the weight for a length of L m is Lw with a moment arm of r1

� L/2. Setting MA � 0 and substituting, the length L of the horizontal pipe

that will cause the moment at the pipe stem to vanish is determined to be

0 � r1W � r2m
#

V2   →    0 � (L/2)Lw � r2m
#

V2

 � �82.5 N � m 

 � (0.5 m)(118 N) � (2 m)(23.56 kg/s)(3 m/s)a 1 N

1 kg � m/s2
b MA � r1W � r2m

#

V2 

MA � r1W � �r2m
#

V2

aM � a
out

rm
#

V � a
in

rm
#

V

W � mg � (12 kg/m)(1 m)(9.81 m/s2)a 1 N

1 kg � m/s2
b � 118 N

m
#

� rAcV � (1000 kg/m3)[p(0.10 m)2/4](3 m/s) � 23.56 kg/s

256
FLUID MECHANICS

cen72367_ch06.qxd  10/29/04  2:26 PM  Page 256



or

Discussion Note that the pipe weight and the momentum of the exit stream

cause opposing moments at point A. This example shows the importance of

accounting for the moments of momentums of flow streams when performing

a dynamic analysis and evaluating the stresses in pipe materials at critical

cross sections.

EXAMPLE 6–9 Power Generation from a Sprinkler System

A large lawn sprinkler with four identical arms is to be converted into a tur-

bine to generate electric power by attaching a generator to its rotating head,

as shown in Fig. 6–38. Water enters the sprinkler from the base along the

axis of rotation at a rate of 20 L/s and leaves the nozzles in the tangential

direction. The sprinkler rotates at a rate of 300 rpm in a horizontal plane.

The diameter of each jet is 1 cm, and the normal distance between the axis

of rotation and the center of each nozzle is 0.6 m. Estimate the electric

power produced.

SOLUTION A four-armed sprinkler is used to generate electric power. For a

specified flow rate and rotational speed, the power produced is to be deter-

mined.

Assumptions 1 The flow is cyclically steady (i.e., steady from a frame of ref-

erence rotating with the sprinkler head). 2 The water is discharged to the

atmosphere, and thus the gage pressure at the nozzle exit is zero. 3 Genera-

tor losses and air drag of rotating components are neglected. 4 The nozzle

diameter is small compared to the moment arm, and thus we use average

values of radius and velocity at the outlet.

Properties We take the density of water to be 1000 kg/m3 � 1 kg/L.

Analysis We take the disk that encloses the sprinkler arms as the control

volume, which is a stationary control volume.

The conservation of mass equation for this steady-flow system is m
.
1 � m

.
2

� m
.

total. Noting that the four nozzles are identical, we have m
.

nozzle � m
.

total/4

or V
.

nozzle � V
.

total/4 since the density of water is constant. The average jet

exit velocity relative to the nozzle is

Vjet �
V
#

nozzle

Ajet

�
5 L/s

[p(0.01 m)2/4]
 a 1 m3

1000 L
b � 63.66 m/s

L �B
2r2m
#

V2

w
�B

2 � 141.4 N � m

118 N/m
� 2.40 m
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⋅

r

mnozzle
FIGURE 6–38

Schematic for Example 6–9 and the

free-body diagram.

cen72367_ch06.qxd  10/29/04  2:26 PM  Page 257



The angular and tangential velocities of the nozzles are

That is, the water in the nozzle is also moving at a velocity of 18.85 m/s in

the opposite direction when it is discharged. Then the average velocity of the

water jet relative to the control volume (or relative to a fixed location on

earth) becomes

Noting that this is a cyclically steady-flow problem, and all forces and

momentum flows are in the same plane, the angular momentum equation

can be approximated as where r is the moment 

arm, all moments in the counterclockwise direction are positive, and all

moments in the clockwise direction are negative.

The free-body diagram of the disk that contains the sprinkler arms is given

in Fig. 6–38. Note that the moments of all forces and momentum flows

passing through the axis of rotation are zero. The momentum flows via the

water jets leaving the nozzles yield a moment in the clockwise direction and

the effect of the generator on the control volume is a moment also in the

clockwise direction (thus both are negative). Then the angular momentum

equation about the axis of rotation becomes

Substituting, the torque transmitted through the shaft is determined to be

since m
.
total � rV

.
total � (1 kg/L)(20 L/s) � 20 kg/s.

Then the power generated becomes

Therefore, this sprinkler-type turbine has the potential to produce 16.9 kW

of power.

Discussion To put the result obtained in perspective, we consider two limit-

ing cases. In the first limiting case, the sprinkler is stuck and thus the angu-

lar velocity is zero. The torque developed will be maximum in this case since

Vnozzle � 0 and thus Vr � Vjet � 63.66 m/s, giving Tshaft, max � 764 N · m. But

the power generated will be zero since the shaft does not rotate.

In the second limiting case, the shaft is disconnected from the generator

(and thus both the torque and power generation are zero) and the shaft accel-

erates until it reaches an equilibrium velocity. Setting Tshaft � 0 in the angu-

lar momentum equation gives V r � 0 and thus V jet � V nozzle � 63.66 m/s.

The corresponding angular speed of the sprinkler is

n
#

�
v

2p
�

Vnozzle

2pr
�

63.66 m/s

2p(0.6 m)
a 60 s

1 min
b � 1013 rpm

W
#

� 2pn
#

Tshaft � vTshaft � (31.42 rad/s)(537.7 N � m)a 1 kW

1000 N � m/s
b � 16.9 kW

Tshaft � rm
#

totalVr � (0.6 m)(20 kg/s)(44.81 m/s)a 1 N

1 kg � m/s2
b � 537.7 N � m

�Tshaft � �4rm
#

nozzleVr  or  Tshaft � rm
#

totalVr

aM � a
out

rm
#

V � a
in

rm
#

V,

Vr � Vjet � Vnozzle � 63.66 � 18.85 � 44.81 m/s

 Vnozzle � rv� (0.6 m)(31.42 rad/s) � 18.85 m/s

 v� 2pn
#

� 2p(300 rev/min) a1 min

60 s
b � 31.42 rad/s
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FIGURE 6–39

The variation of power produced with

angular speed.
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SUMMARY

This chapter deals mainly with the conservation of momen-

tum for finite control volumes. The forces acting on the con-

trol volume consist of body forces that act throughout the

entire body of the control volume (such as gravity, electric,

and magnetic forces) and surface forces that act on the con-

trol surface (such as the pressure forces and reaction forces at

points of contact). The sum of all forces acting on the control

volume at a particular instant in time is represented by � F
→

and is expressed as

total force body force surface forces

Newton’s second law can be stated as the sum of all exter-

nal forces acting on a system is equal to the time rate of

change of linear momentum of the system. Setting b � V
→

and

thus B � mV
→

in the Reynolds transport theorem and utilizing

Newton’s second law gives the linear momentum equation for

a control volume as

It reduces to the following special cases:

Steady flow:

Unsteady flow (algebraic form):

Steady flow (algebraic form):

No external forces:

where b is the momentum-flux correction factor. A control

volume whose mass m remains constant can be treated as a

solid body, with a net force or thrust of F
→

body � mbodya
→

acting on it.� a
in

bm
#

V
→

� a
out

bm
#

V
→

0 �
d(mV

→

)CV

dt
� a

out

bm
#

V
→

� a
in

bm
#

V
→

a F
→

� a
out

bm
#

V
→

� a
in

bm
#

V
→

a F
→

�
d

dt
 �

CV

 rV
→

 dV � a
out

bm
#

V
→

� a
in

bm
#

V
→

a F
→

� �
CS

 rV
→

(V
→

r � n
→
) dA

a F
→

�
d

dt
 �

CV

rV
→

 dV � �
CS

 rV
→

(V
→

r � n
→
) dA

a F
→

� a F
→

gravity � a F
→

pressure � a F
→

viscous � a F
→

other

Newton’s second law can also be stated as the rate of

change of angular momentum of a system is equal to the net

torque acting on the system. Setting b � r
→

� V
→

and thus B

� H
→

in the general Reynolds transport theorem gives the

angular momentum equation as

It reduces to the following special cases:

Steady flow:

Unsteady flow (algebraic form):

Steady and uniform flow:

Scalar form for one direction:

No external moments:

A control volume whose moment of inertia I remains constant

can be treated as a solid body, with a net torque of

acting on it. This relation can be used to determine the angu-

lar acceleration of spacecraft when a rocket is fired.

The linear and angular momentum equations are of funda-

mental importance in the analysis of turbomachinery and are

used extensively in Chap. 14.

M
→

body � Ibodya
→

� a
in

r
→

� m
#

V
→

� a
out

r
→

� m
#

V
→

0 �
dH

→

CV

dt
� a

out

r
→

� m
#

V
→

� a
in

r
→

� m
#

V
→

aM � a
out

rm
#

V � a
in

rm
#

V

aM
→

� a
out

r
→

� m
#

V
→

� a
in

r
→

� m
#

V
→

aM
→

�
d

dt
 �

CV

 (r
→

� V
→

)r dV � a
out

r
→

� m
#

V
→

� a
in

r
→

� m
#

V
→

aM
→

� �
CS

 (r
→

� V
→

)r(V
→

r � n
→
) dA

aM
→

�
d

dt
 �

CV

 (r
→

� V
→

)r dV � �
CS

(r
→

� V
→

)r(V
→

r � n
→
) dA

 

At this rpm, the velocity of the jet will be zero relative to an observer on

earth (or relative to the fixed disk-shaped control volume selected).

The variation of power produced with angular speed is plotted in Fig.

6–39. Note that the power produced increases with increasing rpm, reaches

a maximum (at about 500 rpm in this case), and then decreases. The actual

power produced will be less than this due to generator inefficiency (Chap. 5).
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* Problems designated by a “C” are concept questions, and

students are encouraged to answer them all. Problems designated

by an “E” are in English units, and the SI users can ignore them.

Problems with the icon are solved using EES, and complete

solutions together with parametric studies are included on the

enclosed DVD. Problems with the icon are comprehensive in

nature and are intended to be solved with a computer, preferably

using the EES software that accompanies this text.

PROBLEMS*

Newton’s Laws and Conservation of Momentum

6–1C Express Newton’s first, second, and third laws.

6–2C Is momentum a vector? If so, in what direction does

it point?

6–3C Express the conservation of momentum principle.

What can you say about the momentum of a body if the net

force acting on it is zero? 

6–4C Express Newton’s second law of motion for rotating

bodies. What can you say about the angular velocity and

angular momentum of a rotating nonrigid body of constant

mass if the net torque acting on it is zero? 

6–5C Consider two rigid bodies having the same mass and

angular speed. Do you think these two bodies must have the

same angular momentum? Explain.

Linear Momentum Equation

6–6C Explain the importance of the Reynolds transport the-

orem in fluid mechanics, and describe how the linear

momentum equation is obtained from it.

6–7C Describe body forces and surface forces, and explain

how the net force acting on control volume is determined. Is

fluid weight a body force or surface force? How about pres-

sure? 

6–8C How do surface forces arise in the momentum analy-

sis of a control volume? How can we minimize the number

of surface forces exposed during analysis?

6–9C What is the importance of the momentum-flux cor-

rection factor in the momentum analysis of slow systems?

For which type of flow is it significant and must it be consid-

ered in analysis: laminar flow, turbulent flow, or jet flow?

6–10C Write the momentum equation for steady one-

dimensional flow for the case of no external forces and

explain the physical significance of its terms.

6–11C In the application of the momentum equation,

explain why we can usually disregard the atmospheric pres-

sure and work with gage pressures only.

6–12C Two firefighters are fighting a fire with identical

water hoses and nozzles, except that one is holding the hose

straight so that the water leaves the nozzle in the same direc-

tion it comes, while the other holds it backward so that the

water makes a U-turn before being discharged. Which fire-

fighter will experience a greater reaction force?

6–13C A rocket in space (no friction or resistance to

motion) can expel gases relative to itself at some high veloc-

ity V. Is V the upper limit to the rocket’s ultimate velocity?

6–14C Describe in terms of momentum and airflow why a

helicopter hovers.

FIGURE P6–14C

6–15C Does it take more, equal, or less power for a heli-

copter to hover at the top of a high mountain than it does at

sea level? Explain.

6–16C In a given location, would a helicopter require more

energy in summer or winter to achieve a specified perfor-

mance? Explain.

6–17C A horizontal water jet from a nozzle of constant exit

cross section impinges normally on a stationary vertical flat

plate. A certain force F is required to hold the plate against

the water stream. If the water velocity is doubled, will the

necessary holding force also be doubled? Explain.
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6–18C A constant-velocity horizontal water jet from a sta-

tionary nozzle impinges normally on a vertical flat plate that

is held in a nearly frictionless track. As the water jet hits the

plate, it begins to move due to the water force. Will the accel-

eration of the plate remain constant or change? Explain.

negligible. Determine (a) the gage pressure at the center of

the inlet of the elbow and (b) the anchoring force needed to

hold the elbow in place. Take the momentum-flux correction

factor to be 1.03.

6–23 Repeat Prob. 6–22 for the case of another (identical)

elbow being attached to the existing elbow so that the fluid

makes a U-turn. Answers: (a) 6.87 kPa, (b) 218 N

6–24E A horizontal water jet impinges against a vertical

flat plate at 30 ft/s and splashes off the sides in the vertical

plane. If a horizontal force of 350 lbf is required to hold the

plate against the water stream, determine the volume flow

rate of the water.

6–25 A reducing elbow is used to deflect water flow at a

rate of 30 kg/s in a horizontal pipe upward by an angle u

� 45° from the flow direction while accelerating it. The

elbow discharges water into the atmosphere. The cross-

sectional area of the elbow is 150 cm2 at the inlet and 25 cm2

at the exit. The elevation difference between the centers of

the exit and the inlet is 40 cm. The mass of the elbow and the

water in it is 50 kg. Determine the anchoring force needed to

hold the elbow in place. Take the momentum-flux correction

factor to be 1.03.

Nozzle

Water jet

FIGURE P6–18C

Water jet

1
2

V

V

FIGURE P6–21

6–19C A horizontal water jet of constant velocity V from a

stationary nozzle impinges normally on a vertical flat plate

that is held in a nearly frictionless track. As the water jet hits

the plate, it begins to move due to the water force. What is

the highest velocity the plate can attain? Explain.

6–20 Show that the force exerted by a liquid jet on a sta-

tionary nozzle as it leaves with a velocity V is proportional to

V 2 or, alternatively, to m
. 2.

6–21 A horizontal water jet of constant velocity V impinges

normally on a vertical flat plate and splashes off the sides in

the vertical plane. The plate is moving toward the oncoming

water jet with velocity If a force F is required to maintain

the plate stationary, how much force is required to move the

plate toward the water jet?

1
2V.

Water
25 kg/s

35 cm

FIGURE P6–22

6–22 A 90° elbow is used to direct water flow at a rate of

25 kg/s in a horizontal pipe upward. The diameter of the

entire elbow is 10 cm. The elbow discharges water into the

atmosphere, and thus the pressure at the exit is the local

atmospheric pressure. The elevation difference between the

centers of the exit and the inlet of the elbow is 35 cm. The

weight of the elbow and the water in it is considered to be

150 cm2
40 cm

45°

25 cm2

Water

FIGURE P6–25

6–26 Repeat Prob. 6–25 for the case of u � 110°.

6–27 Water accelerated by a nozzle to 15 m/s strikes the

vertical back surface of a cart moving horizontally at a con-

stant velocity of 5 m/s in the flow direction. The mass flow

rate of water is 25 kg/s. After the strike, the water stream

splatters off in all directions in the plane of the back surface.

(a) Determine the force that needs to be applied on the

brakes of the cart to prevent it from accelerating. (b) If this

force were used to generate power instead of wasting it on

the brakes, determine the maximum amount of power that

can be generated. Answers: (a) 250 N, (b) 1.25 kW

15 m/s

5 m/s

Water jet

FIGURE P6–27
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jected to 25-km/h steady winds. If the combined turbine–

generator efficiency of the wind turbine is 32 percent, deter-

mine (a) the power generated by the turbine and (b) the hori-

zontal force exerted by the wind on the supporting mast of

the turbine. Take the density of air to be 1.25 kg/m3, and dis-

regard frictional effects.

100 ft3/s

20 ft/s

Splitter

45°

45°

x

z

FIGURE P6–29E

6–28 Reconsider Prob. 6–27. If the mass of the cart is 300

kg and the brakes fail, determine the acceleration of the cart

when the water first strikes it. Assume the mass of water that

wets the back surface is negligible.

6–29E A 100-ft3/s water jet is moving in the positive x-

direction at 20 ft/s. The stream hits a stationary splitter, such

that half of the flow is diverted upward at 45° and the other

half is directed downward, and both streams have a final

speed of 20 ft/s. Disregarding gravitational effects, determine

the x- and z-components of the force required to hold the

splitter in place against the water force.

25 km/h

90 m

FIGURE P6–33

140 ft/s

140 ft/s

3 in

Water jet

FIGURE P6–34E

6–34E A 3-in-diameter horizontal water jet having a veloc-

ity of 140 ft/s strikes a curved plate, which deflects the water

180° at the same speed. Ignoring the frictional effects, deter-

mine the force required to hold the plate against the water

stream.

5 m3/min

FIGURE P6–36

6–35E A 3-in-diameter horizontal jet of water, with veloc-

ity 140 ft/s, strikes a bent plate, which deflects the water by

135° from its original direction. How much force is required

to hold the plate against the water stream and what is its

direction? Disregard frictional and gravitational effects.

6–36 Firefighters are holding a nozzle at the end of a hose

while trying to extinguish a fire. If the nozzle exit diameter is

6–30E Reconsider Prob. 6–29E. Using EES (or other)

software, investigate the effect of the splitter

angle on the force exerted on the splitter in the incoming

flow direction. Let the half splitter angle vary from 0° to

180° in increments of 10°. Tabulate and plot your results, and

draw some conclusions.

6–31 A horizontal 5-cm-diameter water jet with a velocity

of 18 m/s impinges normally upon a vertical plate of mass

1000 kg. The plate is held in a nearly frictionless track and is

initially stationary. When the jet strikes the plate, the plate

begins to move in the direction of the jet. The water always

splatters in the plane of the retreating plate. Determine (a) the

acceleration of the plate when the jet first strikes it (time �

0), (b) the time it will take for the plate to reach a velocity of

9 m/s, and (c) the plate velocity 20 s after the jet first strikes

the plate. Assume the velocity of the jet relative to the plate

remains constant.

6–32 Water flowing in a horizontal 30-cm-diameter pipe at

5 m/s and 300 kPa gage enters a 90° bend reducing section,

which connects to a 15-cm-diameter vertical pipe. The inlet

of the bend is 50 cm above the exit. Neglecting any frictional

and gravitational effects, determine the net resultant force

exerted on the reducer by the water. Take the momentum-flux

correction factor to be 1.04.

6–33 Commercially available large wind turbines

have blade span diameters as large as 100 m and

generate over 3 MW of electric power at peak design condi-

tions. Consider a wind turbine with a 90-m blade span sub-
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6 cm and the water flow rate is 5 m3/min, determine (a) the

average water exit velocity and (b) the horizontal resistance

force required of the firefighters to hold the nozzle. Answers:

(a) 29.5 m/s, (b) 2457 N

6–37 A 5-cm-diameter horizontal jet of water with a veloc-

ity of 30 m/s strikes a flat plate that is moving in the same

direction as the jet at a velocity of 10 m/s. The water splatters

in all directions in the plane of the plate. How much force

does the water stream exert on the plate?

6–38 Reconsider Prob. 6–37. Using EES (or other)

software, investigate the effect of the plate

velocity on the force exerted on the plate. Let the plate veloc-

ity vary from 0 to 30 m/s, in increments of 3 m/s. Tabulate

and plot your results.

6–39E A fan with 24-in-diameter blades moves 2000 cfm

(cubic feet per minute) of air at 70°F at sea level. Determine

(a) the force required to hold the fan and (b) the minimum

power input required for the fan. Choose the control volume

sufficiently large to contain the fan, and the gage pressure

and the air velocity on the inlet side to be zero. Assume air

approaches the fan through a large area with negligible veloc-

ity and air exits the fan with a uniform velocity at atmos-

pheric pressure through an imaginary cylinder whose diame-

ter is the fan blade diameter. Answers: (a) 0.82 lbf, (b) 5.91 W

6–40 An unloaded helicopter of mass 10,000 kg hovers at

sea level while it is being loaded. In the unloaded hover

mode, the blades rotate at 400 rpm. The horizontal blades

above the helicopter cause a 15-m-diameter air mass to move

downward at an average velocity proportional to the overhead

blade rotational velocity (rpm). A load of 15,000 kg is loaded

onto the helicopter, and the helicopter slowly rises. Deter-

mine (a) the volumetric airflow rate downdraft that the heli-

copter generates during unloaded hover and the required

power input and (b) the rpm of the helicopter blades to hover

with the 15,000-kg load and the required power input. Take

the density of atmospheric air to be 1.18 kg/m3. Assume air

approaches the blades from the top through a large area with

negligible velocity and air is forced by the blades to move

down with a uniform velocity through an imaginary cylinder

whose base is the blade span area.

6–41 Reconsider the helicopter in Prob. 6–40, except that it

is hovering on top of a 3000-m-high mountain where the air

density is 0.79 kg/m3. Noting that the unloaded helicopter

blades must rotate at 400 rpm to hover at sea level, determine

the blade rotational velocity to hover at the higher altitude.

Also determine the percent increase in the required power

input to hover at 3000-m altitude relative to that at sea level.

Answers: 489 rpm, 22 percent

6–42 A sluice gate, which controls flow rate in a channel

by simply raising or lowering a vertical plate, is commonly

used in irrigation systems. A force is exerted on the gate due

to the difference between the water heights y1 and y2 and the

flow velocities V1 and V2 upstream and downstream from the

gate, respectively. Disregarding the wall shear forces at the

channel surfaces, develop relations for V1, V2, and the force

acting on a sluice gate of width w during steady and uniform

flow.

Answer: FR � m
#

(V1 � V2) �
w

2
 rg (y 2

1 � y 2
2)

15 m

Load
15,000 kg

FIGURE P6–40

Sluice
gate

y1

y2

1V

2V

FIGURE P6–42

6–43 Water enters a centrifugal pump axially at atmos-

pheric pressure at a rate of 0.12 m3/s and at a velocity of

7 m/s, and leaves in the normal direction along the pump cas-

ing, as shown in Fig. P6–43. Determine the force acting on

the shaft (which is also the force acting on the bearing of the

shaft) in the axial direction.

n⋅

Blade

Shaft

0.12 m3/S

Impeller
shroud

FIGURE P6–43
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Angular Momentum Equation

6–44C How is the angular momentum equation obtained

from Reynolds transport equations?

6–45C Express the unsteady angular momentum equation

in vector form for a control volume that has a constant

moment of inertia I, no external moments applied, one outgo-

ing uniform flow stream of velocity V
→

, and mass flow rate m
.
.

6–46C Express the angular momentum equation in scalar

form about a specified axis of rotation for a fixed control vol-

ume for steady and uniform flow. 

6–47 Water is flowing through a 12-cm-diameter pipe that

consists of a 3-m-long vertical and 2-m-long horizontal sec-

tion with a 90° elbow at the exit to force the water to be dis-

charged downward, as shown in Fig. P6–47, in the vertical

direction. Water discharges to atmospheric air at a velocity of

4 m/s, and the mass of the pipe section when filled with

water is 15 kg per meter length. Determine the moment act-

ing at the intersection of the vertical and horizontal sections

of the pipe (point A). What would your answer be if the flow

were discharged upward instead of downward?
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ing applies a retarding torque of T0 � 50 N · m due to friction

at the anticipated operating speeds. For a normal distance of

40 cm between the axis of rotation and the center of the noz-

zles, determine the angular velocity of the sprinkler shaft. 

6–51 Pelton wheel turbines are commonly used in hydro-

electric power plants to generate electric power. In these tur-

bines, a high-speed jet at a velocity of Vj impinges on buck-

ets, forcing the wheel to rotate. The buckets reverse the

direction of the jet, and the jet leaves the bucket making an

angle b with the direction of the jet, as shown in Fig. P6–51.

Show that the power produced by a Pelton wheel of radius r

rotating steadily at an angular velocity of v is W
.

shaft

� rvrV
.
(Vj � vr)(1 � cos b), where r is the density and V

.
is

the volume flow rate of the fluid. Obtain the numerical value

for r � 1000 kg/m3, r � 2 m, V
.

�10 m3/s, n
.

� 150 rpm,

b � 160°, and Vj � 50 m/s.

3 m

2 m

12 cm

A

4 m/s

FIGURE P6–47

6–48E A large lawn sprinkler with two identical arms is

used to generate electric power by attaching a generator to its

rotating head. Water enters the sprinkler from the base along

the axis of rotation at a rate of 8 gal/s and leaves the nozzles

in the tangential direction. The sprinkler rotates at a rate of

250 rpm in a horizontal plane. The diameter of each jet is 0.5

in, and the normal distance between the axis of rotation and

the center of each nozzle is 2 ft. Determine the electric power

produced.

6–49E Reconsider the lawn sprinkler in Prob. 6–48E. If the

rotating head is somehow stuck, determine the moment act-

ing on the head. 

6–50 A lawn sprinkler with three identical arms is used to

water a garden by rotating in a horizontal plane by the

impulse caused by water flow. Water enters the sprinkler

along the axis of rotation at a rate of 40 L/s and leaves the

1.2-cm-diameter nozzles in the tangential direction. The bear-

Vj � rv

v

b

Vj

r

Nozzle

Shaft

ω r

FIGURE P6–51

6–52 Reconsider Prob. 6–51. The turbine will have

the maximum efficiency when b � 180°, but

this is not practical. Investigate the effect of b on the power

generation by allowing it to vary from 0° to 180°. Do you

think we are wasting a large fraction of power by using buck-

ets with a b of 160°?

6–53 The impeller of a centrifugal blower has a radius of

15 cm and a blade width of 6.1 cm at the inlet, and a radius

Outlet

ω 
Inlet

FIGURE P6–53
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of 30 cm and a blade width of 3.4 cm at the outlet. The

blower delivers atmospheric air at 20°C and 95 kPa. Disre-

garding any losses and assuming the tangential components

of air velocity at the inlet and the outlet to be equal to the

impeller velocity at respective locations, determine the volu-

metric flow rate of air when the rotational speed of the shaft

is 800 rpm and the power consumption of the blower is 120

W. Also determine the normal components of velocity at the

inlet and outlet of the impeller.

6–54 Consider a centrifugal blower that has a radius of 20

cm and a blade width of 8.2 cm at the impeller inlet, and a

radius of 45 cm and a blade width of 5.6 cm at the outlet.

The blower delivers air at a rate of 0.70 m3/s at a rotational

speed of 700 rpm. Assuming the air to enter the impeller in

radial direction and to exit at an angle of 50° from the radial

direction, determine the minimum power consumption of the

blower. Take the density of air to be 1.25 kg/m3.

Review Problems

6–58 Water is flowing into and discharging from a pipe U-

section as shown in Fig. P6–58. At flange (1), the total

absolute pressure is 200 kPa, and 30 kg/s flows into the pipe.

At flange (2), the total pressure is 150 kPa. At location (3), 8

kg/s of water discharges to the atmosphere, which is at 100

kPa. Determine the total x- and z-forces at the two flanges

connecting the pipe. Discuss the significance of gravity force

for this problem. Take the momentum-flux correction factor

to be 1.03.

V

 = 50°a2

1

2

Impeller region

r1

r2

V

v

→

→

FIGURE P6–54

6–55 Reconsider Prob. 6–54. For the specified flow

rate, investigate the effect of discharge angle a2

on the minimum power input requirements. Assume the air to

enter the impeller in the radial direction (a1 � 0°), and vary

a2 from 0° to 85° in increments of 5°. Plot the variation of

power input versus a2, and discuss your results. 

6–56E Water enters the impeller of a centrifugal pump radi-

ally at a rate of 80 cfm (cubic feet per minute) when the shaft

is rotating at 500 rpm. The tangential component of absolute

velocity of water at the exit of the 2-ft outer diameter

impeller is 180 ft/s. Determine the torque applied to the

impeller.

6–57 The impeller of a centrifugal pump has inner and

outer diameters of 13 and 30 cm, respectively, and a flow rate

of 0.15 m3/s at a rotational speed of 1200 rpm. The blade

width of the impeller is 8 cm at the inlet and 3.5 cm at the

outlet. If water enters the impeller in the radial direction and

exits at an angle of 60° from the radial direction, determine

the minimum power requirement for the pump.

10 cm

3 cm

8 kg/s

22 kg/s

30 kg/s 5 cm

1

2

3

x

z

FIGURE P6–58

6–59 A tripod holding a nozzle, which directs a 5-cm-diam-

eter stream of water from a hose, is shown in Fig. P6–59. The

nozzle mass is 10 kg when filled with water. The tripod is

rated to provide 1800 N of holding force. A firefighter was

standing 60 cm behind the nozzle and was hit by the nozzle

when the tripod suddenly failed and released the nozzle. You

have been hired as an accident reconstructionist and, after

testing the tripod, have determined that as water flow rate

increased, it did collapse at 1800 N. In your final report you

must state the water velocity and the flow rate consistent with

the failure and the nozzle velocity when it hit the firefighter.

Answers: 30.2 m/s, 0.0593 m3/s, 14.7 m/s

Nozzle

Tripod

D = 5 cm

FIGURE P6–59

6–60 Consider an airplane with a jet engine attached to the

tail section that expels combustion gases at a rate of 18 kg/s

with a velocity of V � 250 m/s relative to the plane. During
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landing, a thrust reverser (which serves as a brake for the air-

craft and facilitates landing on a short runway) is lowered in

the path of the exhaust jet, which deflects the exhaust from

rearward to 160°. Determine (a) the thrust (forward force)

that the engine produces prior to the insertion of the thrust

reverser and (b) the braking force produced after the thrust

reverser is deployed.
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6–66 Indiana Jones needs to ascend a 10-m-high building.

There is a large hose filled with pressurized water hanging

down from the building top. He builds a square platform and

mounts four 5-cm-diameter nozzles pointing down at each

corner. By connecting hose branches, a water jet with 15-m/s

velocity can be produced from each nozzle. Jones, the plat-

form, and the nozzles have a combined mass of 150 kg.

Determine (a) the minimum water jet velocity needed to raise

the system, (b) how long it takes for the system to rise 10 m

when the water jet velocity is 15 m/s and the velocity of the

platform at that moment, and (c) how much higher will the

momentum raise Jones if he shuts off the water at the

moment the platform reaches 10 m above the ground. How

much time does he have to jump from the platform to the

roof? Answers: (a) 13.7 m/s, (b) 3.2 s, (c) 2.1 m, 1.3 s

10 m/s

Ice skater

D = 2 cm

FIGURE P6–65

D = 5 cm

15 m/s

FIGURE P6–66

250 m/s

160°

Thrust
reverser

Thrust
reverser

FIGURE P6–60

6–61 Reconsider Prob. 6–60. Using EES (or other)

software, investigate the effect of thrust reverser

angle on the braking force exerted on the airplane. Let the

reverser angle vary from 0° (no reversing) to 180° (full

reversing) in increments of 10°. Tabulate and plot your

results and draw conclusions.

6–62E A spacecraft cruising in space at a constant velocity

of 1500 ft/s has a mass of 18,000 lbm. To slow down the

spacecraft, a solid fuel rocket is fired, and the combustion

gases leave the rocket at a constant rate of 150 lbm/s at a

velocity of 5000 ft/s in the same direction as the spacecraft

for a period of 5 s. Assuming the mass of the spacecraft

remains constant, determine (a) the deceleration of the space-

craft during this 5-s period, (b) the change of velocity of the

spacecraft during this time period, and (c) the thrust exerted

on the spacecraft.

6–63 A 5-cm-diameter horizontal water jet having a veloc-

ity of 30 m/s strikes a vertical stationary flat plate. The water

splatters in all directions in the plane of the plate. How much

force is required to hold the plate against the water stream?

6–64 A 5-cm-diameter horizontal jet of water, with velocity

30 m/s, strikes the tip of a horizontal cone, which deflects the

water by 45° from its original direction. How much force is

required to hold the cone against the water stream?

6–65 A 60-kg ice skater is standing on ice with ice skates

(negligible friction). She is holding a flexible hose (essen-

tially weightless) that directs a 2-cm-diameter stream of

water horizontally parallel to her skates. The water velocity at

the hose outlet is 10 m/s. If she is initially standing still,

determine (a) the velocity of the skater and the distance she

travels in 5 s and (b) how long it will take to move 5 m and

the velocity at that moment. Answers: (a) 2.62 m/s, 6.54 m,

(b) 4.4 s, 2.3 m/s
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6–67E An engineering student considers using a fan as a

levitation demonstration. She plans to face the box-enclosed

fan so the air blast is directed face down through a 3-ft-diam-

eter blade span area. The system weighs 5 lbf, and the stu-

dent will secure the system from rotating. By increasing the

power to the fan, she plans to increase the blade rpm and air

exit velocity until the exhaust provides sufficient upward

force to cause the box fan to hover in the air. Determine

(a) the air exit velocity to produce 5 lbf, (b) the volumetric

flow rate needed, and (c) the minimum mechanical power

that must be supplied to the airstream. Take the air density to

be 0.078 lbm/ft3.

6–69 A horizontal water jet with a flow rate of V
.

and cross-

sectional area of A drives a covered cart of mass mc along a

level and nearly frictionless path. The jet enters a hole at the

rear of the cart and all water that enters the cart is retained,

increasing the system mass. The relative velocity between the

jet of constant velocity VJ and the cart of variable velocity V

is VJ � V. If the cart is initially empty and stationary when

the jet action is initiated, develop a relation (integral form is

acceptable) for cart velocity versus time.

600 rpm

FIGURE P6–67E

6–68 A soldier jumps from a plane and opens his parachute

when his velocity reaches the terminal velocity VT. The para-

chute slows him down to his landing velocity of VF. After the

parachute is deployed, the air resistance is proportional to the

velocity squared (i.e., F � kV2). The soldier, his parachute,

and his gear have a total mass of m. Show that 

and develop a relation for the soldier’s velocity after he opens

the parachute at time t � 0.

Answer: V � VF 
VT � VF � (VT � VF)e

�2gt/VF

VT � VF � (VT � VF)e
�2gt/VF

k � mg/V 2
F

FIGURE P6–68

VV

Cart
mc

A J

FIGURE P6–69

6–70 Nearly frictionless vertical guide rails maintain a plate

of mass mp in a horizontal position, such that it can slide

freely in the vertical direction. A nozzle directs a water

stream of area A against the plate underside. The water jet

splatters in the plate plane, applying an upward force against

the plate. The water flow rate m
.

(kg/s) can be controlled.

Assume that distances are short, so the velocity of the rising

jet can be considered constant with height. (a) Determine the

minimum mass flow rate m
.
min necessary to just levitate the

plate and obtain a relation for the steady-state velocity of the

upward moving plate for m
.


 m
.

min. (b) At time t � 0, the

plate is at rest, and the water jet with m
.


 m
.

min is suddenly

turned on. Apply a force balance to the plate and obtain the

integral that relates velocity to time (do not solve).

mp

Nozzle

m⋅

Guide
rails

FIGURE P6–70

6–71 Water enters a mixed flow pump axially at a rate of

0.2 m3/s and at a velocity of 5 m/s, and is discharged to the

atmosphere at an angle of 60° from the horizontal, as shown
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in Fig. P6–71. If the discharge flow area is half the inlet area,

determine the force acting on the shaft in the axial direction.
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zles as 2-cm diameter jets at an angle of u from the tangential

direction, as shown in Fig. P6–73. The length of each sprin-

kler arm is 0.45 m. Disregarding any frictional effects, deter-

mine the rate of rotation n
.

of the sprinkler in rev/min for (a)

u � 0°, (b) u � 30°, and (c) u � 60°.

6–74 Reconsider Prob. 6–73. For the specified flow

rate, investigate the effect of discharge angle u

on the rate of rotation n
.

by varying u from 0° to 90° in incre-

ments of 10°. Plot the rate of rotation versus u, and discuss

your results.

6–75 A stationary water tank of diameter D is mounted on

wheels and is placed on a nearly frictionless level surface. A

smooth hole of diameter Do near the bottom of the tank

allows water to jet horizontally and rearward and the water

jet force propels the system forward. The water in the tank is

much heavier than the tank-and-wheel assembly, so only the

mass of water remaining in the tank needs to be considered

in this problem. Considering the decrease in the mass of

water with time, develop relations for (a) the acceleration, (b)

the velocity, and (c) the distance traveled by the system as a

function of time.

Design and Essay Problem

6–76 Visit a fire station and obtain information about flow

rates through hoses and discharge diameters. Using this infor-

mation, calculate the impulse force to which the firefighters

are subjected.

n⋅

Blade

Shaft

0.2 m3/S

60°

FIGURE P6–71

θ

θ

r = 0.45 m

FIGURE P6–73

6–72 Water accelerated by a nozzle enters the impeller of a

turbine through its outer edge of diameter D with a velocity

of V making an angle a with the radial direction at a mass

flow rate of m
.
. Water leaves the impeller in the radial direc-

tion. If the angular speed of the turbine shaft is n
.
, show that

the maximum power that can be generated by this radial tur-

bine is W
.
shaft � pn

.
m
.
DV sin a.

6–73 Water enters a two-armed lawn sprinkler along the

vertical axis at a rate of 60 L/s, and leaves the sprinkler noz-
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