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Abstract 
 

The ELzaki transform, whose fundamental properties are presented in this 
paper, is little known and not widely used .Here The ELzaki transform used to 
solve ordinary differential equation with variable coefficients without 
resorting to anew frequency domain 
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Introduction 
A new integral transform, called the ELzaki transform defined for functions of 
exponential order, is proclaimed. We Consider function in the set A, defined by 

 ( ) ( ) ( ){ }1 2: , 0 : , 1 [0, )j jt k
A f t M k and k f t Me if t= ∃ > < ∈ − × ∞   (1) 

 
 For a given function in the set A , the constant M must be finite, while  1k  and 2k   

may be infinite, the variable v in the ELzaki transform is used to factor the variable t  
in the argument of the function .f specifically, for ( )f t  in A . The ELzaki transform 

is defined by: 
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t
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∞
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 The next theorem very useful in study of differential equations having non-
constants coefficient.  
 
Theorem I 
If ELzaki transform of the function  ( )f t  given by ( ) ( ) ,f t T v⎡ ⎤Ε =⎣ ⎦ then:  
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Proof 
To Prove (i) we use the following formula  
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Then we have 
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tf t v T v vT v
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Now we put ( ) ( )f t f t′=  we have  
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 The proof of ( ) ( ),ii iii and ( )iv are similar to the Proof of ( )i . 
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 Now we apply the above theorem to find ELzaki transform for some differential 
equations: 
  
Example I 
Solve the differential equation:  

  ( ) ( )0 , 0 0 , 0 1, 0y ty y y y t′′ ′ ′+ − = = = >
 (3) 

 
 By using ELzaki transform into equation (3) and   the theorem I, we have 
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 Using the initial Conditions we get  

  ( ) ( )3

1 3
1y y

v v
⎛ ⎞′Ε + − Ε =⎜ ⎟
⎝ ⎠

 

 
 This is a linear differential equation for unknown function Ε , have the Solution in 

the form     ( ) 2

1
3 3 2vy v C v eΕ = + and    0C = , then:  

  ( ) 3y vΕ = . 

 
 By using the inverse ELzaki transform we obtain the Solution in the form of        
y t=  
 
Example II 
Consider the non constant coefficient differential equation in the form of  
  ( ) ( ) ( )1 2 2 0 , 0 1 , 0 2t y t y y y y′′ ′ ′+ − − = = =  

 
By using ELzaki transform and apply the initial condition we have  
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Then we obtain the solution ( )
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−
 where C is constant   

  ( ) ( ) ( )0 1y T v TΕ = ⇒ =  

 

 Then the constant  1C =  and    ( )
2

1 2

v
y

v
Ε =

−
  

 By taking inverse ELzaki transform we have:  
  2ty e=  
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Example III 
Consider the following equation: 

  
( )2 1

2 sinh , 0
2

t y ty t y′ + = =
 (4) 

 
Solution 
By taking ELzaki transform of equation (4) we have,  
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 Where that    ( )y y t⎡ ⎤≡ Ε ⎣ ⎦  

 We can write the last equation in the form 
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 The solution of this equation is 
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 Substituting the condition into  ( )5Eq  we get:  
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 By taking inverse ELzaki transform to equation (6) we obtain the solution as 
follow,     
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Example IV 
Let us consider the differential equation  
  2 24 2 12t y t y y t′′ ′+ + =                                               (7) 
 
 With the initial conditions:  
  ( ) ( )0 0 0y y ′= =                                                           (8) 

 
 Now we apply ELzaki transform to equation (7) we obtain,  
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 By simplifying above equation, we have    224y v′′ =  
 The solution of this equation can be written in the form. 
  4

1 22y v C v C= + +  (9) 

 
 By substituting the initial condition (8) into equation (9) we get,  
  42y v=  (10)  
 
 By using inverse ELzaki transform for equation (10) we obtain the solution of 
equation (7)  
  2y t=  
 
 
Conclusion 
Application of the ELzaki transform to Solution of ordinary differential equation with 
variable Coefficients has been demonstrated.  
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