



## 7.1 Problem Solving

- > What is problem solving?
- Problem solving is to plan how to solve the problem effectively and efficiently

**Example:** a continuous mixer mixes NaOH with  $H_2O$  to produce an aqueous solution of NaOH. Determine the composition and flow rate of the product if the flow rate of NaOH is 1000 kg/hr, and the ratio of the flow rate of the  $H_2O$  to the product solution is 0.9.





## 7.2 The Strategy for Solving Problems

- 1. Read and understand the problem statement.
  - > We pick the mixer as the system.
  - The process is an open one.
  - > We assume it to be steady state.





2. Draw a sketch of the process and specify the system boundary.







3. Place labels for unknown variables and values for known variables on the sketch.



Dr Saad Al-Shahrani



## A GENERAL STRATEGY FOR SOLVING MATERIAL BALANCE PROBLEMS



| F kg                                   | Flow of mass in kg                                                                                                         |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| $F_{\text{Total}}$ or $F_{\text{Tot}}$ | Total flow of material                                                                                                     |
| $F^1$ or $F1$                          | Flow in stream number 1.                                                                                                   |
| F <sub>A</sub> lb                      | Flow of component A in stream Fin lb                                                                                       |
| <i>m</i> <sub>A</sub>                  | Mass flow of component A.                                                                                                  |
| $m_{\rm Total}$ or $m_{\rm Tot}$       | Mass flow of the total material.                                                                                           |
| $m_{\rm A}^{\rm F1}$                   | Mass flow of component A in stream Fl.                                                                                     |
| $n_{\rm A}^{\rm W}$                    | Molar flow of component A in stream $W$                                                                                    |
| w <sup>F</sup> <sub>A</sub>            | The mass (weight) fraction of <b>A</b> in stream F. (The superscript is not required if the meaning is otherwise clear.)   |
| x <sup>F</sup> <sub>A</sub>            | The mole fraction of A in stream <i>F</i> , a liquid. (The superscript is not required if the meaning is otherwise clear.) |
| $\mathcal{Y}^{F}_{A}$                  | The mole fraction of A in stream F, usually a gas.                                                                         |





- 4. Obtain any missing needed data.
  - Physical properties (molecular weight, density, etc.)
    - You can look the values up in a physical properties database such as the one on the CD that accompanies your text book, in reference books, on the Web, and many other places.
  - Some value may be missing, but you can calculate the value in your head.





- 5. Choose a basis.
  - (1) What do I have
  - (2) What do I want to find,
  - (3) What is convenient
  - Pick one of the following 1000 kg
    - I hour
    - 1000 kg/hr





6. Determine the number of unknowns.

We have four unknowns:

W, P, P<sub>NaOH</sub>, and P<sub>H2O</sub>





- 7. Determine the number of independent equations, and carry out a degree of freedom analysis.
  - To get a unique answer, the number of variables whose values are unknown equals the number of independent equations you formulate to solve a problem.
  - For the above example we can write three material balances :







- Two independent equations can be obtained from the specifications and values of variables that are given in the problem statement such as:
  - Given ratio: W=0.9P
  - Sum of components in P.

Degrees of freedom = number of unknowns - number of independent equations

or  

$$N_D = N_U - N_E$$
  
 $N_D = 4 - 4 = 0$   $\longrightarrow$  Solution exists





| 3. Write down the equations to be solved.                                           |                                              |     |
|-------------------------------------------------------------------------------------|----------------------------------------------|-----|
| NaOH balance:                                                                       | $1000 = P_{NaOH}$ , or $1000 - P_{NaOH} = 0$ | (1) |
| H <sub>2</sub> O balance:                                                           | $W = P_{H_2O} \text{ or } W - P_{H_2O} = 0$  | (2) |
| Given ratio:                                                                        | W = 0.9P  or  W - 0.9P = 0                   | (3) |
| Sum of components in P: $P_{NaOH} + P_{H2O} = P$ or $P_{NaOH} + P_{H_{2O}} - P = 0$ |                                              |     |





9. Solve the equations and calculate the quantities asked for.

Substitute eq.(3) in eq.(4):

 $P_{NaOH} + P_{H2O} = W/0.9 \longrightarrow 1000 + W = W/0.9$   $900 + 0.9 W = W \longrightarrow W = 9000 \longrightarrow P = 10000$   $P_{H_{2O}} = 9000$   $P_{NaOH} = 1000$ 





10. Check your answer(s).

 $P_{NaOH} + P_{H2O} = P$ 

1000 + 9000 = 10000





Example: Sludge is wet solids that result from the processing in municipal sewage systems. The sludge has to be dried before it can be composted or otherwise handled. If a sludge containing 70% water and 30% solids is passed through a drier, and the resulting product contains 25% water, how much water is evaporated per ton of sludge sent to the drier.