A GENERAL STRATEGY FOR SOLVING MATERIAL BALANCE PROBLEMS

7.1 Problem Solving

- What is problem solving?
> Problem solving is to plan how to solve the problem effectively and efficiently

Example: a continuous mixer mixes NaOH with $\mathrm{H}_{2} \mathrm{O}$ to produce an aqueous solution of NaOH . Determine the composition and flow rate of the product if the flow rate of NaOH is $1000 \mathrm{~kg} / \mathrm{hr}$, and the ratio of the flow rate of the $\mathrm{H}_{2} \mathrm{O}$ to the product solution is 0.9 .

7.2 The Strategy for Solving Problems

1. Read and understand the problem statement.
$>$ We pick the mixer as the system.
\Rightarrow The process is an open one.
> We assume it to be steady state.

A GENERAL STRATEGY FOR SOLVING MATERIAL BALANCE PROBLEMS

2. Draw a sketch of the process and specify the system boundary.

A GENERAL STRATEGY FOR SOLVING MATERIAL BALANCE PROBLEMS

3. Place labels for unknown variables and values for known variables on the sketch.

A GENERAL STRATEGY FOR SOLVING MATERIAL BALANCE PROBLEMS

$F \mathrm{~kg}$
$F_{\text {Total }}$ or $F_{\text {Tot }}$
F^{1} or $F 1$
$F_{\mathrm{A}} \mathrm{lb}$
m_{A}
$m_{\text {Total }}$ or $m_{\text {Tot }}$
$m_{\mathrm{A}}^{\mathrm{F} 1}$
$n_{\mathrm{A}}^{\mathrm{W}}$
$w_{\mathrm{A}}^{\mathrm{F}}$
$x_{\mathrm{A}}^{\mathrm{F}}$
$y_{\mathrm{A}}^{\mathrm{F}}$

Flow of mass in kg
Total flow of material
Flow in stream number 1.
Flow of component A in stream Fin lb
Mass flow of component A.
Mass flow of the total material.
Mass flow of component \mathbf{A} in stream Fl.
Molar flow of component A in stream W
The mass (weight) fraction of \mathbf{A} in stream F. (The superscript is not required if the meaning is otherwise clear.)

The mole fraction of A in stream F, a liquid. (The superscript is not required if the meaning is otherwise clear.)

The mole fraction of A in stream F, usually a gas.

A GENERAL STRATEGY FOR SOLVING MATERIAL BALANCE PROBLEMS

4. Obtain any missing needed data.
> Physical properties (molecular weight, density, etc.)

- You can look the values up in a physical properties database such as the one on the $C D$ that accompanies your text book, in reference books, on the Web, and many other places.
> Some value may be missing, but you can calculate the value in your head.

A GENERAL STRATEGY FOR SOLVING MATERIAL BALANCE PROBLEMS

5. Choose a basis.
(1) What do I have
(2) What do I want to find,
(3) What is convenient
> Pick one of the following
1000 kg
I hour
1000 kg/hr

A GENERAL STRATEGY FOR SOLVING MATERIAL BALANCE PROBLEMS

6. Determine the number of unknowns.
> We have four unknowns:

$$
W, \mathrm{P}, \mathrm{P}_{\mathrm{NaOH}}, \text { and } \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}
$$

A GENERAL STRATEGY FOR SOLVING MATERIAL BALANCE PROBLEMS

7. Determine the number of independent equations, and carry out a degree of freedom analysis.
$>$ To get a unique answer, the number of variables whose values are unknown equals the number of independent equations you formulate to solve a problem.
$>$ For the above example we can write three material balances :

- One for the NaOH
- One for the $\mathrm{H}_{2} \mathrm{O}$
- One total balance (the sum of the two component balance) \downarrow
Only two are independent where you can use any combination of two of the three to solve the problem

A GENERAL STRATEGY FOR SOLVING MATERIAL BALANCE PROBLEMS

> Two independent equations can be obtained from the specifications and values of variables that are given in the problem statement such as:

- Given ratio: $W=0.9 P$
- Sum of components in P.

Degrees of freedom = number of unknowns - number of independent equations

$$
\begin{aligned}
& \text { or } \\
& \mathrm{N}_{\mathrm{D}}=\mathrm{N}_{\mathrm{U}}-\mathrm{N}_{E} \\
& \mathrm{~N}_{\mathrm{D}}=4-4=0 \longrightarrow \text { Solution exists }
\end{aligned}
$$

A GENERAL STRATEGY FOR SOLVING MATERIAL BALANCE PROBLEMS

8. Write down the equations to be solved.

NaOH balance:
$\mathrm{H}_{2} \mathrm{O}$ balance:

$$
\begin{equation*}
1000=\mathrm{P}_{\mathrm{NaOH}}, \text { or } 1000-\mathrm{P}_{\mathrm{NaOH}}=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
W=\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}} \text { or } W-\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=0 \tag{2}
\end{equation*}
$$

Given ratio:

$$
\begin{equation*}
W=0.9 \mathrm{P} \text { or } W-0.9 \mathrm{P}=0 \tag{3}
\end{equation*}
$$

A GENERAL STRATEGY FOR SOLVING MATERIAL BALANCE PROBLEMS

9. Solve the equations and calculate the quantities asked for.

Substitute eq.(3) in eq.(4):

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{NaOH}}+\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=W / 0.9 \longrightarrow 1000+W=W / 0.9 \\
& 900+0.9 \mathrm{~W}=\mathrm{W} \longrightarrow \mathrm{~W}=9000 \longrightarrow P=10000 \\
& \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=9000 \\
& \mathrm{P}_{\mathrm{NaOH}}=1000
\end{aligned}
$$

A GENERAL STRATEGY FOR SOLVING MATERIAL BALANCE PROBLEMS

10. Check your answer(s).

$\mathrm{P}_{\mathrm{NaOH}}+\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=\mathrm{P}$
$1000+9000=10000$

A GENERAL STRATEGY FOR SOLVING MATERIAL BALANCE PROBLEMS

Example: Sludge is wet solids that result from the processing in municipal sewage systems. The sludge has to be dried before it can be composted or otherwise handled. If a sludge containing 70% water and 30% solids is passed through a drier, and the resulting product contains 25% water, how much water is evaporated per ton of sludge sent to the drier.

