CHE 201: Introduction to Chemical Engineering Calculations

Dr. Saad Al-Shahrani

Text Book: Basic Principles and Calculations in Chemical Engineering, by David M. Himmelblau and James B Riggs, seventh Edition, 2004

Reference: Elementary Principles of Chemical Engineering, by Richard Felder and Ronald Rousseau, Third Edition, 2000

InTERNATIONAL EDITION

Basic Principles and Calculations in Chemical Engineering

Seventh Edition

Prentice Hall International Series

CHAPTER (1):DIMENSIONS, UNITS, AND THEIR CONVERSION

1.1 Units and Dimensions

> Dimensions are our basic concepts of measurement such as length, time, mass, temperature, and so on.
> Units are the means of expressing the dimension such as feet or centimeters for length and seconds or hours for time.

DIMENSIONS, UNITS, AND THEIR CONVERSION

> The two most commonly used systems of units:

- SI system of units.
- AE, or American Engineering system of units
> Dimensions and their respective units are classified as:
- Fundamental (or basic) dimensions /units are those that can be measured independently and are sufficient to describe essential physical quantities.
- Derived dimensions /units are those that can be developed in terms of the fundamental dimensions /units.

Physical Quantity	Name of Unit	Symbol for Unit*	Definition of Unit
	Basic SI Units		
Length	metre, meter	m	
Mass	kilogramme, kilogram	kg	
Time	second	s	
Temperature	kelvin	K	
Molar amount	mole	mol	
	Derived SI Units		
Energy	joule	J	$\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2} \rightarrow \mathrm{~Pa} \cdot \mathrm{~m}^{2}$
Force	newton	N	$\mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-2} \rightarrow \mathrm{~J} \cdot \mathrm{~m}^{-1}$
Power	watt	W	$\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-3} \rightarrow \mathrm{~J} \cdot \mathrm{~s}^{-1}$
Density	kilogram per cubic meter		$\mathrm{kg} \cdot \mathrm{m}^{-3}$
Velocity	meter per second		$\mathrm{m} \cdot \mathrm{s}^{-1}$
Acceleration	meter per second squared		$\mathrm{m} \cdot \mathrm{s}^{-2}$
Pressure	newton per square meter, pascal		$\mathrm{N} \cdot \mathrm{m}^{-2}, \mathrm{~Pa}$
Heat capacity	joule per (kilogram \cdot kelvin)		$\mathrm{J} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~K}^{-1}$
	Alternative Units		
Time	minute, hour, day, year	min, h, d, y	
Temperature	degree Celsius	${ }^{\circ} \mathrm{C}$	
Volume	litre, liter (dm^{3})	L	
Mass	tonne, ton (Mg), gram	t, g	

TABLE 1.2 American Engineering (AE) System Units Encountered in This Book

Physical Quantity

Length
Mass
Time
Temperature
Molar amount

Force
Energy
Power
Density
Velocity
Acceleration
Pressure
Heat capacity

Name of Unit

Some Basic Units
foot
pound (mass)
second, minute, hour, day
degree Rankine or degree Fahrenheit
pound mole
Derived Units
pound (force)
British thermal unit, foot pound (force)
horsepower
pound (mass) per cubic foot
feet per second
feet per second squared
pound (force) per square inch
Btu per pound (mass) per degree F

Symbol

ft

$1 b_{m}$
$\mathrm{s}, \mathrm{min}, \mathrm{h}(\mathrm{hr})$, day
${ }^{\circ} \mathrm{R}$ or ${ }^{\circ} \mathrm{F}$
lb mol
$1 b_{f}$
Btu. (ft) ($1 \mathrm{~b}_{\mathrm{f}}$)
hp
$\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$
ft / s
$\mathrm{ft} / \mathrm{s}^{2}$
$1 \mathrm{~b}_{\mathrm{f}} / \mathrm{in} .{ }^{2}$, psi
$\mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}}\right)\left({ }^{\circ} \mathrm{F}\right)$

DIMENSIONS, UNITS, AND THEIR CONVERSION

SI Prefixes

Factor Prefix Symbol Factor Prefix Symbol

10^{9}	giga	G	10^{-1}	deci	d
10^{6}	mega	M	10^{-2}	centi	c
10^{3}	kilo	k	10^{-3}	milli	m
10^{2}	hekta	h	10^{-6}	micro	μ
10^{1}	deka	da	10^{-9}	nano	n

DIMENSIONS, UNITS, AND THEIR CONVERSION

1.2 Operations with Units

> Addition, Subtraction, Equality
You can add, subtract, or equate numerical quantities only if the associated units of the quantities are the same. Thus, the operation

- 5 kilograms + 3 joules \longrightarrow cannot be carried out
- 10 pounds +5 grams \rightarrow can be performed only after the units are transformed to be the same.

DIMENSIONS, UNITS, AND THEIR CONVERSION

> Multiplication and Division
You can multiply or divide unlike units at will such as

$50(\mathrm{~kg})(\mathrm{m}) /(\mathrm{s})$

but you cannot cancel or merge units unless they are identical.

EXAMPLE: Add the following:
(a) 1 foot +3 seconds
(b) 1 horse power +300 watts

DIMENSIONS, UNITS, AND THEIR CONVERSION

1.3 Conversion of Units and Conversion Factors

Example: If a plane travels at twice the speed of sound (assume that the speed of sound is $1100 \mathrm{ft} / \mathrm{s}$), how fast is it going in miles per hour?

Solution:

DIMENSIONS, UNITS, AND THEIR CONVERSION

EXAMPLE: Conversion of Units
(a) Convert $2 \mathbf{k m}$ to miles.
(b) Convert $400 \mathrm{in}^{3} /$ day to $\mathrm{cm}^{3} / \mathrm{min}$.

Solution:

(a) $\quad \underline{2 \mathrm{~km}} \left\lvert\, \frac{1 \text { mile }}{1.61 \mathrm{~km}}=1.24\right.$ mile
(b)

$$
\text { (b) } \left.\frac{400 \mathrm{in.}^{3}}{\text { day }}\left|\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{~cm} .}\right)^{3}\right| \frac{1 \text { day }}{24 \mathrm{hr}} \right\rvert\, \frac{1 \mathrm{hr}}{60 \mathrm{~min}}=4.55 \frac{\mathrm{~cm}^{3}}{\mathrm{~min}}
$$

DIMENSIONS, UNITS, AND THEIR CONVERSION

Example: a semiconductor (ZnS) with a particle diameter of 1.8 nanometers. Convert this value to:
(a) dm (decimeters)
(b) inches.

Solution:

(b)

$$
\text { (b) } \frac{1.8 \mathrm{~nm}}{}\left|\frac{10^{-9} \mathrm{~m}}{1 \mathrm{~nm}}\right| \frac{39.37 \mathrm{in} .}{1 \mathrm{~m}}=7.09 \times 10^{-8} \mathrm{in} .
$$

DIMENSIONS, UNITS, AND THEIR CONVERSION

$$
F=C m a
$$

where $F=$ force
$C=$ a constant whose numerical value and units depend on those selected for F, m, and a
$m=$ mass
$a=$ acceleration
> In the SI system the unit of force is defined to be the Newton (N) when 1 kg is accelerated at $1 \mathrm{~m} / \mathrm{s}^{2}$, a conversion factor $C=1$ $\mathrm{N} /(\mathrm{Kg})(\mathrm{m}) / \mathrm{s}^{2}$ must be introduced to have the force be 1 N :

DIMENSIONS, UNITS, AND THEIR CONVERSION

$$
F=\left.\frac{1 \mathrm{~N}}{\frac{(\mathrm{~kg})(\mathrm{m})}{\mathrm{s}^{2}}}\right|_{\tilde{C}}\left|\frac{1 \mathrm{~kg}}{}\right| \begin{aligned}
& \frac{1 \mathrm{~m}}{\mathrm{~s}^{2}}=1 \mathrm{~N} \\
& \tilde{\mathrm{c}}
\end{aligned}
$$

$>$ Because the numerical value associated with the conversion factor is 1, the conversion factor seems simple, even nonexistent and the units are normally ignored
$>$ In AE system, if a mass of 1 lb is accelerated at $g \mathrm{ft} / \mathrm{s}^{2}$, where g is the acceleration that would be caused by gravity (about $32.2 \mathrm{ft} / \mathrm{s}^{2}$ depending on the location of the mass), we can make the force be $1 \mathrm{lb}_{f}$ by choosing the proper numerical value and units for the conversion factor C :

DIMENSIONS, UNITS, AND THEIR CONVERSION

$$
\begin{gathered}
F=\left(\frac{1\left(\mathrm{lb}_{\mathrm{f}}\right)\left(s^{2}\right)}{32.174\left(\mathrm{~b}_{\mathrm{m}}\right)(\mathrm{ft})}\right)\left(\frac{\left.1 \mathrm{lb}_{\mathrm{m}} \left\lvert\, \frac{g \mathrm{ft}}{s^{2}}\right.\right)=1 \mathrm{lb}_{\mathrm{f}}}{\widetilde{\mathrm{C}}} \begin{array}{c}
\tilde{m} \quad \tilde{g}
\end{array} .\right.
\end{gathered}
$$

> A numerical value of $1 / 32.174$ has been chosen for the numerical value in the conversion factor because 32.174 is the numerical value of the average acceleration of gravity $(g)\left(9.80665 \mathrm{~m} / \mathrm{s}^{2}\right)$ at sea level at 45° latitude when g is expressed in $\mathrm{ft} / \mathrm{s}^{2}$.
$g_{c}=32.174 \frac{(\mathrm{ft})\left(\mathrm{lb}_{\mathrm{m}}\right)}{\left(\mathrm{s}^{2}\right)\left(\mathrm{lb}_{\mathrm{f}}\right)}$ Where g_{c} Is the inverse of the conversion factor.

DIMENSIONS, UNITS, AND THEIR CONVERSION

What is the difference between mass and weight?
> The weight of an object is the force exerted on the object by gravitational attraction.

$$
W=m g
$$

Where g is gravitational acceleration (g) and (m) is the mass of an object.

DIMENSIONS, UNITS, AND THEIR CONVERSION

Example : water has a density of $62.4 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$. How much does $2.000 \mathrm{ft}^{3}$ of water weigh at sea level and 45° latitude?

Solution:
The mass of water $\mathrm{m}=\left(62.4 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}\right)\left(2 \mathrm{ft}^{3}\right)=124.8 \mathrm{lb}_{\mathrm{m}}$
The weight of water $W=\left(124.8 \mathrm{lb}_{\mathrm{m}}\right) g\left(\frac{\mathrm{ft}}{\mathrm{s}^{2}}\right)\left(\frac{1 \mathrm{lb}_{\mathrm{f}}}{32.174 \mathrm{lb}_{\mathrm{m}} \cdot \mathrm{ft} / \mathrm{s}^{2}}\right)$
At sea level $g=32.174 \mathrm{ft} / \mathrm{s}^{2}$, so that $W=124.8 \mathrm{lb}_{\mathrm{f}}$.

DIMENSIONS, UNITS, AND THEIR CONVERSION

Example: What is the potential energy in $(\mathrm{ft})\left(\mathrm{lb}_{\mathrm{f}}\right)$ of a 100 lb drum hanging 10 ft above the surface of the earth with reference to the surface of the earth?

Solution:

$$
\begin{aligned}
& \text { Potential Energy }=m g h \\
& P=\frac{100 \mathrm{lb}_{\mathrm{m}}}{}\left|\frac{32.2 \mathrm{ft}}{\mathrm{~s}^{2}}\right| \frac{10 \mathrm{ft}}{} \left\lvert\, \frac{\left(\mathrm{s}^{2}\right)\left(\mathrm{lb}_{\mathrm{f}}\right)}{32.174(\mathrm{ft})\left(\mathrm{lb}_{\mathrm{m}}\right)}=1000(\mathrm{ft})\left(\mathrm{lb}_{\mathrm{f}}\right)\right.
\end{aligned}
$$

DIMENSIONS, UNITS, AND THEIR CONVERSION

Example: Experiments show that I $\mu \mathrm{g} \mathrm{mol}$ of glucoamylase in a 4% starch solution results in a production rate of glucose of 0.6 $\mu \mathrm{g} \mathrm{mol} /(\mathrm{mL})(\mathrm{min})$. Determine the production rate of glucose for this system in the units of $\mathrm{lb} \mathrm{mol} /\left(\mathrm{ft}^{3}\right)$ (day).

Solution:

Basis: 1 min

$$
\begin{aligned}
& \frac{0.6 \mu \mathrm{~g} \mathrm{~mol}}{(\mathrm{~mL})(\mathrm{min})}\left|\frac{1 \mathrm{~g} \mathrm{~mol}}{10^{6}} \frac{1 \mathrm{~g} \mathrm{~mol}}{454 \mathrm{~g} \mathrm{~mol}}\right| \frac{1 \mathrm{~b} \mathrm{~mol}}{1 \mathrm{~L}}\left|\frac{1000 \mathrm{~mL}}{3.531 \times 10^{-2} \mathrm{ft}^{3}}\right| \frac{1 \mathrm{~L}}{\left.\frac{60 \mathrm{~min}}{\mathrm{hr}} \right\rvert\, \frac{24 \mathrm{hr}}{\text { day }}} \\
& =0.0539 \frac{\mathrm{lb} \mathrm{~mol}}{\left(\mathrm{ft}^{3}\right)(\text { day })}
\end{aligned}
$$

DIMENSIONS, UNITS, AND THEIR CONVERSION

1.4 Dimensional Consistency (Homogeneity)

A basic principle states that equations must be dimensionally consistent which means each term in an equation must have the same net dimensions and units as every other term to which it is added, subtracted, or equated.

Example: Your handbook shows that microchip etching roughly follows the relation:

$$
d=16.2-16.2 e^{-0.021 t} \quad t<200
$$

where d is the depth of the etch in microns (micrometers, $\mu \mathrm{m}$ and t is the time of the etch in seconds. What are the units associated with the numbers 16.2 and 0.021 ? Convert the relation so that d becomes expressed in inches and t can be used in minutes.

DIMENSIONS, UNITS, AND THEIR CONVERSION

Solution:

> Both values of 16.2 must have the associated units of microns ($\mu \mathrm{m}$).
> The exponential must be dimensionless so that 0.021 must have the associated units of s^{-1}.

$$
\begin{aligned}
d_{\text {in }} & =\frac{16.2 \mu \mathrm{~m}}{}\left|\frac{1 \mathrm{~m}}{10^{6} \mu \mathrm{~m}}\right| \frac{39.27 \mathrm{in} .}{1 \mathrm{~m}}\left[1-\exp \frac{-0.021}{s}\left|\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right| \frac{t_{\min }}{}\right] \\
& =6.38 \times 10^{-4}\left(1-e^{-1.26 t_{\text {min }}}\right) \text { inches }
\end{aligned}
$$

DIMENSIONS, UNITS, AND THEIR CONVERSION

> A groups of symbols, may be put together, have no net units. Such collections of variables or parameters are called dimensionless groups.
> One example is the Reynolds number (group) arising in fluid mechanics.

$$
\text { Reynolds number }=\frac{D \nu \rho}{\mu}=N_{R E}
$$

DIMENSIONS, UNITS, AND THEIR CONVERSION

1.5 Significant Figures

$>$ To determine the number of significant figures in a number use the following 3 rules:

1. All non-zero digits are significant .
2. Any zeros between two significant digits are significant.
3. A final zero or trailing zeros in the decimal portion only are significant.

Example:
$.5 \underline{00}$ or $.632 \underline{000}$ the zeros are significant.
. 006 or . 000968 the zeros are NOT significant.

DIMENSIONS, UNITS, AND THEIR CONVERSION

1.5 Significant Figures

$>$ When you add or subtract numbers, keep the same number of decimal places as the factor with the least amount.

Example: $1.234+5.67=6.90 \quad$ Not 6.904
-When you multiply or divide numbers, keep the same number of significant figures as the factor with the least number of significant figures.

Example: $1.2 \times 4.56=5.5 \quad$ Not 5.472

DIMENSIONS, UNITS, AND THEIR CONVERSION

1.6 Validation of Problem Solutions

1. Repeat the calculations, possibly in a different order.
2. Start with the answer and perform the calculations in reverse order.
3. Review your assumptions and procedures. Make sure two errors do not cancel each other.
4. Compare numerical values with experimental data or data in a database (handbooks, the Internet, textbooks).
5. Examine the behavior of the calculation procedure. For example, use another starting value and check that the result changed appropriately.
6. Assess whether the answer is reasonable given what you know about the problem and its background.
