Text book

Principles of physics.

Tenth edition

Walker, Halliday and Resnick

Chapter 1 Measurement

In this chapter we will explore the following concepts:

1. Measurement of a physical parameter

- 2. Units, systems of units
- 4. Changing units
- 5. Examples

What is physics?

Science is based on measurements and comparisons.

Physics is the most interesting subject in the world because it is about how the world works

Chapter 1 : Measurements

- > There are two kinds of physical quantities
- Basic quantities: length, time, mass, temperature, pressure, and electric current.
- Derived quantities: all other physical quantities
- For example, speed is defined in terms of length and time.
- The unit of each quantity is a unique name.
 Example: meter (m) for the quantity length.

Three Systems of Units (SI)

International system [SI]:

MKS: meter, Kg, second

French system: CGS: centimeter, gram, second

British system: FPS:

foot, pound, second

The international system of units SI

The Basic Physical quantities

- 1 Time
- 2 Length
- 3 Mass
- 4 Electric current
- 5 Amount of substance
- 6 Temperature
- 7 Luminous Intensity

The International System of Units (SI)

Example of derived quantities: SI unit for power (watt W) is

1 watt = 1 W = 1 kg
$$\cdot$$
 m²/s³

(kilogram-meter squared per second cubic)

> Speed (velocity) v = distance / time = m/s

> Acceleration $a = distance / time^2 = m/s^2$

Standards and Units

We need these in only

The international system	of units (SI)	
1 Time	seconds	s
2 Length	meter	m
3 Mass	kilogram	kg
4 Electric current	ampere	A
5 Amount of substance	mole	mol
6 Temperature	kelvin	K
7 Luminous Intensity	candela	cd

Length

The Meter

Historical definition.

In 1792 the meter was defined to be one ten-millionth of the distance from the north pole to the equator.

 $1 \text{ m} \equiv \frac{AB}{10^7}$

For practical reasons the meter was later defined as the distance between two fine lines on a **standard meter bar** made of platinum-iridium.

The Meter

Present definition.

Since 1983 the meter is defined as **the length traveled by light in vacuum during the time interval of** 1/299792458 of a second. The reason why this definition was adapted was that the

measurement of the speed of light had become extremely precise.

Since 1983 the speed of light in vacuum = 299,792,458 m/s exactly

Standard of Time

1- Earth's rotation has been used

1 second $\equiv \frac{1}{24 \times 60 \times 60}$ of the time it takes the Earth to complete a full rotation about its axis.

The problem with this definition is that the length of the day is not constant.

2- Atomic clocks were then developed

A standard second based on the cesium clock is:

One second is the time taken by 9 192 631 770 oscillations of the light (of a specified wavelength) emitted by a cesium-133 atom.

Why are atomic clocks used to measure the most precise standard second?

Because these atoms are very consistent

Standard of Mass

- Kilogram (SI)
- The standard mass, the kilogram, is defined to be the mass of a particular cylinder of platinum-iridium alloy.
- It is kept at the international Bureau of weighs and measures at Sevres. Near Paris.
- Since 1889
- Accurate copies have been sent to other countries

Second Mass Standard

- The masses of atoms are measured by the mass of the carbon-12 atom
- > This atom has a mass of 12 atomic mass units (u)
- The relation between the two units is

$$1 \text{ u} = 1.66053886 \times 10^{-27} \text{ kg},$$

Density ρ is the mass per unit volume

$$\rho = \frac{m}{V}$$

The units are kg/m³ or gm/cm³

The density of water (1.0 gm/cm³) is often used as a comparison

Changing Units

Example

Units are changed by a method called chain-link conversion

We multiply the original measurement by a conversion factor (ratio of units equal to unity)

1 min and 60 s are identical time intervals

$$\frac{1\min}{60 \text{ s}} = 1 \quad \text{and} \quad \frac{60 \text{ s}}{1\min} = 1$$

Thus, the ratios (1 min)/(60 s) and (60 s)/(1 min) can be used as conversion factors

Examples

to convert 2 min to seconds

$$2 \min = (2 \min)(1) = (2 \min)\left(\frac{60 \text{ s}}{1 \min}\right) = 120 \text{ s}$$

to convert 15 inch to centimeters

$$15.0 \text{ in.} = (15.0 \text{ in.}) \left(\frac{2.54 \text{ cm}}{1 \text{ in.}} \right) = 38.1 \text{ cm}$$

to convert 15 h to seconds

$$15 h = 15 h X 1 = 15 h X \left(\frac{60 \min}{1 h}\right) = 900 \min$$
$$= 900 \min X 1 = 900 \min X \left(\frac{60 s}{1 \min}\right) = 54000 s$$

to convert 10 km/h to m/s`

$$10 \text{ km/h} = 10 \text{ km/h} \left(\frac{1000 \text{ m/h}}{1 \text{ km/h}}\right) = 10000 \text{ m/h}$$
$$= 10000 \text{ m/h} \left(\frac{1 \text{ m/s}}{3600 \text{ m/h}}\right) = \frac{100}{36} \text{ m/s} = \frac{100}{36} \text{ m/s} = 2.78 \text{ m/s}$$

to convert 15 m/s to km/h

$$15 \text{ m/s} = 15 \text{ m/s} \left(\frac{1 \text{ km/s}}{1000 \text{ m/s}}\right) = 0.015 \text{ km/s}$$
$$= 0.015 \text{ km/s} \left(\frac{3600 \text{ km/h}}{1 \text{ km/s}}\right) = 54 \text{ km/h}$$

Scientific notation (powers of 10) is used to express the very large and very small quantities.

$$3560\ 000\ 000\ m = 3.56 \times 10^9\ m$$

 $0.000\ 000\ 492\ s = 4.92 \times 10^{-7}\ s.$

Prefixes for SI Units

Factor	Prefix ^a	Symbol	Factor	Prefix ^a	Symbol
10 ²⁴	yotta-	Y	10-1	deci-	d
10^{21}	zetta-	Z	10-2	centi-	с
1018	exa-	E	10 ⁻³	milli-	m
1015	peta-	Р	10-6	micro-	μ
1012	tera-	Т	10-9	nano-	n
10 ⁹	giga-	G	10^{-12}	pico-	р
106	mega-	M	10^{-15}	femto-	\mathbf{f}
10 ³	kilo-	k	10^{-18}	atto-	а
10 ²	hecto-	h	10^{-21}	zepto-	z
101	deka-	da	10^{-24}	yocto-	у

Unit prefixes

- 1000 kilo k
- 10⁶ mega M
- 10⁹ giga G
- 10⁻² centi c
- 10⁻³ mili m
- 10⁻⁶ micro μ
- 10⁻⁹ nano n
- 10⁻¹² pico p

Examples:

- 1- A square with an edge of exactly 1 cm has an area of: A) $10^{-6} m^2$ B) $10^{-2} m^2$ C) $10^{-4} m^2$ D) $10^2 m^2$ L=1 cm=1×10⁻² m A=1×10⁻² mx1×10⁻² m A=1×10⁻⁴ m² = 10⁻⁴ m²
- 2- 1.3 million second is approximately : A) One day B) One year C) Two months D) 15 days $1.3 \times 10^6 s$ $1.3 \times 10^6 s = \frac{1.3 \times 10^6}{3600} h = 361.1h$ $1.3 \times 10^6 s = \frac{361.1}{24} days \approx 15$ days

Example 5:

A 0.63 kg solid sphere has a radius 46 mm. Its density is : (Volume of a sphere = $4/3\pi r^3$) m

A) -0.55×10^{3} kg/m³ B) 0.25×10^{3} kg/m³ C) -0.55×10^{3} kg/m³ D) 1.55×10^{3} kg/m³

 $r = 46mm = 46 \times 10^{-3}m = 0.046m$

$$\rho = \frac{m}{V} = \frac{mass}{volume} = \frac{0.63kg}{\frac{4}{3}\pi(0.046m)^3}$$

$$\rho = \frac{0.63kg}{\frac{4}{3}\pi(0.046m)^3} = \frac{0.63kg}{\frac{4}{3}\pi(0.046)^3m^3}$$

$$\rho = 1.55 \times 10^3 kg / m^3$$
(D)