EUCLIDEAN SPACES

DR.HAMED AL-SULAMI

Definition 0.1. for each $n \in \mathbb{N}$ we define the Euclidean space, \mathbb{R}^n , by

$$\mathbb{R}^n = \{ \mathbf{x} = (x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R} \text{ for } i = 1, 2, \dots, n \}.$$

Elements $\mathbf{x} = (x_1, x_2, \dots, x_n)$ of \mathbb{R}^n is called *vectors (points)* and each number x_i is called the *ith* coordinate or components of \mathbf{x} .

Definition 0.2. Algebraic Structure of \mathbb{R}^n Let $\mathbf{x} = (x_1, x_2, \dots, x_n), \mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ be vectors and $\alpha \in \mathbb{R}$ be a scalar.

- (1) $\mathbf{x} = \mathbf{y}$ if and only if $x_i = y_i$ for i = 1, 2, ..., n. (Two vectors are equal if their components are equal)
- (2) The zero vector is $\mathbf{0} = (0, 0, \dots, 0)$.
- (3) The sum of **x**, and **y** is the vector $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$.
- (4) The difference of \mathbf{x} , and \mathbf{y} is the vector $\mathbf{x} \mathbf{y} = (x_1 y_1, x_2 y_2, \dots, x_n y_n)$.
- (5) The product of a scalar α and a vector \mathbf{x} is the vector $\alpha \mathbf{x} = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$.
- (6) The dot product of **x** and **y** is the scalar $\mathbf{x} \cdot \mathbf{y} = x_1y_1 + x_2y_2 + \ldots + x_ny_n$.
- (7) The vector $\mathbf{e}_i = (0, 0, 0, \dots, 1^{i\text{th component}}, 0, 0, \dots, 0)$
- (8) The usual basis of \mathbb{R}^n is the collection $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$.
- (9) The Euclidean norm of a vector $\mathbf{x} \in \mathbb{R}^n$ is the scalar $\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$.
- (10) The Euclidean distance between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is the scalar $\|\mathbf{x} \mathbf{y}\|$.
- (11) The sup-norm of a vector $\mathbf{x} \in \mathbb{R}^n$ is the scalar $\|\mathbf{x}\|_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\}$.

Theorem 0.1. The Cauchy-Schwarz Inequality If $x, y \in \mathbb{R}^n$, then $|x \cdot y| \leq ||x|| ||y||$.

Proof. If $\mathbf{y} = 0$ there is nothing to prove. Suppose $\mathbf{y} \neq 0$. Now, $\alpha = \frac{(\mathbf{x} \cdot \mathbf{y})}{\|\mathbf{y}\|^2} \in \mathbb{R}$. Now,

$$0 \le \|\mathbf{x} - \alpha \mathbf{y}\|^2 = (\mathbf{x} - \alpha \mathbf{y}) \cdot (\mathbf{x} - \alpha \mathbf{y}) = \mathbf{x} \cdot \mathbf{x} - \alpha \mathbf{x} \cdot \mathbf{y} - \alpha \mathbf{x} \cdot \mathbf{y} + \alpha \mathbf{y} \cdot \alpha \mathbf{y} = \|\mathbf{x}\|^2 - 2\alpha \mathbf{x} \cdot \mathbf{y} + \alpha^2 \|\mathbf{y}\|^2$$

Hence
$$0 \le \|\mathbf{x}\|^2 - 2\alpha(\mathbf{x} \cdot \mathbf{y}) + \alpha^2 \|\mathbf{y}\|^2 = \|\mathbf{x}\|^2 - 2\frac{(\mathbf{x} \cdot \mathbf{y})}{\|\mathbf{y}\|^2} (\mathbf{x} \cdot \mathbf{y}) + \left(\frac{(\mathbf{x} \cdot \mathbf{y})}{\|\mathbf{y}\|^2}\right)^2 \|\mathbf{y}\|^2 = \|\mathbf{x}\|^2 - \frac{(\mathbf{x} \cdot \mathbf{y})^2}{\|\mathbf{y}\|^2}$$

Thus
$$\frac{(\mathbf{x} \cdot \mathbf{y})^2}{\|\mathbf{y}\|^2} \le \|\mathbf{x}\|^2$$
. Hence $(\mathbf{x} \cdot \mathbf{y})^2 \le \|\mathbf{x}\|^2 \|\mathbf{y}\|^2 = (\|\mathbf{x}\| \|\mathbf{y}\|)^2$. By taking the square root of both sides we get $|\mathbf{x} \cdot \mathbf{y}| \le \|\mathbf{x}\| \|\mathbf{y}\|$.

Theorem 0.2. Let $x, y \in \mathbb{R}^n$. Then

- (i) $\|\boldsymbol{x}\| \ge 0$ with equality only when $\boldsymbol{x} = \boldsymbol{0}$,
- (ii) $\|\alpha \boldsymbol{x}\| = |\alpha| \|\boldsymbol{x}\|$ for all scalars α ,
- (iii) $\|\boldsymbol{x} + \boldsymbol{y}\| \le \|\boldsymbol{x}\| + \|\boldsymbol{y}\|$, (Triangle Inequality)
- (iv) $|||\mathbf{x}|| ||\mathbf{y}||| \le ||\mathbf{x}|| ||\mathbf{y}||,$
- (v) $\|\boldsymbol{x}\| \le \sum_{k=1}^{n} |x_k| \le n \|\boldsymbol{x}\|_{\infty}$,
- (vi) $|x_k| \leq ||\boldsymbol{x}|| \leq \sqrt{n} ||\boldsymbol{x}||_{\infty}$.

Proof. We will prove iii - vi, you should be able to do i - ii.

(*iii*)
$$\|\mathbf{x} + \mathbf{y}\|^2 = (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y}) = \mathbf{x} \cdot \mathbf{x} + 2(\mathbf{x} \cdot \mathbf{y}) + \mathbf{y} \cdot \mathbf{y}$$

$$= \|\mathbf{x}\|^2 + 2(\mathbf{x} \cdot \mathbf{y}) + \|\mathbf{y}\|^2$$

$$\leq \|\mathbf{x}\|^2 + 2\|\mathbf{x}\|\|\mathbf{y}\| + \|\mathbf{y}\|^2 \quad \text{by the Cauchy-Schwarz Inequality}$$

$$= (\|\mathbf{x}\| + \|\mathbf{y}\|)^2$$
Hence $\|\mathbf{x} + \mathbf{y}\|^2 \leq (\|\mathbf{x}\| + \|\mathbf{y}\|)^2$

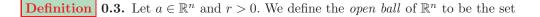
Hence $\|\mathbf{x} + \mathbf{y}\|^2 \le (\|\mathbf{x}\| + \|\mathbf{y}\|)^2$

By taking the square root, we get $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

 $(vi) ||x_k||^2 \le ||\mathbf{x}||^2 = x_1^2 + x_2^2 + \ldots + x_n^2 = |x_1|^2 + |x_2|^2 + \ldots + |x_n|^2 = \sum_{k=1}^n |x_k|^2 \quad \text{for } k = 1, 2, \ldots, n$ Hence $|x_k|^2 \le ||\mathbf{x}||^2 \le \sum_{k=1}^n |x_k|^2 \le \sum_{k=1}^n ||\mathbf{x}||_{\infty}^2 = n ||\mathbf{x}||_{\infty}^2$ Thus $|x_k| \le ||\mathbf{x}|| \le \sqrt{n} ||\mathbf{x}||_{\infty}.$

 \square

FIGURE 1



$$B_r(a) = \{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x} - a|| < r \}.$$

Definition 0.4. Let $E \subseteq \mathbb{R}^n$ We say that E is open set if for each $\mathbf{x} \in E$ there is an $\epsilon > 0$ such that $B_{\epsilon}(\mathbf{x}) \subseteq E$.

Lemma 0.1. Every open ball in \mathbb{R}^n is open.

Proof. Let $\mathbf{x} \in B_r(a)$ and let $\epsilon = r - \|\mathbf{x} - a\|$. We claim that $B_{\epsilon}(\mathbf{x}) \subseteq B_r(a)$. So let $\mathbf{y} \in B_{\epsilon}(\mathbf{x})$, then $\|\mathbf{y} - \mathbf{x}\| < \epsilon$. Now, $\|\mathbf{y} - a\| = \|\mathbf{y} - \mathbf{x} + \mathbf{x} - a\| \le \|\mathbf{y} - \mathbf{x}\| + \|\mathbf{x} - a\| < \epsilon + \|\mathbf{x} - a\| = r - \|\mathbf{x} - a\| + \|\mathbf{x} - a\| \| = r$. Thus $\|\mathbf{y} - a\| < r$. Hence $\mathbf{y} \in B_r(a)$. Therefore $B_{\epsilon}(\mathbf{x}) \subseteq B_r(a)$ and hence $B_r(a)$ is open set.

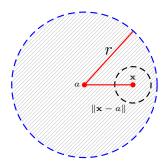
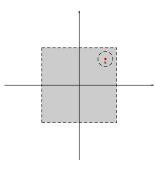


FIGURE 2

Example 0.1. The set $E = \{(x, y) \in \mathbb{R}^2 \mid -1 < x < 1, -1 < y < 1\}$ is open set since for every $\mathbf{x} \in E$ we can find an open ball contained in E.



Definition 0.5. Let $E \subseteq \mathbb{R}^n$. We say that E is closed set if $E^c = \mathbb{R}^n \setminus E$ is open set.

Lemma 0.2. Every singleton in \mathbb{R}^n is closed. (Let $x \in \mathbb{R}^n$, then $\{x\}$ is closed set.)

Proof. We want to show that $\{\mathbf{x}\}^c = \mathbb{R}^n \setminus \{\mathbf{x}\}$ is open. Let $\mathbf{y} \in \mathbb{R}^n \setminus \{\mathbf{x}\}$, then $\|\mathbf{x} - \mathbf{y}\| > 0$. Let $r = \frac{\|\mathbf{x} - \mathbf{y}\|}{2}$, then $B_r(\mathbf{y}) \cap \{\mathbf{x}\} = \phi \Rightarrow B_r(\mathbf{y}) \subseteq \mathbb{R}^n \setminus \{\mathbf{x}\}$. Hence $\{\mathbf{x}\}^c = \mathbb{R}^n \setminus \{\mathbf{x}\}$ is open set. Therefore $\{\mathbf{x}\}$ is closed.

Definition 0.6. Let $E \subseteq \mathbb{R}^n$, and let $\mathbf{x} \in \mathbb{R}^n$.

- We say that **x** is an interior point of E if there exist r > 0 such that $B_r(\mathbf{x}) \subseteq E$.
- The set of all interior points of E is denoted by E° .
- We say that **x** is a limit point of E if for each r > 0, $B_r(\mathbf{x}) \cap (E \setminus {\mathbf{x}}) \neq \phi$.
- The set of all limit points of E is denoted by E'.
- We say that **x** is a boundary point of E if for each r > 0, $B_r(\mathbf{x}) \cap E \neq \phi$ and $B_r(\mathbf{x}) \cap E^c \neq \phi$.
- The set of all boundary points of E is denoted by ∂E .
- The closure set of E , denoted by \overline{E} , is $\overline{E} = E \cup E'$.

Example 0.2. Let $E = \{(x, y) \in \mathbb{R}^2 \mid -1 < x < 1, -1 < y < 1\}$. Then every point of E is an interior point and $E^\circ = E$. and every point in E and on the boundary of E is a limit point and $E' = \{(x, y) \in \mathbb{R}^2 \mid -1 \le x \le 1, -1 \le y \le 1\}$. Hence $\overline{E} = \{(x, y) \in \mathbb{R}^2 \mid -1 \le x \le 1, -1 \le y \le 1\}$. Every point on the lines $x = 1, x = -1, y = 1, y = -1, - \le x, y \le 1$ is a boundary point and $\partial E == \{(x, y) \in \mathbb{R}^2 \mid y = \pm 1, -1 \le x \le 1 \text{ and } x = \pm 1, -1 \le y \le 1\}$ $X \times Y$