EUCLIDEAN SPACES

DR.HAMED AL-SULAMI

Definition 0.1. for each $n \in \mathbb{N}$ we define the Euclidean space, \mathbb{R}^{n}, by

$$
\mathbb{R}^{n}=\left\{\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R} \text { for } i=1,2, \ldots, n\right\}
$$

Elements $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of \mathbb{R}^{n} is called vectors (points) and each number x_{i} is called the ith coordinate or components of \mathbf{x}.

Definition 0.2. Algebraic Structure of \mathbb{R}^{n} Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ be vectors and $\alpha \in \mathbb{R}$ be a scalar.
(1) $\mathbf{x}=\mathbf{y}$ if and only if $x_{i}=y_{i}$ for $i=1,2, \ldots, n$. (Two vectors are equal if their components are equal)
(2) The zero vector is $\mathbf{0}=(0,0, \ldots, 0)$.
(3) The sum of \mathbf{x}, and \mathbf{y} is the vector $\mathbf{x}+\mathbf{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)$.
(4) The difference of \mathbf{x}, and \mathbf{y} is the vector $\mathbf{x}-\mathbf{y}=\left(x_{1}-y_{1}, x_{2}-y_{2}, \ldots, x_{n}-y_{n}\right)$.
(5) The product of a scalar α and a vector \mathbf{x} is the vector $\alpha \mathbf{x}=\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{n}\right)$.
(6) The dot product of \mathbf{x} and \mathbf{y} is the scalar $\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}$.
(7) The vector $\mathbf{e}_{i}=\left(0,0,0, \ldots, 1^{i \text { th component }}, 0,0, \ldots, 0\right)$
(8) The usual basis of \mathbb{R}^{n} is the collection $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$.
(9) The Euclidean norm of a vector $\mathbf{x} \in \mathbb{R}^{n}$ is the scalar $\|\mathbf{x}\|=\sqrt{\mathbf{x} \cdot \mathbf{x}}$.
(10) The Euclidean distance between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ is the scalar $\|\mathbf{x}-\mathbf{y}\|$.
(11) The sup-norm of a vector $\mathbf{x} \in \mathbb{R}^{n}$ is the scalar $\|\mathbf{x}\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}$.

Theorem 0.1. The Cauchy-Schwarz Inequality If $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, then $|\boldsymbol{x} \cdot \boldsymbol{y}| \leq\|\boldsymbol{x}\|\|\boldsymbol{y}\|$.

Proof. If $\mathbf{y}=0$ there is nothing to prove. Suppose $\mathbf{y} \neq 0$. Now, $\alpha=\frac{(\mathbf{x} \cdot \mathbf{y})}{\|\mathbf{y}\|^{2}} \in \mathbb{R}$. Now,

$$
0 \leq\|\mathbf{x}-\alpha \mathbf{y}\|^{2}=(\mathbf{x}-\alpha \mathbf{y}) \cdot(\mathbf{x}-\alpha \mathbf{y})=\mathbf{x} \cdot \mathbf{x}-\alpha \mathbf{x} \cdot \mathbf{y}-\alpha \mathbf{x} \cdot \mathbf{y}+\alpha \mathbf{y} \cdot \alpha \mathbf{y}=\|\mathbf{x}\|^{2}-2 \alpha \mathbf{x} \cdot \mathbf{y}+\alpha^{2}\|\mathbf{y}\|^{2}
$$

Hence $0 \leq\|\mathbf{x}\|^{2}-2 \alpha(\mathbf{x} \cdot \mathbf{y})+\alpha^{2}\|\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}-2 \frac{(\mathbf{x} \cdot \mathbf{y})}{\|\mathbf{y}\|^{2}}(\mathbf{x} \cdot \mathbf{y})+\left(\frac{(\mathbf{x} \cdot \mathbf{y})}{\|\mathbf{y}\|^{2}}\right)^{2}\|\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}-\frac{(\mathbf{x} \cdot \mathbf{y})^{2}}{\|\mathbf{y}\|^{2}}$
Thus $\frac{(\mathbf{x} \cdot \mathbf{y})^{2}}{\|\mathbf{y}\|^{2}} \leq\|\mathbf{x}\|^{2}$. Hence $(\mathbf{x} \cdot \mathbf{y})^{2} \leq\|\mathbf{x}\|^{2}\|\mathbf{y}\|^{2}=(\|\mathbf{x}\|\|\mathbf{y}\|)^{2}$. By taking the square root of both sides we get $|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.

Theorem 0.2. Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$. Then
(i) $\|\boldsymbol{x}\| \geq 0$ with equality only when $\boldsymbol{x}=\boldsymbol{0}$,
(ii) $\|\alpha \boldsymbol{x}\|=|\alpha|\|x\|$ for all scalars α,
(iii) $\|\boldsymbol{x}+\boldsymbol{y}\| \leq\|\boldsymbol{x}\|+\|\boldsymbol{y}\|$, (Triangle Inequality)
(iv) $|\|x\|-\|\boldsymbol{y}\|| \leq\|\boldsymbol{x}\|-\|\boldsymbol{y}\|$,
(v) $\|x\| \leq \sum_{k=1}^{n}\left|x_{k}\right| \leq n\|x\|_{\infty}$,
(vi) $\left|x_{k}\right| \leq\|x\| \leq \sqrt{n}\|x\|_{\infty}$.

Proof. We will prove $i i i-v i$, you should be able to do $i-i i$.
(iii)

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|^{2}=(\mathbf{x}+\mathbf{y}) \cdot(\mathbf{x}+\mathbf{y}) & =\mathbf{x} \cdot \mathbf{x}+2(\mathbf{x} \cdot \mathbf{y})+\mathbf{y} \cdot \mathbf{y} \\
& =\|\mathbf{x}\|^{2}+2(\mathbf{x} \cdot \mathbf{y})+\|\mathbf{y}\|^{2} \\
& \leq\|\mathbf{x}\|^{2}+2|\mathbf{x} \cdot \mathbf{y}|+\|\mathbf{y}\|^{2} \\
& \leq\|\mathbf{x}\|^{2}+2\|\mathbf{x}\|\|\mathbf{y}\|+\|\mathbf{y}\|^{2} \quad \text { by the Cauchy-Schwarz Inequality } \\
& =(\|\mathbf{x}\|+\|\mathbf{y}\|)^{2} \\
\text { Hence }\|\mathbf{x}+\mathbf{y}\|^{2} & \leq(\|\mathbf{x}\|+\|\mathbf{y}\|)^{2}
\end{aligned}
$$

By taking the square root, we get $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.
(iv)

$$
\begin{aligned}
\|\mathbf{x}\|=\|\mathbf{x}-\mathbf{y}+\mathbf{y}\| & \leq\|\mathbf{x}-\mathbf{y}\|+\|\mathbf{y}\| \quad \text { by Triangle Inequality (iii) } \\
\text { Hence }\|\mathbf{x}\|-\|\mathbf{y}\| & \leq\|\mathbf{x}-\mathbf{y}\|----------------(1)
\end{aligned}
$$

Also $\|\mathbf{y}\|=\|\mathbf{y}-\mathbf{x}+\mathbf{x}\| \leq\|\mathbf{y}-\mathbf{x}\|+\|\mathbf{x}\| \quad$ by Triangle Inequality (iii)
Hence $\|\mathbf{y}\|-\|\mathbf{x}\| \leq\|\mathbf{y}-\mathbf{x}\|=\|-(\mathbf{x}-\mathbf{y})\|=\|\mathbf{x}-\mathbf{y}\|$

$$
\text { Hence }-\|\mathbf{x}-\mathbf{y}\| \leq\|\mathbf{x}\|-\|\mathbf{y}\|---------------(2)
$$

By (1) and (2) we get $-\|\mathbf{x}-\mathbf{y}\| \leq\|\mathbf{x}\|-\|\mathbf{y}\| \leq\|\mathbf{x}-\mathbf{y}\| \Rightarrow|\|\mathbf{x}\|-\|\mathbf{y}\|| \leq\|\mathbf{x}\|-\|\mathbf{y}\|$.
(v) $\quad\|\mathbf{x}\|^{2}=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\ldots+\left|x_{n}\right|^{2} \leq\left(\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|\right)^{2}$

Hence $\|\mathbf{x}\| \leq\left(\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|\right)=\sum_{k=1}^{n}\left|x_{k}\right|$
Now, since $\left|x_{k}\right| \leq \max _{1 \leq k \leq n}\left|x_{k}\right|=\|\mathbf{x}\|_{\infty}$ for $k=1,2, \ldots, n$ then $\|\mathbf{x}\| \leq \sum_{k=1}^{n}\left|x_{k}\right| \leq \sum_{k=1}^{n}\|\mathbf{x}\|_{\infty}=n\|\mathbf{x}\|_{\infty}$.
(vi) $\quad\left|x_{k}\right|^{2} \leq\|\mathbf{x}\|^{2}=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\ldots+\left|x_{n}\right|^{2}=\sum_{k=1}^{n}\left|x_{k}\right|^{2} \quad$ for $k=1,2, \ldots, n$ Hence $\left|x_{k}\right|^{2} \leq\|\mathbf{x}\|^{2} \leq \sum_{k=1}^{n}\left|x_{k}\right|^{2} \leq \sum_{k=1}^{n}\|\mathbf{x}\|_{\infty}^{2}=n\|\mathbf{x}\|_{\infty}^{2}$

Thus $\left|x_{k}\right| \leq\|\mathbf{x}\| \leq \sqrt{n}\|\mathbf{x}\|_{\infty}$.

Figure 1

Definition 0.3. Let $a \in \mathbb{R}^{n}$ and $r>0$. We define the open ball of \mathbb{R}^{n} to be the set

$$
B_{r}(a)=\left\{\mathrm{x} \in \mathbb{R}^{n} \mid\|\mathrm{x}-a\|<r\right\}
$$

Definition 0.4. Let $E \subseteq \mathbb{R}^{n}$ We say that E is open set if for each $\mathbf{x} \in E$ there is an $\epsilon>0$ such that $B_{\epsilon}(\mathbf{x}) \subseteq E$.

Lemma 0.1. Every open ball in \mathbb{R}^{n} is open.

Proof. Let $\mathbf{x} \in B_{r}(a)$ and let $\epsilon=r-\|\mathbf{x}-a\|$. We claim that $B_{\epsilon}(\mathbf{x}) \subseteq B_{r}(a)$. So let $\mathbf{y} \in B_{\epsilon}(\mathbf{x})$, then $\|\mathbf{y}-\mathbf{x}\|<\epsilon$. Now, $\|\mathrm{y}-a\|=\|\mathrm{y}-\mathrm{x}+\mathrm{x}-a\| \leq\|\mathrm{y}-\mathrm{x}\|+\|\mathrm{x}-a\|<\epsilon+\|\mathrm{x}-a\|=$ $\boldsymbol{r}-\|\mathbf{x}-\boldsymbol{a}\|+\|\mathbf{x}-\boldsymbol{a}\| \|=\boldsymbol{r}$. Thus $\|\mathbf{y}-a\|<r$. Hence $\mathbf{y} \in B_{r}(a)$. Therefore $B_{\epsilon}(\mathbf{x}) \subseteq B_{r}(a)$ and hence $B_{r}(a)$ is open set.

Figure 2

Example 0.1. The set $E=\left\{(x, y) \in \mathbb{R}^{2} \mid-1<x<1,-1<y<1\right\}$ is open set since for every $\mathbf{x} \in E$ we can find an open ball contained in E.

Figure 3

Definition 0.5. Let $E \subseteq \mathbb{R}^{n}$. We say that E is closed set if $E^{c}=\mathbb{R}^{n} \backslash E$ is open set.

Lemma 0.2. Every singleton in \mathbb{R}^{n} is closed. (Let $\boldsymbol{x} \in \mathbb{R}^{n}$, then $\{\boldsymbol{x}\}$ is closed set.)

Proof. We want to show that $\{\mathbf{x}\}^{c}=\mathbb{R}^{n} \backslash\{\mathbf{x}\}$ is open. Let $\mathbf{y} \in \mathbb{R}^{n} \backslash\{\mathbf{x}\}$, then $\|\mathbf{x}-\mathbf{y}\|>0$. Let $r=\frac{\|\mathbf{x}-\mathbf{y}\|}{2}$, then $B_{r}(\mathbf{y}) \cap\{\mathbf{x}\}=\phi \Rightarrow B_{r}(\mathbf{y}) \subseteq \mathbb{R}^{n} \backslash\{\mathbf{x}\}$. Hence $\{\mathbf{x}\}^{c}=\mathbb{R}^{n} \backslash\{\mathbf{x}\}$ is open set. Therefore $\{\mathbf{x}\}$ is closed.

Definition 0.6. Let $E \subseteq \mathbb{R}^{n}$, and let $\mathbf{x} \in \mathbb{R}^{n}$.

- We say that \mathbf{x} is an interior point of E if there exist $r>0$ such that $B_{r}(\mathbf{x}) \subseteq E$.
- The set of all interior points of E is denoted by E°.
- We say that \mathbf{x} is a limit point of E if for each $r>0, B_{r}(\mathbf{x}) \cap(E \backslash\{\mathbf{x}\}) \neq \phi$.
- The set of all limit points of E is denoted by E^{\prime}.
- We say that \mathbf{x} is a boundary point of E if for each $r>0, B_{r}(\mathbf{x}) \cap E \neq \phi$ and $B_{r}(\mathbf{x}) \cap E^{c} \neq \phi$.
- The set of all boundary points of E is denoted by ∂E.
- The closure set of E, denoted by \bar{E}, is $\bar{E}=E \cup E^{\prime}$.

Example 0.2. Let $E=\left\{(x, y) \in \mathbb{R}^{2} \mid-1<x<1,-1<y<1\right\}$. Then every point of E is an interior point and $E^{\circ}=E$. and every point in E and on the boundary of E is a limit point and $E^{\prime}=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leq x \leq 1,-1 \leq y \leq 1\right\}$. Hence $\bar{E}=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leq x \leq 1,-1 \leq y \leq 1\right\}$. Every point on the lines $x=1, x=-1, y=1, y=-1,-\leq x, y \leq 1$. is a boundary point and $\partial E==\left\{(x, y) \in \mathbb{R}^{2} \mid y= \pm 1,-1 \leq x \leq 1\right.$ and $\left.x= \pm 1,-1 \leq y \leq 1\right\} X \times Y$

