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Definition 0.1. for each n ∈ N we define the Euclidean space, R
n, by

R
n = {x = (x1, x2, . . . , xn) | xi ∈ R for i = 1, 2, . . . , n}.

Elements x = (x1, x2, . . . , xn) of R
n is called vectors (points) and each number xi is called the ith

coordinate or components of x.

Definition 0.2. Algebraic Structure of R
n Let x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn) ∈ R

n be

vectors and α ∈ R be a scalar.

(1) x = y if and only if xi = yi for i = 1, 2, . . . , n. ( Two vectors are equal if their components are

equal)

(2) The zero vector is 0 = (0, 0, . . . , 0).

(3) The sum of x, and y is the vector x + y = (x1 + y1, x2 + y2, . . . , xn + yn).

(4) The difference of x, and y is the vector x − y = (x1 − y1, x2 − y2, . . . , xn − yn).

(5) The product of a scalar α and a vector x is the vector αx = (αx1, αx2, . . . , αxn).

(6) The dot product of x and y is the scalar x · y = x1y1 + x2y2 + . . . + xnyn.

(7) The vector ei = (0, 0, 0, . . . , 1ith component, 0, 0, . . . , 0)

(8) The usual basis of R
n is the collection {e1, e2, . . . , en}.

(9) The Euclidean norm of a vector x ∈ R
n is the scalar ‖x‖ =

√
x · x .

(10) The Euclidean distance between two vectors x,y ∈ R
n is the scalar ‖x − y‖.

(11) The sup-norm of a vector x ∈ R
n is the scalar ‖x‖∞ = max{|x1|, |x2|, . . . , |xn|}.

Theorem 0.1. The Cauchy-Schwarz Inequality If x,y ∈ R
n, then |x · y| ≤ ‖x‖‖y‖.

Proof. If y = 0 there is nothing to prove. Suppose y 6= 0. Now, α =
(x · y)

‖y‖2
∈ R. Now,

0 ≤ ‖x− αy‖2 = (x − αy) · (x − αy) = x · x − αx · y − αx · y + αy · αy = ‖x‖2 − 2αx · y + α2‖y‖2

Hence 0 ≤ ‖x‖2 − 2α(x · y) + α2‖y‖2 = ‖x‖2 − 2
(x · y)

‖y‖2
(x · y) +

(

(x · y)

‖y‖2

)2

‖y‖2 = ‖x‖2 − (x · y)2

‖y‖2

Thus
(x · y)2

‖y‖2
≤ ‖x‖2. Hence (x · y)2 ≤ ‖x‖2‖y‖2 = (‖x‖‖y‖)2. By taking the square root of both

sides we get |x · y| ≤ ‖x‖‖y‖.
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Theorem 0.2. Let x,y ∈ R
n. Then

(i) ‖x‖ ≥ 0 with equality only when x = 0,

(ii) ‖αx‖ = |α|‖x‖ for all scalars α,

(iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖, (Triangle Inequality)

(iv) |‖x‖ − ‖y‖| ≤ ‖x‖ − ‖y‖,
(v) ‖x‖ ≤

∑

n

k=1
|xk| ≤ n‖x‖∞,

(vi) |xk| ≤ ‖x‖ ≤ √
n‖x‖∞.

Proof. We will prove iii− vi, you should be able to do i − ii.

(iii) ‖x + y‖2 = (x + y) · (x + y) = x · x + 2(x · y) + y · y

= ‖x‖2 + 2(x · y) + ‖y‖2

≤ ‖x‖2 + 2|x · y| + ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2 by the Cauchy-Schwarz Inequality

= (‖x‖ + ‖y‖)2

Hence ‖x + y‖2 ≤ (‖x‖ + ‖y‖)2

By taking the square root, we get ‖x + y‖ ≤ ‖x‖ + ‖y‖.

(iv) ‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖ + ‖y‖ by Triangle Inequality (iii)

Hence ‖x‖ − ‖y‖ ≤ ‖x− y‖ − −−−−−−−−−− −−−−−(1)

Also ‖y‖ = ‖y− x + x‖ ≤ ‖y− x‖ + ‖x‖ by Triangle Inequality (iii)

Hence ‖y‖ − ‖x‖ ≤ ‖y− x‖ = ‖ − (x − y)‖ = ‖x− y‖

Hence − ‖x− y‖ ≤ ‖x‖ − ‖y‖ − −−−−−−−−− −−−−−−(2)

By (1) and (2) we get − ‖x− y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x− y‖ ⇒ |‖x‖ − ‖y‖| ≤ ‖x‖ − ‖y‖.

(v) ‖x‖2 = x2

1
+ x2

2
+ . . . + x2

n = |x1|2 + |x2|2 + . . . + |xn|2 ≤ (|x1| + |x2| + . . . + |xn|)2

Hence ‖x‖ ≤ (|x1| + |x2| + . . . + |xn|) =

n
∑

k=1

|xk|

Now, since |xk| ≤ max
1≤k≤n

|xk| = ‖x‖∞ for k = 1, 2, . . . , n then ‖x‖ ≤
n

∑

k=1

|xk| ≤
n

∑

k=1

‖x‖∞ = n‖x‖∞.

(vi) |xk|2 ≤ ‖x‖2 = x2

1
+ x2

2
+ . . . + x2

n
= |x1|2 + |x2|2 + . . . + |xn|2 =

n
∑

k=1

|xk|2 for k = 1, 2, . . . , n

Hence |xk|2 ≤ ‖x‖2 ≤
n

∑

k=1

|xk|2 ≤
n

∑

k=1

‖x‖2

∞ = n‖x‖2

∞

Thus |xk| ≤ ‖x‖ ≤
√

n ‖x‖∞.
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Definition 0.3. Let a ∈ R
n and r > 0. We define the open ball of R

n to be the set

Br(a) = {x ∈ R
n | ‖x − a‖ < r}.

Definition 0.4. Let E ⊆ R
n We say that E is open set if for each x ∈ E there is an ǫ > 0 such that

Bǫ(x) ⊆ E.

Lemma 0.1. Every open ball in R
n is open.

Proof. Let x ∈ Br(a) and let ǫ = r − ‖x − a‖. We claim that Bǫ(x) ⊆ Br(a). So let y ∈ Bǫ(x), then

‖y − x‖ < ǫ. Now, ‖y − a‖ = ‖y − x + x − a‖ ≤ ‖y − x‖ + ‖x − a‖ < ǫ + ‖x − a‖ =

r − ‖x − a‖ + ‖x − a‖‖ = r. Thus ‖y− a‖ < r. Hence y ∈ Br(a). Therefore Bǫ(x) ⊆ Br(a) and hence

Br(a) is open set. �
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Figure 2

Example 0.1. The set E = {(x, y) ∈ R
2 | −1 < x < 1,−1 < y < 1} is open set since for every x ∈ E

we can find an open ball contained in E.
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Figure 3
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Definition 0.5. Let E ⊆ R
n. We say that E is closed set if Ec = R

n \ E is open set.

Lemma 0.2. Every singleton in R
n is closed. ( Let x ∈ R

n, then {x} is closed set.)

Proof. We want to show that {x}c = R
n \ {x} is open. Let y ∈ R

n \ {x}, then ‖x − y‖ > 0. Let

r =
‖x − y‖

2
, then Br(y) ∩ {x} = φ ⇒ Br(y) ⊆ R

n \ {x}. Hence {x}c = R
n \ {x} is open set. Therefore

{x} is closed. �

Definition 0.6. Let E ⊆ R
n, and let x ∈ R

n.

• We say that x is an interior point of E if there exist r > 0 such that Br(x) ⊆ E.

• The set of all interior points of E is denoted by E◦.

• We say that x is a limit point of E if for each r > 0 , Br(x) ∩ (E \ {x}) 6= φ.

• The set of all limit points of E is denoted by E′.

• We say that x is a boundary point of E if for each r > 0 , Br(x) ∩ E 6= φ and Br(x) ∩ Ec 6= φ.

• The set of all boundary points of E is denoted by ∂E.

• The closure set of E ,denoted by E, is E = E ∪ E′.

Example 0.2. Let E = {(x, y) ∈ R
2 | −1 < x < 1,−1 < y < 1}. Then every point of E is an

interior point and E◦ = E. and every point in E and on the boundary of E is a limit point and

E′ = {(x, y) ∈ R
2 | −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}. Hence E = {(x, y) ∈ R

2 | −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}. Every

point on the lines x = 1, x = −1, y = 1, y = −1,− ≤ x, y ≤ 1. is a boundary point and

∂E == {(x, y) ∈ R
2 | y = ±1,−1 ≤ x ≤ 1 and x = ±1,−1 ≤ y ≤ 1} X × Y
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