LINEAR SPACES

1. LINEAR SPACES

Linear spaces play a big role in functional analysis and its applications. The definition will involve a general field \mathbb{F} where \mathbb{F} will be \mathbb{R} or \mathbb{C} . The elements of \mathbb{F} are called *scalars*.

Definition 1.1:[Linear(Vector) Space]

A linear space over \mathbb{F} is a none-empty set X of objects called *vectors* along with two operation

 $+: X \times X \longrightarrow X \quad (x, y) \mapsto x + y, \forall x, y \in X \qquad \text{addition of vectors}$ $\cdot: \mathbb{F} \times X \longrightarrow X \quad (\alpha, x) \mapsto \alpha x, \forall \alpha \in \mathbb{F}, x \in X \qquad \text{scalar multiplication of vectors}$

satisfying the following conditions

- (1) x + y = y + x $\forall x, y \in X$ (Commutative)
- (2) $(x+y)+z = x + (y+z) \quad \forall x, y, z \in X$ (Associative)
- (3) there exist a unique *zero vector* $\mathbf{0} \in X$ such that $x + \mathbf{0} = x \quad \forall x \in X$.
- (4) $\forall x \in X$, there exist $-x \in X$ such that $x + (-x) = \mathbf{0}$.
- (5) $\alpha(x+y) = \alpha x + \alpha y$, $\forall x, y \in X$ and $\forall \alpha \in \mathbb{F}$.
- (6) $(\alpha + \beta)x = \alpha x + \beta y$ $\forall x \in X \text{ and } \forall \alpha, \beta \in \mathbb{F}.$
- (7) $\alpha(\beta x) = \alpha \beta x \quad \forall x \in X \text{ and } \forall \alpha, \beta \in \mathbb{F}.$
- (8) $1x = x \quad \forall x \in X.$

Example 1: Let $X = \{\mathbf{0}\}$. Then X is a linear space and is called the *zero space* over \mathbb{F} .

Example 2: \mathbb{R}^n , $n \ge 1$. The Euclidean space. $\mathbb{R}^n = \{x \mid x = (x_1, x_2, \dots, x_n), x_1, x_2, \dots, x_n \in \mathbb{R}\}$ where

$$x + y = (x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$
 and
 $\alpha x = (\alpha x_1, \alpha x_2, \dots, \alpha x_n), \quad \alpha \in \mathbb{R}.$

Example 3: \mathbb{C}^n , $n \ge 1$. The Euclidean space. $\mathbb{C}^n = \{x \mid x = (x_1, x_2, \dots, x_n), x_1, x_2, \dots, x_n \in \mathbb{C}\}$ where

$$x + y = (x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$
 and

$$\alpha x = (\alpha x_1, \alpha x_2, \cdots, \alpha x_n), \quad \alpha \in \mathbb{C}.$$

October 31, 2008

Example 4: l_p . Let p be a real number such that $1 \le p < \infty$. l_p is the space of all sequence $x = \{x_n\}_{n=1}^{\infty}$ in \mathbb{F} such that $\sum_{n=1}^{\infty} |x_n|^p < \infty \quad (x = \{x_n\}_{n=1}^{\infty} \text{ converges}).$ $l_p = \{x = \{x_n\}_{n=1}^{\infty} | \sum_{n=1}^{\infty} |x_n|^p < \infty, \quad x_n, \in \mathbb{F}, \forall n \in \mathbb{N}\} \text{ where}$ $x + y = (x_1, x_2, \cdots, x_n, \cdots) + (y_1, y_2, \cdots, y_n, \cdots) = (x_1 + y_1, x_2 + y_2, \cdots, x_n + y_n, \cdots) \text{ and}$ $\alpha x = (\alpha x_1, \alpha x_2, \cdots, \alpha x_n, \cdots), \quad \alpha \in \mathbb{F}.$

We will prove that if $x = \{x_n\}_{n=1}^{\infty}$ and $y = \{y_n\}_{n=1}^{\infty}$ are elements in l_p , then $x + y \in l_p$. Now, we have

$$|x_{n} + y_{n}|^{p} \leq 2^{p} \max\{|x_{n}|^{p}, |y_{n}|^{p}\} \leq 2^{p} (|x_{n}|^{p} + |y_{n}|^{p}).$$

Hence $\sum_{n=1}^{\infty} |x_{n} + y_{n}|^{p} \leq 2^{p} \sum_{n=1}^{\infty} |x_{n}|^{p} + 2^{p} \sum_{n=1}^{\infty} |y_{n}|^{p} < \infty.$

Thus $x + y \in l_p$. Now, it is easy to verify that l_p is a linear space.

Example 5: Each of the following is a linear space with operations defined in Example 6.

$$x + y = (x_1, x_2, \cdots, x_n, \cdots) + (y_1, y_2, \cdots, y_n, \cdots) = (x_1 + y_1, x_2 + y_2, \cdots, x_n + y_n, \cdots)$$
and
$$\alpha x = (\alpha x_1, \alpha x_2, \cdots, \alpha x_n, \cdots) \quad \alpha \in \mathbb{F}.$$

(1) The set of all sequences in \mathbb{F} , $\omega = \{x = \{x_n\}_{n=1}^{\infty} \mid x_n, \in \mathbb{F}\}$

- (2) The set of all convergent sequences in \mathbb{F} , $c = \{x = \{x_n\}_{n=1}^{\infty} | \lim_{n \to \infty} x_n \in \mathbb{F}, x_n \in \mathbb{F}, \forall n \in \mathbb{N}\}$
- (3) The set of all sequences in \mathbb{F} converging to 0, $c_0 = \{x = \{x_n\}_{n=1}^{\infty} \mid \lim_{n \to \infty} x_n = 0, x_n \in \mathbb{F}, \forall n \in \mathbb{N}\}$
- (4) The set of all bounded sequences in \mathbb{F} , $l_{\infty} = \{x = \{x_n\}_{n=1}^{\infty} | \sup_{n \in \mathbb{N}} |x_n| < \infty, x_n \in \mathbb{F}, \forall n \in \mathbb{N}\}$

Example 6: C([a,b]). Let a,b be two real numbers such that a < b. C([a,b]) is the space of all continuous real-valued functions f over [a,b].

 $C([a,b]) = \{f : [a,b] \to \mathbb{R} \mid f \text{ is continuous on } [a,b]\}$ where

$$(f+g)(x) = f(x) + g(x) \quad \forall f, g \in C([a,b]), x \in [a,b] \text{ and}$$

 $(\alpha f)(x) = \alpha f(x), \quad \alpha \in \mathbb{R}.$

October 31, 2008

Example 7: $L_p([a,b])$. Let a, b be two real numbers such that a < b. $L_p([a,b])$ is the space of all Lebesgue measurable functions f such that $\int_a^b |f|^p < \infty$. $L_p([a,b]) = \{f : [a,b] \to \mathbb{R} \mid \int_a^b |f|^p < \infty\}$ where $(f+g)(x) = f(x) + g(x) \quad \forall f, g \in L_p([a,b]), x \in [a,b] \text{ and}$

 $(\alpha f)(x) = \alpha f(x), \quad \alpha \in \mathbb{R}.$

0x = (0+0)x

0x = 0x + 0x

0x + (-0x) = 0x + 0x + (-0x)

 $\mathbf{0} = 0x$

Lemma 1: Let *X* be a linear space over \mathbb{F} then:

- (1) $0x = \mathbf{0}, \quad \forall x \in X.$ (2) $\alpha \mathbf{0} = \mathbf{0}, \quad \forall \alpha \in \mathbb{F}.$
- $(3) \ (-1)x = -x, \quad \forall x \in X.$
- (4) $\alpha x = \mathbf{0} \Rightarrow x = \mathbf{0}$ or $\alpha = 0$.

Proof: We will prove (1) and (3) and the reader should do (2) and (4).

1.

3.

(-1)x + x = (-1+1)x	Using property 7
(-1)x + x = 0x	Using part 1 of this Lemma
(-1)x + x = 0	Using part 1 of this Lemma
(-1)x + x + (-x) = 0 + (-x)	
(-1)x = -x	Using property 4

Using property 6

Using property 4

Subspaces, Linearly Independent and Basis. we will study the geometry of the linear space.

Definition 1.2:[Subspace]

A non-empty subset Y of a linear space X over \mathbb{F} is called a linear subspace if

 $\alpha x + \beta y \in Y, \forall x, y \in Y, \text{ and } \forall \alpha, \beta \in \mathbb{F}.$

October 31, 2008	3	© Dr.Hamed Al-Sulami

Example 8: Let $n \in \mathbb{N}$, $n \ge 1$, then $\mathbb{R}^{n-1} = \{(x_1, x_2, \dots, x_{n-1}, 0) \mid x_1, x_2, \dots, x_{n-1} \in \mathbb{R}\}$ is a subspace of \mathbb{R}^n . Also P[a, b], the set of all polynomials over [a, b] is a subspace of C[a, b]. *Definition 1.3:*[*Linearly independent and basis*]

a. A finite set of vectors $\{x_1, x_2, \dots, x_n\}$ in a linear space *X* is called *linearly independent* if for any scalars $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{F}$ we have

 $\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n = \mathbf{0} \Rightarrow \alpha_1 = \alpha_2 = \cdots = \alpha_n = 0.$

- b. A subset *Y* of *X* is *linearly independent* if every non-empty finite subset of *Y* is linearly independent and *Y* is called linearly dependent if it not linearly independent.
- c. A subset B of X is called a basis for X if
 - 1. *B* is a linearly independent set.
 - 2. $X = \text{Span } B = \{\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n \mid \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{F}, x_1, x_2, \dots, x_n \in B\}$

Example 9: Let $n \in \mathbb{N}$, $n \ge 1$. Let

$$e_1 = (1, 0, 0, \dots, 0),$$

 $e_2 = (0, 1, 0, \dots, 0),$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

Then the set $B = \{e_1, e_2, \dots, e_n\}$ is a linearly independent set that span \mathbb{R}^n . Hence *B* is a basis for \mathbb{R}^n .

Example 10: Let $n \in \mathbb{N}$, $n \ge 1$. Let

$$f_1(x) = x, \forall x \in [a, b]$$

$$f_2(x) = x^2, \forall x \in [a, b]$$

$$\vdots$$

$$f_n(x) = x^n, \forall x \in [a, b]$$

$$\vdots$$

Then the set $B = \{f_1, f_2, \dots, f_n, \dots\}$ is a linearly independent set that span P[a, b]. Hence B is a basis for P[a, b].

October 31, 2008

Theorem 1.1: []

- (1) Every linear space $X \neq \{\mathbf{0}\}$ has a basis.
- (2) Let X be a finite dimensional linear space. Then, all bases for X have the same number of elements.

Definition 1.4:[Dimension of a Linear Space]

- (1) A linear space X is called *finite dimensional* if it has a finite basis and we defined the dimension of X, denoted by, $\dim X =$ the number of element of the basis.
- (2) A linear space X is called *infinite dimensional* if it has no a finite basis and we defined the dimension of X, dim $X = \infty$.

Direct Sums. Let *X* be a linear space, and let $x \in X$. Let *Y*, *Z* be two subspace of *X*, and let $\alpha \in \mathbb{F}$. Define the following

$Y + Z = \{y + z : y \in Y, z \in Z\}$	The sum of two subspaces
$Y - Z = \{y - z : y \in Y, z \in Z\}$	Algebraic Difference
$x+Y = \{x+y : y \in Y\}$	Translate of Y by x .
$x - Y = \{x - y : y \in Y\}$	
$\alpha Y = \{\alpha y : y \in Y\}$	

Definition 1.5:[Direct Sum]

A linear space X is called the *direct sum* of two subspaces Y and Z of X, denoted by $X = Y \oplus Z$, if the following two conditions hold:

1.
$$X = Y + Z$$

2. $Y \cap Z = \{\mathbf{0}\}$

The subspace Y(Z) is called an algebraic complement of Z(Y) in X.

Quotient Spaces. Let *Y* be a subspace of linear space *X*. The cost of an element $x \in X$ with respect to *Y*, $x + Y = \{x + y : y \in Y\}$. Note that any two cosets are either disjoint or identical. Also note that the distinct cosets form a partition of *X*. Let $X/Y = \{x + Y : x \in X\}$ and define the algebraic operation by

$$(x+Y) + (z+Y) = (x+z) + Y \qquad \forall x, z \in X.$$

$$\alpha(x+Y) = \alpha x + Y \quad \forall x \in X, \forall \alpha \in \mathbb{F}.$$

October 31, 2008

© Dr.Hamed Al-Sulami

Under the algebraic operation defined above X/Y is a linear space and it is called the *quotient space* of X by Y. The dimension of the space X/Y is called codimension of Y and is denoted by $\operatorname{codim} Y$ so $\operatorname{codim} Y = \dim(X/Y)$. The function $q: X \to X/Y$ defined by $q(x) = x + Y, \forall x \in X$ is called *the quotient mapping(the canonical mapping)*

EXERCISES FOR SECTION 1

- 1. Let $f_n(x) = x^n, \forall x \in [a,b], n \in \mathbb{N}$. Show that the set $\{f_1, f_2, \dots, f_n\}$ is a linearly independent set in the linear space C[a,b].
- 2. Let $M_2(\mathbb{R}) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \mid a, b, c, d \in \mathbb{R} \right\}.$

Show that $M_2(\mathbb{R})$ is a linear space over \mathbb{R} . Give examples of subspaces of $M_2(\mathbb{R})$. 3. Prove parts (2) and (4) of Lemma 1.

- 4. Let $X = \mathbb{C}^3$ and let $Y = \{(0, x, 0) \mid x \in \mathbb{C}\}$. Find $X/Y, X/\{0\}, X/X$.
- 5. Let X_1 and X_2 be any two linear spaces over \mathbb{F} . Show that $X = X_1 \times X_2$ with algebraic operation by

 $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad x_1, y_1 \in X_1, x_2, y_2 \in X_2$ and $\alpha(x_1, x_2) = (\alpha x_1, \alpha x_2), \quad \alpha \in \mathbb{F}.$

is a linear space over \mathbb{F} .