LINEAR SPACES

1. Linear Spaces

Linear spaces play a big role in functional analysis and its applications. The definition will involve a general field \mathbb{F} where \mathbb{F} will be \mathbb{R} or \mathbb{C}. The elements of \mathbb{F} are called scalars.

Definition 1.1:[Linear(Vector) Space]

A linear space over \mathbb{F} is a none-empty set X of objects called vectors along with two operation

$$
\begin{array}{rll}
+: X \times X \longrightarrow X & (x, y) \mapsto x+y, \forall x, y \in X & \text { addition of vectors } \\
\cdot: \mathbb{F} \times X \longrightarrow X & (\alpha, x) \mapsto \alpha x, \forall \alpha \in \mathbb{F}, x \in X & \text { scalar multiplication of vectors }
\end{array}
$$

satisfying the following conditions
(1) $x+y=y+x \quad \forall x, y \in X$ (Commutative)
(2) $(x+y)+z=x+(y+z) \quad \forall x, y, z \in X$ (Associative)
(3) there exist a unique zero vector $\mathbf{0} \in X$ such that $x+\mathbf{0}=x \quad \forall x \in X$.
(4) $\forall x \in X$, there exist $-x \in X$ such that $x+(-x)=\mathbf{0}$.
(5) $\alpha(x+y)=\alpha x+\alpha y, \quad \forall x, y \in X$ and $\forall \alpha \in \mathbb{F}$.
(6) $(\alpha+\beta) x=\alpha x+\beta y \quad \forall x \in X$ and $\forall \alpha, \beta \in \mathbb{F}$.
(7) $\alpha(\beta x)=\alpha \beta x \quad \forall x \in X$ and $\forall \alpha, \beta \in \mathbb{F}$.
(8) $1 x=x \quad \forall x \in X$.

Example 1: Let $X=\{\mathbf{0}\}$.Then X is a linear space and is called the zero space over \mathbb{F}.
Example 2: $\mathbb{R}^{n}, \quad n \geq 1$. The Euclidean space. $\mathbb{R}^{n}=\left\{x \mid x=\left(x_{1}, x_{2}, \cdots, x_{n}\right), x_{1}, x_{2}, \cdots, x_{n} \in \mathbb{R}\right\}$ where

$$
\begin{aligned}
x+y & =\left(x_{1}, x_{2}, \cdots, x_{n}\right)+\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \cdots, x_{n}+y_{n}\right) \text { and } \\
\alpha x & =\left(\alpha x_{1}, \alpha x_{2}, \cdots, \alpha x_{n}\right), \quad \alpha \in \mathbb{R} .
\end{aligned}
$$

Example 3: $\mathbb{C}^{n}, \quad n \geq 1$. The Euclidean space. $\mathbb{C}^{n}=\left\{x \mid x=\left(x_{1}, x_{2}, \cdots, x_{n}\right), x_{1}, x_{2}, \cdots, x_{n} \in \mathbb{C}\right\}$ where

$$
\begin{aligned}
x+y & =\left(x_{1}, x_{2}, \cdots, x_{n}\right)+\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \cdots, x_{n}+y_{n}\right) \text { and } \\
\alpha x & =\left(\alpha x_{1}, \alpha x_{2}, \cdots, \alpha x_{n}\right), \quad \alpha \in \mathbb{C} .
\end{aligned}
$$

Example 4: l_{p}. Let p be a real number such that $1 \leq p<\infty . l_{p}$ is the space of all sequence $x=\left\{x_{n}\right\}_{n=1}^{\infty}$ in \mathbb{F} such that $\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}<\infty \quad\left(x=\left\{x_{n}\right\}_{n=1}^{\infty}\right.$ converges $)$.
$l_{p}=\left\{x=\left.\left\{x_{n}\right\}_{n=1}^{\infty}\left|\sum_{n=1}^{\infty}\right| x_{n}\right|^{p}<\infty, \quad x_{n}, \in \mathbb{F}, \forall n \in \mathbb{N}\right\}$ where

$$
\begin{aligned}
x+y & =\left(x_{1}, x_{2}, \cdots, x_{n}, \cdots\right)+\left(y_{1}, y_{2}, \cdots, y_{n}, \cdots\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \cdots, x_{n}+y_{n}, \cdots\right) \text { and } \\
\alpha x & =\left(\alpha x_{1}, \alpha x_{2}, \cdots, \alpha x_{n}, \cdots\right), \quad \alpha \in \mathbb{F} .
\end{aligned}
$$

We will prove that if $x=\left\{x_{n}\right\}_{n=1}^{\infty}$ and $y=\left\{y_{n}\right\}_{n=1}^{\infty}$ are elements in l_{p}, then $x+y \in l_{p}$. Now, we have

$$
\begin{aligned}
\left|x_{n}+y_{n}\right|^{p} & \leq 2^{p} \max \left\{\left|x_{n}\right|^{p},\left|y_{n}\right|^{p}\right\} \\
& \leq 2^{p}\left(\left|x_{n}\right|^{p}+\left|y_{n}\right|^{p}\right) \\
\text { Hence } \sum_{n=1}^{\infty}\left|x_{n}+y_{n}\right|^{p} & \leq 2^{p} \sum_{n=1}^{\infty}\left|x_{n}\right|^{p}+2^{p} \sum_{n=1}^{\infty}\left|y_{n}\right|^{p} \\
& <\infty
\end{aligned}
$$

Thus $x+y \in l_{p}$. Now, it is easy to verify that l_{p} is a linear space.
Example 5: Each of the following is a linear space with operations defined in Example 6.

$$
\begin{aligned}
x+y & =\left(x_{1}, x_{2}, \cdots, x_{n}, \cdots\right)+\left(y_{1}, y_{2}, \cdots, y_{n}, \cdots\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \cdots, x_{n}+y_{n}, \cdots\right) \text { and } \\
\alpha x & =\left(\alpha x_{1}, \alpha x_{2}, \cdots, \alpha x_{n}, \cdots\right) \quad \alpha \in \mathbb{F} .
\end{aligned}
$$

(1) The set of all sequences in $\mathbb{F}, \quad \omega=\left\{x=\left\{x_{n}\right\}_{n=1}^{\infty} \mid x_{n}, \in \mathbb{F}\right\}$
(2) The set of all convergent sequences in $\mathbb{F}, \quad c=\left\{x=\left\{x_{n}\right\}_{n=1}^{\infty} \mid \lim _{n \rightarrow \infty} x_{n} \in \mathbb{F}, \quad x_{n} \in \mathbb{F}, \forall n \in \mathbb{N}\right\}$
(3) The set of all sequences in \mathbb{F} converging to $0, \quad c_{0}=\left\{x=\left\{x_{n}\right\}_{n=1}^{\infty} \mid \lim _{n \rightarrow \infty} x_{n}=0, \quad x_{n} \in \mathbb{F}, \forall n \in \mathbb{N}\right\}$
(4) The set of all bounded sequences in $\mathbb{F}, \quad l_{\infty}=\left\{x=\left\{x_{n}\right\}_{n=1}^{\infty}\left|\sup _{n \in \mathbb{N}}\right| x_{n} \mid<\infty, \quad x_{n} \in \mathbb{F}, \forall n \in \mathbb{N}\right\}$

Example 6: $C([a, b])$. Let a, b be two real numbers such that $a<b . C([a, b])$ is the space of all continuous real-valued functions f over $[a, b]$.
$C([a, b])=\{f:[a, b] \rightarrow \mathbb{R} \mid f$ is continuous on $[a, b]\}$ where

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \quad \forall f, g \in C([a, b]), x \in[a, b] \text { and } \\
(\alpha f)(x) & =\alpha f(x), \quad \alpha \in \mathbb{R} .
\end{aligned}
$$

Example 7: $L_{p}([a, b])$. Let a, b be two real numbers such that $a<b . L_{p}([a, b])$ is the space of all Lebesgue measurable functions f such that $\int_{a}^{b}|f|^{p}<\infty$.
$L_{p}([a, b])=\left\{f:\left.[a, b] \rightarrow \mathbb{R}\left|\int_{a}^{b}\right| f\right|^{p}<\infty\right\}$ where

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \quad \forall f, g \in L_{p}([a, b]), x \in[a, b] \text { and } \\
(\alpha f)(x) & =\alpha f(x), \quad \alpha \in \mathbb{R} .
\end{aligned}
$$

Lemma 1: Let X be a linear space over \mathbb{F} then:
(1) $0 x=\mathbf{0}, \quad \forall x \in X$.
(2) $\alpha \mathbf{0}=\mathbf{0}, \quad \forall \alpha \in \mathbb{F}$.
(3) $(-1) x=-x, \quad \forall x \in X$.
(4) $\alpha x=\mathbf{0} \Rightarrow x=\mathbf{0} \quad$ or $\alpha=0$.

Proof: We will prove (1) and (3) and the reader should do (2) and (4).
1.

$$
\begin{aligned}
0 x & =(0+0) x \\
0 x & =0 x+0 x \quad \text { Using property } 6 \\
0 x+(-0 x) & =0 x+0 x+(-0 x) \\
\mathbf{0} & =0 x \quad
\end{aligned}
$$

3.

$$
\begin{aligned}
(-1) x+x & =(-1+1) x & & \text { Using property 7 } \\
(-1) x+x & =0 x & & \text { Using part 1 of this Lemma } \\
(-1) x+x & =\mathbf{0} & & \text { Using part 1 of this Lemma } \\
(-1) x+x+(-x) & =\mathbf{0}+(-x) & & \\
(-1) x & =-x & &
\end{aligned}
$$

Subspaces, Linearly Independent and Basis. we will study the geometry of the linear space.

Definition 1.2:[Subspace]

A non-empty subset Y of a linear space X over \mathbb{F} is called a linear subspace if
$\alpha x+\beta y \in Y, \forall x, y \in Y$, and $\forall \alpha, \beta \in \mathbb{F}$.

Example 8: Let $n \in \mathbb{N}, n \geq 1$, then $\mathbb{R}^{n-1}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n-1}, 0\right) \mid x_{1}, x_{2}, \cdots, x_{n-1} \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{n}. Also $P[a, b]$, the set of all polynomials over $[a, b]$ is a subspace of $C[a, b]$.

Definition 1.3:[Linearly independent and basis]

a. A finite set of vectors $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ in a linear space X is called linearly independent if for any scalars $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in$ \mathbb{F} we have

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}=\mathbf{0} \Rightarrow \alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0
$$

b. A subset Y of X is linearly independent if every non-empty finite subset of Y is linearly independent and Y is called linearly dependent if it not linearly independent.
c. A subset B of X is called a basis for X if

1. B is a linearly independent set.
2. $X=\operatorname{Span} B=\left\{\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n} \mid \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in \mathbb{F}, x_{1}, x_{2}, \cdots, x_{n} \in B\right\}$

Example 9: Let $n \in \mathbb{N}, n \geq 1$. Let

$$
\begin{aligned}
e_{1}= & (1,0,0, \cdots, 0), \\
e_{2}= & (0,1,0, \cdots, 0), \\
& \vdots \\
e_{n}= & (0,0,0, \cdots, 1) .
\end{aligned}
$$

Then the set $B=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ is a linearly independent set that span \mathbb{R}^{n}. Hence B is a basis for \mathbb{R}^{n}.
Example 10: Let $n \in \mathbb{N}, n \geq 1$. Let

$$
\begin{gathered}
f_{1}(x)=x, \forall x \in[a, b] \\
f_{2}(x)=x^{2}, \forall x \in[a, b] \\
\vdots \\
f_{n}(x)=x^{n}, \forall x \in[a, b]
\end{gathered}
$$

Then the set $B=\left\{f_{1}, f_{2}, \cdots, f_{n}, \cdots\right\}$ is a linearly independent set that span $P[a, b]$. Hence B is a basis for $P[a, b]$.

Theorem 1.1: []

(1) Every linear space $X \neq\{\mathbf{0}\}$ has a basis.
(2) Let X be a finite dimensional linear space. Then, all bases for X have the same number of elements.

Definition 1.4:[Dimension of a Linear Space]

(1) A linear space X is called finite dimensional if it has a finite basis and we defined the dimension of X, denoted by, $\operatorname{dim} X=$ the number of element of the basis .
(2) A linear space X is called infinite dimensional if it has no a finite basis and we defined the dimension of X, $\operatorname{dim} X=\infty$.

Direct Sums. Let X be a linear space, and let $x \in X$. Let Y, Z be two subspace of X, and let $\alpha \in \mathbb{F}$. Define the following

$$
\begin{array}{rlr}
Y+Z & =\{y+z: y \in Y, z \in Z\} & \text { The sum of two subspaces } \\
Y-Z & =\{y-z: y \in Y, z \in Z\} & \text { Algebraic Difference } \\
x+Y & =\{x+y: y \in Y\} & \text { Translate of } Y \text { by } x . \\
x-Y & =\{x-y: y \in Y\} & \\
\alpha Y & =\{\alpha y: y \in Y\} &
\end{array}
$$

Definition 1.5:[Direct Sum]

A linear space X is called the direct sum of two subspaces Y and Z of X, denoted by $X=Y \oplus Z$, if the following two conditions hold:

$$
\begin{array}{ll}
\text { 1. } & X=Y+Z \\
\text { 2. } & Y \cap Z=\{\mathbf{0}\}
\end{array}
$$

The subspace $Y(Z)$ is called an algebraic complement of $Z(Y)$ in X.

Quotient Spaces. Let Y be a subspace of linear space X. The cost of an element $x \in X$ with respect to $Y, x+Y=\{x+y$: $y \in Y\}$. Note that any two cosets are either disjoint or identical. Also note that the distinct cosets form a partition of X. Let $X / Y=\{x+Y: x \in X\}$ and define the algebraic operation by

$$
\begin{gathered}
(x+Y)+(z+Y)=(x+z)+Y \quad \forall x, z \in X \\
\alpha(x+Y)=\alpha x+Y \quad \forall x \in X, \forall \alpha \in \mathbb{F} .
\end{gathered}
$$

Under the algebraic operation defined above X / Y is a linear space and it is called the quotient space of X by Y. The dimension of the space X / Y is called codimension of Y and is denoted by $\operatorname{codim} Y$ so $\operatorname{codim} Y=\operatorname{dim}(X / Y)$. The function $q: X \rightarrow X / Y$ defined by $q(x)=x+Y, \forall x \in X$ is called the quotient mapping(the canonical mapping)

EXERCISES FOR SECTION 1

1. Let $f_{n}(x)=x^{n}, \forall x \in[a, b], n \in \mathbb{N}$. Show that the set $\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$ is a linearly independent set in the linear space $C[a, b]$.
2. Let $M_{2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}$.

Show that $M_{2}(\mathbb{R})$ is a linear space over \mathbb{R}. Give examples of subspaces of $M_{2}(\mathbb{R})$.
3. Prove parts (2) and (4) of Lemma 1.
4. Let $X=\mathbb{C}^{3}$ and let $Y=\{(0, x, 0) \mid x \in \mathbb{C}\}$. Find $X / Y, X /\{0\}, X / X$.
5. Let X_{1} and X_{2} be any two linear spaces over \mathbb{F}. Show that $X=X_{1} \times X_{2}$ withe algebraic operation by

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right), \quad x_{1}, y_{1} \in X_{1}, x_{2}, y_{2} \in X_{2} \text { and } \\
& \alpha\left(x_{1}, x_{2}\right)=\left(\alpha x_{1}, \alpha x_{2}\right), \quad \alpha \in \mathbb{F} .
\end{aligned}
$$

is a linear space over \mathbb{F}.

