THE DERIVATIVE

DR.HAMED AL-SULAMI

Definition 0.1. Let $I \subseteq \mathbb{R}$ be an interval, let $f: I \to \mathbb{R}$, and let $c \in I$. We say f'(c) is the *derivative of* f at c if, for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $x \in E$ and $0 < |x-a| < \delta \Rightarrow |\frac{f(x) - f(c)}{x - c} - f'(c)| < \varepsilon$. In other word, the derivative of f at c is given by the limit

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

provided this limit exists.

Example 0.1. Let f(x) = a, $a \in \mathbb{R}$. Prove that $f'(c) = 0 \ \forall \ c \in \mathbb{R}$.

Solution:

We have f(x) = a, and f(c) = a. Then

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
$$= \lim_{x \to c} \frac{a - a}{x - c}$$
$$\lim_{x \to c} \frac{0}{x - c}.$$
$$= \lim_{x \to c} (0)$$
$$= 0.$$

Hence f'(c) = 0.

Example 0.2. Let $f(x) = x^2$. Prove that $f'(c) = 2c, \forall c \in \mathbb{R}$.

Solution:

We have $f(x) = x^2$, and $f(c) = c^2$. Then

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
$$= \lim_{x \to c} \frac{x^2 - c^2}{x - c}$$
$$= \lim_{x \to c} \frac{(x - c)(x + c)}{x - c}.$$
$$= \lim_{x \to c} (x + c)$$
$$= c + c$$
$$= 2c.$$

Hence f'(c) = 2c.

Example 0.3. Let $f(x) = x^n$, $n \in \mathbb{N}$. Prove that $f'(c) = nc^{n-1}$, $\forall c \in \mathbb{R}$.

Solution:

We have $f(x) = x^n$, and $f(c) = c^n$, and note that $x^n - c^n = (x - c) \left(\sum_{k=1}^n x^{n-k} c^{k-1}\right)$. Then

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

=
$$\lim_{x \to c} \frac{x^n - c^n}{x - c}$$

=
$$\lim_{x \to c} \frac{(x - c) \left(\sum_{k=1}^n x^{n-k} c^{k-1}\right)}{x - c}.$$

=
$$\lim_{x \to c} \left(\sum_{k=1}^n x^{n-k} c^{k-1}\right)$$

=
$$\sum_{k=1}^n c^{n-k} c^{k-1}$$

=
$$\sum_{k=1}^n c^{n-1}$$

=
$$nc^{n-1}.$$

 $\frac{\text{Hence } f'(c) = nc^{n-1}}{\text{May 15, 2006}}.$

Theorem 0.1. Let $f : (a, b) \to \mathbb{R}$ and let $c \in (a, b)$. Then f is differentiable at c with derivative f'(c) if and only if for every sequence $\{x_n\} \subseteq (a, b)$ such that $\lim_{n\to\infty} x_n = c$ and $x_n \neq c \forall n \in \mathbb{N}$, then

$$\lim_{n \to \infty} \frac{f(x_n) - f(c)}{x_n - c} = f'(c).$$

Proof. We have proved a similar theorem in the Limits section.

Theorem 0.2. If $f: I \to \mathbb{R}$ has a derivative at $c \in I$, then f is continuous at c.

Proof. For all $x \in I$, $x \neq c$, we have

$$f(x) - f(c) = \left(\frac{f(x) - f(c)}{x - c}\right)(x - c).$$

Now,

$$\lim_{x \to c} (f(x)) - f(c) = \lim_{x \to c} (f(x) - f(c)) = \lim_{x \to c} \left[\left(\frac{f(x) - f(c)}{x - c} \right) (x - c) \right]$$
$$= \lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} \right) \cdot \lim_{x \to c} (x - c)$$
$$= f'(c) \cdot 0$$
$$= 0.$$

Therefore $\lim_{x \to c} f(x) = f(c)$ so f is continuous at c.

Example 0.4. Let f(x) = |x|. Prove that f is not differentiable at 0.

Solution:

For each $n \in \mathbb{N}$, let $x_n = \frac{1}{n}$ and $y_n = \frac{-1}{n}$. Then $\lim_{n \to \infty} x_n = 0 = \lim_{n \to \infty} y_n$. Now,

$$\lim_{n \to \infty} \frac{f(x_n) - f(0)}{x_n - 0} = \lim_{n \to \infty} \frac{f(\frac{1}{n}) - f(0)}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\frac{1}{n} - 0}{\frac{1}{n}} = \lim_{n \to \infty} 1 = 1,$$

and

$$\lim_{n \to \infty} \frac{f(x_n) - f(0)}{x_n - 0} = \lim_{n \to \infty} \frac{f(\frac{-1}{n}) - f(0)}{\frac{-1}{n}} = \lim_{n \to \infty} \frac{\frac{1}{n} - 0}{\frac{-1}{n}} = \lim_{n \to \infty} (-1) = -1.$$

Hence $\lim_{x\to 0} \frac{f(x) - f(0)}{x - 0}$ does not exists.

Theorem 0.3. Let $f, g : (a, b) \to \mathbb{R}$ are differentiable at $c \in (a, b)$. Then

(a)
$$(f \pm g)'(c) = f'(c) \pm g'(c).$$

(b) $(fg)'(c) = f(c)g'(c) + f'(c)g(c).$
(c) $\left(\frac{f}{g}\right)'(c) = \frac{g(c)f'(c) - g'(c)f(c)}{[g(c)]^2}$ if $g(c) \neq 0.$

Proof. We will prove parts (a) and (c).

$$(\mathbf{a})(f+g)'(c) = \lim_{x \to c} \frac{(f+g)(x) - (f+g)(c)}{x-c}$$

$$= \lim_{x \to c} \frac{f(x) + g(x) - f(c) - g(c)}{x-c}$$

$$= \lim_{x \to c} \frac{(f(x) - f(c)) + (g(x) - g(c))}{x-c}.$$

$$= \lim_{x \to c} \left[\frac{f(x) - f(c)}{x-c} + \frac{g(x) - g(c)}{x-c} \right]$$

$$= \lim_{x \to c} \frac{f(x) - f(c)}{x-c} + \lim_{x \to c} \frac{g(x) - g(c)}{x-c}$$

$$= f'(c) + g'(c).$$

$$\begin{aligned} \left(\mathbf{c}\right) \left(\frac{f}{g}\right)'(c) &= \lim_{x \to c} \frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(c)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)}{g(x)} - \frac{f(c)}{g(c)} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(c) + f(c)g(c) - f(c)g(x)}{g(x)g(c)(x - c)} \\ &= \lim_{x \to c} \frac{g(c)[f(x) - f(c)] - f(c)[g(x) - g(c)]}{g(x)g(c)(x - c)} \\ &= \lim_{x \to c} \left[\frac{g(c)[f(x) - f(c)]}{g(x)g(c)(x - c)} - \frac{f(c)[g(x) - g(c)]}{g(x)g(c)(x - c)} \right] \\ &= \lim_{x \to c} \left[\frac{g(c)[f(x) - f(c)]}{g(x)g(c)(x - c)} - \frac{f(c)[g(x) - g(c)]}{g(x)g(c)(x - c)} \right] \\ &= \lim_{x \to c} \left[\frac{g(c)[f(x) - f(c)]}{g(x)g(c)(x - c)} - \frac{f(c)[g(x) - g(c)]}{g(x)g(c)(x - c)} \right] \\ &= \lim_{x \to c} \left[\frac{g(c)[f(x) - f(c)]}{g(x)g(c)(x - c)} \right] - \lim_{x \to c} \left[\frac{f(c)[g(x) - g(c)]}{g(x)g(c)(x - c)} \right] \\ &= \left[\lim_{x \to c} \left[\frac{g(c)}{g(c)g(x)} \right] \lim_{x \to c} \left[\frac{f(x) - f(c)}{(x - c)} \right] \right] - \left[\lim_{x \to c} \left[\frac{f(c)}{g(c)g(x)} \right] \lim_{x \to c} \left[\frac{g(x) - g(c)}{(x - c)} \right] \right] \\ &= \left[\frac{g(c)}{[g(c)]^2} \cdot f'(c) \right] - \left[\frac{f(c)}{[g(c)]^2} \cdot g'(c) \right] \\ &= \left[\frac{g(c)f'(c)}{[g(c)]^2} - \frac{f(c)g'(c)}{[g(c)]^2} \right] \\ &= \frac{g(c)f'(c) - f(c)g'(c)}{[g(c)]^2} . \end{aligned}$$

Definition 0.2. Let $I \subseteq \mathbb{R}$ be an interval, let $f: I \to \mathbb{R}$, and let $c \in I$.

- (i) We say f has a *relative maximum at* c if there exists $\delta > 0$ such that $f(x) \le f(c), \forall x \in (c \delta, c + \delta)$.
- (ii) We say f has a *relative minimum at* c if there exists $\delta > 0$ such that $f(c) \leq f(x), \forall x \in (c \delta, c + \delta)$.
- (iii) We say f has a *relative extremum at* c if f has either a relative maximum or relative minimum at c.

Theorem 0.4. Let $f : (a, b) \to \mathbb{R}$ and let $c \in (a, b)$. If f has a relative extremum at c and f'(c) exists, then f'(c) = 0.

Proof. Suppose f has a relative maximum at c. [We will prove that f'(c) = 0.] Then there exists $\delta > 0$ such that $f(x) \leq f(c)$, $\forall x \in (c - \delta, c + \delta)$. Now, if $c - \delta < x < c$, then $f(x) \leq f(c) \Rightarrow f(x) - f(c) \leq 0$ and x - c < 0. Hence $\frac{f(x) - f(c)}{x - c} \geq 0$. Thus $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \geq 0$. Therefore $f'(c) \geq 0$ (1). Also, if $c < x < c + \delta$, then $f(x) \leq f(c) \Rightarrow f(x) - f(c) \leq 0$ and x - c > 0. Hence $\frac{f(x) - f(c)}{x - c} \leq 0$. Thus $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \leq 0$. Therefore $f'(c) \leq 0$ (2). By (1) and (2) we get f'(c) = 0. \square May 15, 2006 5 \bigcirc Dr.Hamed Al-Sulami **Theorem 0.5.** [Rolle's Theorem:] Let $f : [a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). If f(a) = f(b), then there exists $c \in (a,b)$ such that f'(c) = 0.

Proof. Since f is continuous on [a, b], then there exist $c, d \in [a, b]$ such that $f(c) = \sup\{f(x) : x \in [a, b]\}$ and $f(d) = \inf\{f(x) : x \in [a, b]\}$. Now, if f(c) = f(d), then f(x) is constant and f'(x) = 0, $\forall x \in [a, b]$. If $f(c) \neq f(d)$, since f(a) = f(b), then at least $f(c) \neq f(a)$ or $f(d) \neq f(a)$. Suppose $f(c) \neq f(a)$, then $c \in (a, b)$ and f has a relative maximum at c. Hence f'(c) = 0.

Theorem 0.6. [Mean Value Theorem:] Let $f : [a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). If f(a) = f(b), then there exists $c \in (a,b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Proof. Let $g:[a,b] \to \mathbb{R}$ defined by $g(x) = f(x) - f(a) - \left[\frac{f(b) - f(a)}{b - a}\right](x - a)$. Then g is continuous on [a,b] and is differentiable on (a,b). Now, $g(a) = f(a) - f(a) - \left[\frac{f(b) - f(a)}{b - a}\right](a - a) = 0$ and $g(b) = f(a) - f(b) - \left[\frac{f(b) - f(a)}{b - a}\right](b - a) = 0$. Hence g satisfies the hypotheses of Rolle's Theorem. Then there exists $c \in (a,b)$ such that g'(c) = 0. Thus $0 = g'(c) = f'(c) - \left[\frac{f(b) - f(a)}{b - a}\right]$.

Example 0.5. Prove that $e^x \ge x + 1, \forall x \in \mathbb{R}$.

Solution:

Let $f(t) = e^t$ then f is continuous and differentiable on \mathbb{R} . Now, if $x \in \mathbb{R}$, then on the interval [0, x]or [x, 0] f satisfies the M.V.T. Hence there exists c such that $f'(c) = \frac{f(x) - f(0)}{x - 0}$. Thus $e^c = \frac{e^x - e^0}{x}$. Hence $e^x - 1 = e^c x$. Since $e^c > 1$, then $e^x - 1 = e^c x > 1.x$. Thus $e^x - 1 > x$. Therefore $e^x > x + 1$.

Example 0.6. Prove that $|\sin x| \le |x|$.

Solution:

Let $f(t) = \sin t$ then f is continuous and differentiable on \mathbb{R} . Now, if $x \in \mathbb{R}$, then on the interval [0, x] or [x, 0] f satisfies the M.V.T. Hence there exists c such that $f'(c) = \frac{f(x) - f(0)}{x - 0}$. Thus $\cos c = \frac{\sin x - \sin 0}{x}$. Hence $\sin x - \sin 0 = x \cos c$. Since $|\cos c| \le 1$, then $|\sin x| = |\cos c| |x| \le 1|x|$. Therefore $|\sin x| \le |x|$.