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Definition 0.1. Let I ⊆ R be an interval, let f : I → R, and let c ∈ I. We say f ′(c) is the derivative of

f at c if, for all ε > 0 there exists δ > 0 such that if x ∈ E and 0 < |x−a| < δ ⇒ |f(x)− f(c)
x− c

−f ′(c)| < ε.

In other word, the derivative of f at c is given by the limit

f ′(c) = lim
x→c

f(x)− f(c)
x− c

provided this limit exists.

Example 0.1. Let f(x) = a, a ∈ R. Prove that f ′(c) = 0 ∀ c ∈ R.

Solution:

We have f(x) = a, and f(c) = a. Then

f ′(c) = lim
x→c

f(x)− f(c)
x− c

= lim
x→c

a− a

x− c

lim
x→c

0
x− c

.

= lim
x→c

(0)

= 0.

Hence f ′(c) = 0.
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Example 0.2. Let f(x) = x2. Prove that f ′(c) = 2c, ∀ c ∈ R.

Solution:

We have f(x) = x2, and f(c) = c2. Then

f ′(c) = lim
x→c

f(x)− f(c)
x− c

= lim
x→c

x2 − c2

x− c

= lim
x→c

»»»»(x− c)(x + c)
»»»x− c

.

= lim
x→c

(x + c)

= c + c

= 2c.

Hence f ′(c) = 2c.

Example 0.3. Let f(x) = xn, n ∈ N. Prove that f ′(c) = ncn−1, ∀ c ∈ R.

Solution:

We have f(x) = xn, and f(c) = cn, and note that xn − cn = (x− c)
(∑n

k=1 xn−kck−1
)
. Then

f ′(c) = lim
x→c

f(x)− f(c)
x− c

= lim
x→c

xn − cn

x− c

= lim
x→c

»»»»(x− c)
(∑n

k=1 xn−kck−1
)

»»»x− c
.

= lim
x→c

(
n∑

k=1

xn−kck−1

)

=
n∑

k=1

cn−kck−1

=
n∑

k=1

cn−1

= ncn−1.

Hence f ′(c) = ncn−1.
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Theorem 0.1. Let f : (a, b) → R and let c ∈ (a, b). Then f is differentiable at c with derivative f ′(c) if

and only if for every sequence {xn} ⊆ (a, b) such that limn→∞ xn = c and xn 6= c ∀ n ∈ N, then

lim
n→∞

f(xn)− f(c)
xn − c

= f ′(c).

Proof. We have proved a similar theorem in the Limits section. ¤

Theorem 0.2. If f : I → R has a derivative at c ∈ I, then f is continuous at c.

Proof. For all x ∈ I, x 6= c, we have

f(x)− f(c) =
(

f(x)− f(c)
x− c

)
(x− c).

Now,

lim
x→c

(f(x))− f(c) = lim
x→c

(f(x)− f(c)) = lim
x→c

[(
f(x)− f(c)

x− c

)
(x− c)

]

= lim
x→c

(
f(x)− f(c)

x− c

)
. lim
x→c

(x− c)

= f ′(c).0

= 0.

Therefore lim
x→c

f(x) = f(c) so f is continuous at c.

¤
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Example 0.4. Let f(x) = |x|. Prove that f is not differentiable at 0.

Solution:

For each n ∈ N, let xn = 1
n and yn = −1

n . Then limn→∞ xn = 0 = limn→∞ yn. Now,

lim
n→∞

f(xn)− f(0)
xn − 0

= lim
n→∞

f( 1
n )− f(0)

1
n

= lim
n→∞

1
n − 0

1
n

= lim
n→∞

1 = 1,

and

lim
n→∞

f(xn)− f(0)
xn − 0

= lim
n→∞

f(−1
n )− f(0)
−1
n

= lim
n→∞

1
n − 0
−1
n

= lim
n→∞

(−1) = −1.

Hence limx→0
f(x)− f(0)

x− 0
does not exists.

Theorem 0.3. Let f, g : (a, b) → R are differentiable at c ∈ (a, b). Then

(a) (f ± g)′(c) = f ′(c)± g′(c).

(b) (fg)′(c) = f(c)g′(c) + f ′(c)g(c).

(c)
(

f

g

)′
(c) =

g(c)f ′(c)− g′(c)f(c)
[g(c)]2

if g(c) 6= 0.

Proof. We will prove parts (a) and (c).

(a)(f + g)′(c) = lim
x→c

(f + g)(x)− (f + g)(c)
x− c

= lim
x→c

f(x) + g(x)− f(c)− g(c)
x− c

= lim
x→c

(f(x)− f(c)) + (g(x)− g(c))
x− c

.

= lim
x→c

[
f(x)− f(c)

x− c
+

g(x)− g(c)
x− c

]

= lim
x→c

f(x)− f(c)
x− c

+ lim
x→c

g(x)− g(c)
x− c

= f ′(c) + g′(c).
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(c)
(

f

g

)′
(c) = lim

x→c

(
f

g

)
(x)−

(
f

g

)
(c)

x− c

= lim
x→c

f(x)
g(x)

− f(c)
g(c)

x− c

= lim
x→c

f(x)g(c)− f(c)g(x)
g(x)g(c)

x− c
.

= lim
x→c

f(x)g(c)−f(c)g(c) + f(c)g(c)− f(c)g(x)
g(x)g(c)(x− c)

= lim
x→c

g(c)[f(x)− f(c)]− f(c)[g(x)− g(c)]
g(x)g(c)(x− c)

= lim
x→c

[
g(c)[f(x)− f(c)]
g(x)g(c)(x− c)

− f(c)[g(x)− g(c)]
g(x)g(c)(x− c)

]

= lim
x→c

[
g(c)[f(x)− f(c)]
g(x)g(c)(x− c)

]
− lim

x→c

[
f(c)[g(x)− g(c)]
g(x)g(c)(x− c)

]

=
[
lim
x→c

[
g(c)

g(c)g(x)

]
lim
x→c

[
f(x)− f(c)

(x− c)

]]
−

[
lim
x→c

[
f(c)

g(c)g(x)

]
lim
x→c

[
g(x)− g(c)

(x− c)

]]

=
[

g(c)
[g(c)]2

.f ′(c)
]
−

[
f(c)

[g(c)]2
.g′(c)

]

=
[
g(c)f ′(c)
[g(c)]2

− f(c)g′(c)
[g(c)]2

]

=
g(c)f ′(c)− f(c)g′(c)

[g(c)]2
.

¤

Definition 0.2. Let I ⊆ R be an interval, let f : I → R, and let c ∈ I.

(i) We say f has a relative maximum at c if there exists δ > 0 such that f(x) ≤ f(c), ∀ x ∈ (c− δ, c + δ).

(ii) We say f has a relative minimum at c if there exists δ > 0 such that f(c) ≤ f(x), ∀ x ∈ (c− δ, c + δ).

(iii) We say f has a relative extremum at c if f has either a relative maximum or relative minimum at c.

Theorem 0.4. Let f : (a, b) → R and let c ∈ (a, b). If f has a relative extremum at c and f ′(c) exists,

then f ′(c) = 0.

Proof. Suppose f has a relative maximum at c. [We will prove that f ′(c) = 0.] Then there exists δ > 0

such that f(x) ≤ f(c), ∀ x ∈ (c − δ, c + δ). Now, if c − δ < x < c, then f(x) ≤ f(c) ⇒ f(x) − f(c) ≤ 0

and x− c < 0. Hence
f(x)− f(c)

x− c
≥ 0. Thus limx→c

f(x)− f(c)
x− c

≥ 0. Therefore f ′(c) ≥ 0 (1).

Also, if c < x < c + δ, then f(x) ≤ f(c) ⇒ f(x)− f(c) ≤ 0 and x− c > 0. Hence
f(x)− f(c)

x− c
≤ 0. Thus

limx→c
f(x)− f(c)

x− c
≤ 0. Therefore f ′(c) ≤ 0 (2). By (1) and (2) we get f ′(c) = 0. ¤

May 15, 2006 5 c© Dr.Hamed Al-Sulami



The Derivative Dr.Hamed Al-Sulami

Theorem 0.5. [ Rolle’s Theorem:] Let f : [a, b] → R be continuous on [a, b] and differentiable on

(a, b). If f(a) = f(b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof. Since f is continuous on [a, b], then there exist c, d ∈ [a, b] such that f(c) = sup{f(x) : x ∈ [a, b]}

and f(d) = inf{f(x) : x ∈ [a, b]}. Now, if f(c) = f(d), then f(x) is constant and f ′(x) = 0, ∀ x ∈ [a, b].

If f(c) 6= f(d), since f(a) = f(b), then at least f(c) 6= f(a) or f(d) 6= f(a). Suppose f(c) 6= f(a), then

c ∈ (a, b) and f has a relative maximum at c. Hence f ′(c) = 0. ¤

Theorem 0.6. [ Mean Value Theorem:] Let f : [a, b] → R be continuous on [a, b] and differentiable

on (a, b). If f(a) = f(b), then there exists c ∈ (a, b) such that f ′(c) =
f(b)− f(a)

b− a
.

Proof. Let g : [a, b] → R defined by g(x) = f(x)− f(a)−
[
f(b)− f(a)

b− a

]
(x− a). Then g is continuous on

[a, b] and is differentiable on (a, b). Now, g(a) = f(a)− f(a)−
[
f(b)− f(a)

b− a

]
(a− a) = 0 and

g(b) = f(a)−f(b)−
[
f(b)− f(a)

b− a

]
(b−a) = 0. Hence g satisfies the hypotheses of Rolle’s Theorem. Then

there exists c ∈ (a, b) such that g′(c) = 0. Thus 0 = g′(c) = f ′(c)−
[
f(b)− f(a)

b− a

]
.

Therefore f ′(c) =
f(b)− f(a)

b− a
. ¤

Example 0.5. Prove that ex ≥ x + 1, ∀ x ∈ R.

Solution:

Let f(t) = et then f is continuous and differentiable on R. Now, if x ∈ R, then on the interval [0, x]

or [x, 0] f satisfies the M.V.T. Hence there exists c such that f ′(c) =
f(x)− f(0)

x− 0
. Thus ec =

ex − e0

x
.

Hence ex − 1 = ecx. Since ec > 1, then ex − 1 = ecx > 1.x. Thus ex − 1 > x. Therefore ex > x + 1.

Example 0.6. Prove that | sin x| ≤ |x|.

Solution:

Let f(t) = sin t then f is continuous and differentiable on R. Now, if x ∈ R, then on the interval [0, x] or

[x, 0] f satisfies the M.V.T. Hence there exists c such that f ′(c) =
f(x)− f(0)

x− 0
. Thus cos c =

sin x− sin 0
x

.

Hence sin x− sin 0 = x cos c. Since | cos c| ≤ 1, then | sin x| = | cos c||x| ≤ 1|x|. Therefore | sinx| ≤ |x|.
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