THE DERIVATIVE

DR.HAMED AL-SULAMI

Definition 0.1. Let $I \subseteq \mathbb{R}$ be an interval, let $f: I \rightarrow \mathbb{R}$, and let $c \in I$. We say $f^{\prime}(c)$ is the derivative of f at c if, for all $\varepsilon>0$ there exists $\delta>0$ such that if $x \in E$ and $0<|x-a|<\delta \Rightarrow\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right|<\varepsilon$. In other word, the derivative of f at c is given by the limit

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

provided this limit exists.

Example 0.1. Let $f(x)=a, a \in \mathbb{R}$. Prove that $f^{\prime}(c)=0 \forall c \in \mathbb{R}$.

Solution:

We have $f(x)=a$, and $f(c)=a$. Then

$$
\begin{aligned}
f^{\prime}(c) & =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{a-a}{x-c} \\
& \lim _{x \rightarrow c} \frac{0}{x-c} \\
& =\lim _{x \rightarrow c}(0) \\
& =0
\end{aligned}
$$

Hence $f^{\prime}(c)=0$.

Example 0.2. Let $f(x)=x^{2}$. Prove that $f^{\prime}(c)=2 c, \forall c \in \mathbb{R}$.

Solution:

We have $f(x)=x^{2}$, and $f(c)=c^{2}$. Then

$$
\begin{aligned}
f^{\prime}(c) & =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{x^{2}-c^{2}}{x-c} \\
& =\lim _{x \rightarrow c} \frac{(x-c)(x+c)}{x-c} \\
& =\lim _{x \rightarrow c}(x+c) \\
& =c+c \\
& =2 c
\end{aligned}
$$

Hence $f^{\prime}(c)=2 c$.

Example 0.3. Let $f(x)=x^{n}, n \in \mathbb{N}$. Prove that $f^{\prime}(c)=n c^{n-1}, \forall c \in \mathbb{R}$.

Solution:

We have $f(x)=x^{n}$, and $f(c)=c^{n}$, and note that $x^{n}-c^{n}=(x-c)\left(\sum_{k=1}^{n} x^{n-k} c^{k-1}\right)$. Then

$$
\begin{aligned}
f^{\prime}(c) & =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{x^{n}-c^{n}}{x-c} \\
& =\lim _{x \rightarrow c} \frac{(x-c)\left(\sum_{k=1}^{n} x^{n-k} c^{k-1}\right)}{x-c} \\
& =\lim _{x \rightarrow c}\left(\sum_{k=1}^{n} x^{n-k} c^{k-1}\right) \\
& =\sum_{k=1}^{n} c^{n-k} c^{k-1} \\
& =\sum_{k=1}^{n} c^{n-1} \\
& =n c^{n-1}
\end{aligned}
$$

Theorem 0.1. Let $f:(a, b) \rightarrow \mathbb{R}$ and let $c \in(a, b)$. Then f is differentiable at c with derivative $f^{\prime}(c)$ if and only if for every sequence $\left\{x_{n}\right\} \subseteq(a, b)$ such that $\lim _{n \rightarrow \infty} x_{n}=c$ and $x_{n} \neq c \forall n \in \mathbb{N}$, then

$$
\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f(c)}{x_{n}-c}=f^{\prime}(c)
$$

Proof. We have proved a similar theorem in the Limits section.

Theorem 0.2. If $f: I \rightarrow \mathbb{R}$ has a derivative at $c \in I$, then f is continuous at c.

Proof. For all $x \in I, x \neq c$, we have

$$
f(x)-f(c)=\left(\frac{f(x)-f(c)}{x-c}\right)(x-c) .
$$

Now,

$$
\begin{aligned}
\lim _{x \rightarrow c}(f(x))-f(c)=\lim _{x \rightarrow c}(f(x)-f(c)) & =\lim _{x \rightarrow c}\left[\left(\frac{f(x)-f(c)}{x-c}\right)(x-c)\right] \\
& =\lim _{x \rightarrow c}\left(\frac{f(x)-f(c)}{x-c}\right) \cdot \lim _{x \rightarrow c}(x-c) \\
& =f^{\prime}(c) \cdot 0 \\
& =0 .
\end{aligned}
$$

Therefore $\lim _{x \rightarrow c} f(x)=f(c)$ so f is continuous at c.

Example 0.4. Let $f(x)=|x|$. Prove that f is not differentiable at 0 .

Solution:

For each $n \in \mathbb{N}$, let $x_{n}=\frac{1}{n}$ and $y_{n}=\frac{-1}{n}$. Then $\lim _{n \rightarrow \infty} x_{n}=0=\lim _{n \rightarrow \infty} y_{n}$. Now,

$$
\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f(0)}{x_{n}-0}=\lim _{n \rightarrow \infty} \frac{f\left(\frac{1}{n}\right)-f(0)}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}-0}{\frac{1}{n}}=\lim _{n \rightarrow \infty} 1=1
$$

and

$$
\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f(0)}{x_{n}-0}=\lim _{n \rightarrow \infty} \frac{f\left(\frac{-1}{n}\right)-f(0)}{\frac{-1}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}-0}{\frac{-1}{n}}=\lim _{n \rightarrow \infty}(-1)=-1
$$

Hence $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$ does not exists.

Theorem 0.3. Let $f, g:(a, b) \rightarrow \mathbb{R}$ are differentiable at $c \in(a, b)$. Then
(a) $(f \pm g)^{\prime}(c)=f^{\prime}(c) \pm g^{\prime}(c)$.
(b) $(f g)^{\prime}(c)=f(c) g^{\prime}(c)+f^{\prime}(c) g(c)$.
(c) $\left(\frac{f}{g}\right)^{\prime}(c)=\frac{g(c) f^{\prime}(c)-g^{\prime}(c) f(c)}{[g(c)]^{2}}$ if $g(c) \neq 0$.

Proof. We will prove parts (a) and (c).

$$
\begin{aligned}
(\mathbf{a})(f+g)^{\prime}(c) & =\lim _{x \rightarrow c} \frac{(f+g)(x)-(f+g)(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{f(x)+g(x)-f(c)-g(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{(f(x)-f(c))+(g(x)-g(c))}{x-c} . \\
& =\lim _{x \rightarrow c}\left[\frac{f(x)-f(c)}{x-c}+\frac{g(x)-g(c)}{x-c}\right] \\
& =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}+\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c} \\
& =f^{\prime}(c)+g^{\prime}(c)
\end{aligned}
$$

$$
\begin{aligned}
(c)\left(\frac{f}{g}\right)^{\prime}(c) & =\lim _{x \rightarrow c} \frac{\left(\frac{f}{g}\right)(x)-\left(\frac{f}{g}\right)(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{\frac{f(x)}{g(x)}-\frac{f(c)}{g(c)}}{x-c} \\
& =\lim _{x \rightarrow c} \frac{\frac{f(x) g(c)-f(c) g(x)}{g(x) g(c)}}{x-c} . \\
& =\lim _{x \rightarrow c} \frac{f(x) g(c)-f(c) g(c)+f(c) g(c)-f(c) g(x)}{g(x) g(c)(x-c)} \\
& =\lim _{x \rightarrow c} \frac{g(c)[f(x)-f(c)]-f(c)[g(x)-g(c)]}{g(x) g(c)(x-c)} \\
& =\lim _{x \rightarrow c}\left[\frac{g(c)[f(x)-f(c)]}{g(x) g(c)(x-c)}-\frac{f(c)[g(x)-g(c)]}{g(x) g(c)(x-c)}\right] \\
& =\lim _{x \rightarrow c}\left[\frac{g(c)[f(x)-f(c)]}{g(x) g(c)(x-c)}\right]-\lim _{x \rightarrow c}\left[\frac{f(c)[g(x)-g(c)]}{g(x) g(c)(x-c)}\right] \\
& =\left[\lim _{x \rightarrow c}\left[\frac{g(c)}{g(c) g(x)}\right] \lim _{x \rightarrow c}\left[\frac{f(x)-f(c)}{(x-c)}\right]\right]-\left[\lim _{x \rightarrow c}\left[\frac{f(c)}{g(c) g(x)}\right] \lim _{x \rightarrow c}\left[\frac{g(x)-g(c)}{(x-c)}\right]\right] \\
& =\left[\frac{g(c)}{[g(c)]^{2}} \cdot f^{\prime}(c)\right]-\left[\frac{f(c)}{[g(c)]^{2}} \cdot g^{\prime}(c)\right] \\
& =\left[\frac{g(c) f^{\prime}(c)}{[g(c)]^{2}}-\frac{f(c) g^{\prime}(c)}{[g(c)]^{2}}\right] \\
& =\frac{g(c) f^{\prime}(c)-f(c) g^{\prime}(c)}{[g(c)]^{2}} .
\end{aligned}
$$

Definition 0.2. Let $I \subseteq \mathbb{R}$ be an interval, let $f: I \rightarrow \mathbb{R}$, and let $c \in I$.
(i) We say f has a relative maximum at c if there exists $\delta>0$ such that $f(x) \leq f(c), \forall x \in(c-\delta, c+\delta)$.
(ii) We say f has a relative minimum at c if there exists $\delta>0$ such that $f(c) \leq f(x), \forall x \in(c-\delta, c+\delta)$.
(iii) We say f has a relative extremum at c if f has either a relative maximum or relative minimum at c.

Theorem 0.4. Let $f:(a, b) \rightarrow \mathbb{R}$ and let $c \in(a, b)$. If f has a relative extremum at c and $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

Proof. Suppose f has a relative maximum at c. [We will prove that $f^{\prime}(c)=0$.] Then there exists $\delta>0$ such that $f(x) \leq f(c), \forall x \in(c-\delta, c+\delta)$. Now, if $c-\delta<x<c$, then $f(x) \leq f(c) \Rightarrow f(x)-f(c) \leq 0$ and $x-c<0$. Hence $\frac{f(x)-f(c)}{x-c} \geq 0$. Thus $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \geq 0$. Therefore $f^{\prime}(c) \geq 0$ Also, if $c<x<c+\delta$, then $f(x) \leq f(c) \Rightarrow f(x)-f(c) \leq 0$ and $x-c>0$. Hence $\frac{f(x)-f(c)}{x-c} \leq 0$. Thus $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \leq 0$. Therefore $f^{\prime}(c) \leq 0 \quad$ (2). By (1) and (2) we get $f^{\prime}(c)=0$.

Theorem 0.5. [Rolle's Theorem:] Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). If $f(a)=f(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Proof. Since f is continuous on $[a, b]$, then there exist $c, d \in[a, b]$ such that $f(c)=\sup \{f(x): x \in[a, b]\}$ and $f(d)=\inf \{f(x): x \in[a, b]\}$. Now, if $f(c)=f(d)$, then $f(x)$ is constant and $f^{\prime}(x)=0, \forall x \in[a, b]$. If $f(c) \neq f(d)$, since $f(a)=f(b)$, then at least $f(c) \neq f(a)$ or $f(d) \neq f(a)$. Suppose $f(c) \neq f(a)$, then $c \in(a, b)$ and f has a relative maximum at c. Hence $f^{\prime}(c)=0$.

Theorem 0.6. [Mean Value Theorem:] Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). If $f(a)=f(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Proof. Let $g:[a, b] \rightarrow \mathbb{R}$ defined by $g(x)=f(x)-f(a)-\left[\frac{f(b)-f(a)}{b-a}\right](x-a)$. Then g is continuous on $[a, b]$ and is differentiable on (a, b). Now, $g(a)=f(a)-f(a)-\left[\frac{f(b)-f(a)}{b-a}\right](a-a)=0$ and $g(b)=f(a)-f(b)-\left[\frac{f(b)-f(a)}{b-a}\right](b-a)=0$. Hence g satisfies the hypotheses of Rolle's Theorem. Then there exists $c \in(a, b)$ such that $g^{\prime}(c)=0$. Thus $0=g^{\prime}(c)=f^{\prime}(c)-\left[\frac{f(b)-f(a)}{b-a}\right]$.
Therefore $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Example 0.5. Prove that $e^{x} \geq x+1, \forall x \in \mathbb{R}$.

Solution:

Let $f(t)=e^{t}$ then f is continuous and differentiable on \mathbb{R}. Now, if $x \in \mathbb{R}$, then on the interval $[0, x]$ or $[x, 0] f$ satisfies the M.V.T. Hence there exists c such that $f^{\prime}(c)=\frac{f(x)-f(0)}{x-0}$. Thus $e^{c}=\frac{e^{x}-e^{0}}{x}$.
Hence $e^{x}-1=e^{c} x$. Since $e^{c}>1$, then $e^{x}-1=e^{c} x>1 . x$. Thus $e^{x}-1>x$. Therefore $e^{x}>x+1$.

Example 0.6. Prove that $|\sin x| \leq|x|$.

Solution:

Let $f(t)=\sin t$ then f is continuous and differentiable on \mathbb{R}. Now, if $x \in \mathbb{R}$, then on the interval $[0, x]$ or $[x, 0] f$ satisfies the M.V.T. Hence there exists c such that $f^{\prime}(c)=\frac{f(x)-f(0)}{x-0}$. Thus $\cos c=\frac{\sin x-\sin 0}{x}$. Hence $\sin x-\sin 0=x \cos c$. Since $|\cos c| \leq 1$, then $|\sin x|=|\cos c||x| \leq 1|x|$. Therefore $|\sin x| \leq|x|$.

