

Limits

Dr. Hamed Al-Sulami

December 23, 2012

Definition 0.1: Let $E \subseteq \mathbb{R}$, and let a be a limit point of E. For a function $f: E \to \mathbb{R}$, a real number E is said to be a **limit of** f **at** a, we write $\lim_{x\to a} f(x) = L$, if, for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $x \in E$ and $0 < |x-a| < \delta \Rightarrow |f(x) - L| < \varepsilon$.

Note 0.1: The inequality 0 < |x - a| is equivalent to saying $x \neq a$.

Example 0.1: Prove that $\lim_{x\to 2} x^2 = 4$.

Discussion: Given $\varepsilon > 0$, we want to find $\delta > 0$ such that if $0 < |x - 2| < \delta \Rightarrow |x^2 - 4| < \varepsilon$. Now,

$$|x^{2} - 4| = |(x - 2)(x + 2)|$$
$$= |x - 2||x + 2|$$
$$\leq |x - 2|(|x| + 2).$$

If we assume that |x-2| < 10, then |x| - 2 < |x-2| < 10. Hence $|x| - 2 < 10 \Rightarrow |x| < 12$.

Now,
$$|x^2 - 4| \le |x - 2|(|x| + 2)$$

 $\le |x - 2|(12 + 2)$
 $\le 14|x - 2|$.

Now, if we assume $14|x-2| < \varepsilon \Rightarrow |x-2| < \frac{\varepsilon}{14}$.

Now, we have the following conditions on |x-2|:|x-2|<10 and $|x-2|<\frac{\varepsilon}{14}.$ If we choose $\delta=\min\{10,\frac{\varepsilon}{14}\}.$

Proof: Let $\varepsilon > 0$ be given. Let $\delta = \min\{10, \frac{\varepsilon}{14}\}.$

Now, if
$$0<|x-2|<\delta \Rightarrow |x^2-4|\leq \underline{14|x-2|}$$

$$<14\delta$$

$$<14.\frac{\varepsilon}{14}$$

$$=\varepsilon$$

Thus, if $0 < |x-2| < \delta \Rightarrow |x^2-4| < \varepsilon$.

Example 0.2: Prove that $\lim_{x\to 1} \left(\frac{3x^2-1}{2x+1}\right) = \frac{2}{3}$. Discussion: Given $\varepsilon > 0$, we want to find $\delta > 0$ such that if

 $0 < |x-1| < \delta \Rightarrow \left| \frac{3x^2 - 1}{2x + 1} - \frac{2}{3} \right| < \varepsilon$. Now, the idea is to start with $\left| \frac{3x^2 - 1}{2x + 1} - \frac{2}{3} \right|$ and try to make it less than or equal to $(number) \cdot |x-1|$.

$$\left| \frac{3x^2 - 1}{2x + 1} - \frac{2}{3} \right| = \left| \frac{3(3x^2 - 1) - 2(2x + 1)}{3(2x + 1)} \right|$$

$$= \left| \frac{9x^2 - 3 - 4x - 2}{3(2x + 1)} \right|$$

$$= \left| \frac{9x^2 - 4x - 5}{3(2x + 1)} \right|$$

$$= \frac{|9x^2 - 4x - 5|}{3|2x + 1|}$$

$$= \frac{|9x^2 - 9x + 5x - 5|}{3|2x + 1|}$$

$$= \frac{|9x(x - 1) + 5(x - 1)|}{3|2x + 1|}$$

$$= \frac{|(9x + 5)(x - 1)|}{3|2x + 1|}$$

$$= \frac{|x - 1||9x + 5|}{3|2x + 1|}$$

$$\leq \frac{|x - 1|(9|x| + 5)}{3|2x + 1|}$$

If we assume that $|x-1| < \frac{1}{2}$, then $|x|-1 < |x-1| < \frac{1}{2}$ and $\frac{-1}{2} < x-1 < \frac{1}{2}$. Hence $|x|-1 < \frac{1}{2} \Rightarrow |x| < \frac{3}{2}$, and

$$\frac{-1}{2} < x - 1 < \frac{1}{2} \Rightarrow \frac{1}{2} < x < \frac{3}{2}.$$

$$\Rightarrow 1 < 2x < 3$$

$$\Rightarrow 2 < 2x + 1 < 4.$$

Thus
$$2 < 2x + 1 \le |2x + 1| \Rightarrow \frac{1}{|2x + 1|} < \frac{1}{2}$$

Now, $\left| \frac{3x^2 - 1}{2x + 1} - \frac{2}{3} \right| \le \frac{|x - 1|(9|x| + 5)}{3|2x + 1|}$
 $\le |x - 1| \frac{1}{3|2x + 1|} (9|x| + 5)$
 $< |x - 1| \frac{1}{3} \frac{1}{2} (9(\frac{3}{2}) + 5).$
 $= \frac{37}{12} |x - 1|$

Now, if we assume $\frac{37}{12}|x-1| < \varepsilon \Rightarrow |x-1| < \frac{12\varepsilon}{37}$.

Now, we have the following conditions on $|x-1|:|x-1|<\frac{1}{2}$ and $|x-1|<\frac{12\varepsilon}{37}$. If we choose $\delta=\min\{\frac{1}{2},\frac{12\varepsilon}{37}\}$.

December 23, 2012 2 © Dr.Hamed Al-Sulami

Proof: Let $\varepsilon > 0$ be given. Let $\delta = \min\{\frac{1}{2}, \frac{12\varepsilon}{37}\}.$

Now, if
$$0 < |x+1| < \delta \Rightarrow \left| \frac{3x^2 - 1}{2x + 1} - \frac{2}{3} \right| < |x-1| \frac{1}{3} \frac{1}{2} (9(\frac{3}{2}) + 5)$$

$$= \frac{37}{12} |x-1|$$

$$< \frac{37}{12} \delta$$

$$< \frac{37}{12} \cdot \frac{12\varepsilon}{37}$$

Thus, if
$$0 < |x-1| < \delta \Rightarrow \left| \frac{3x^2 - 1}{2x + 1} - \frac{2}{3} \right| < \varepsilon$$
.

Example 0.3: Prove that $\lim_{x\to -1}(x^2+x+7)=7$.

Discussion: Given $\varepsilon > 0$, we want to find $\delta > 0$ such that if $0 < |x - (-1)| = |x + 1| < \delta \Rightarrow |x^2 + x + 7 - 7| < \varepsilon$. Now, the idea is to start with $|x^2 + x + 7 - 7|$ and try to make it less than or equal to (number).|x + 1|.

$$|x^2 + x + 7 - 7| = |x^2 + x|$$

= $|x + 1||x|$

If we assume that |x+1| < 1, then |x| - 1 < |x+1| < 1. Hence $|x| - 1 < 1 \Rightarrow |x| < 2$.

Now,
$$|x^2 + x + 7 - 7| \le |x + 1||x|$$

 $\le |x + 1|2$
 $\le 2|x + 1|$.

Now, if we assume $2|x+1| < \varepsilon \Rightarrow |x+1| < \frac{\varepsilon}{2}$.

Now, we have the following conditions on |x+1|:|x+1|<1 and $|x+1|<\frac{\varepsilon}{2}.$ If we choose $\delta=\min\{1,\frac{\varepsilon}{2}\}.$

Proof: Let $\varepsilon > 0$ be given. Let $\delta = \min\{1, \frac{\varepsilon}{2}\}$.

Now, if
$$0<|x+1|<\delta\Rightarrow |x^2+x+7-7|=|x+1||x|$$

$$<2|x+1|$$

$$<2\delta$$

$$<2.\frac{\varepsilon}{2}$$

$$=\varepsilon.$$

Thus, if $0 < |x+1| < \delta \Rightarrow |x^2 + x + 7 - 7| < \varepsilon$.

Theorem 0.1: []

Let $f: E \to \mathbb{R}$ and let a be a limit point of E. Then $\lim_{x \to a} f(x) = L$ if and only if for every sequence $\{x_n\} \subseteq E$ such that $\lim_{n \to \infty} x_n = a$ and $x_n \neq a \ \forall \ n \in \mathbb{N}$, then $\lim_{n \to \infty} f(x_n) = L$.

Proof: (\$\Rightarrow\$) Suppose that $\lim_{x\to a} f(x) = L$. Let $\{x_n\} \subseteq E$ such that $\lim_{n\to\infty} x_n = a$ and $x_n \neq a \ \forall \ n \in \mathbb{N}$. We want to show that $\lim_{n\to\infty} f(x_n) = L$. Let $\epsilon > 0$ be given. Since $\lim_{x\to a} f(x) = L$, then there exist $\delta > 0$ such that $0 < |x-a| < \delta$, $\Rightarrow |f(x) - L| < \varepsilon$. Since, $\lim_{n\to\infty} x_n = a$, then there exists $N \in \mathbb{N}$ such that if $n > N \Rightarrow |x_n - a| < \delta$. Now, if $n > N \Rightarrow |x_n - a| < \delta \Rightarrow |f(x_n) - L| < \varepsilon$. Hence, if $n > N \Rightarrow |f(x_n) - L| < \varepsilon$. Thus $\lim_{n\to\infty} f(x_n) = L$.

(\Leftarrow) Suppose that for every sequence $\{x_n\} \subseteq E$ such that $\lim_{n \to \infty} x_n = a$ and $x_n \neq a \ \forall \ n \in \mathbb{N}$, then $\lim_{n \to \infty} f(x_n) = L$. Assume that $\lim_{x \to a} f(x) \neq L$. Then there exist $\varepsilon_0 > 0$ such that for all $\delta > 0$ there exist $x \in E$ and $x \neq a$ with $0 < |x - a| < \delta$, but such that $|f(x) - L| \ge \varepsilon_0$. For all $n \in \mathbb{N}$, there exists $x_n \in E$ and $x_n \neq a$ with $0 < |x_n - a| < \frac{1}{n}$, but such that $|f(x_n) - L| \ge \varepsilon_0$. Hence we have a sequence $\{x_n\} \subseteq E$ such that $\lim_{n \to \infty} x_n = a$ and $x_n \neq a \ \forall \ n \in \mathbb{N}$, but the sequence $\{f(x_n)\}$ does not converges. Contradiction. Hence $\lim_{x \to a} f(x) = L$.

Note 0.2: The main use of this theorem is it usually used to prove the limit of some function does not exist at some limit point.

Example 0.4: Let $f(x) = \frac{1}{x}$. Prove that $\lim_{x\to 0} \frac{1}{x}$ does not exist.

Figure 1: $y = \frac{1}{x}$

Solution: Let $\{x_n\} = \{\frac{1}{n}\} \subseteq \mathcal{D}(f)$ and $\lim_{n \to \infty} \frac{1}{n} = 0$. Now $f(x_n) = f(\frac{1}{n}) = \frac{1}{\frac{1}{n}} = n$, and $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} n = \infty$. Hence $\lim_{x \to 0} \frac{1}{x}$ DNE.

Example 0.5: Let $g(x) = \begin{cases} 2, & \text{if } x \ge 1; \\ 4, & \text{if } x < 1 \end{cases}$. Prove that $\lim_{x \to 1} g(x)$ does not exist.

Solution: Let $\{x_n\} = \{1 + \frac{(-1)^n}{n}\} \subseteq \mathcal{D}(g)$ and $\lim_{n \to \infty} (1 + \frac{(-1)^n}{n}) = 1$. Now, $g(x_n) = g\left(1 + \frac{(-1)^n}{n}\right) = \begin{cases} 2, & \text{if } n \text{ is even;} \\ 4, & \text{if } n \text{ is odd} \end{cases}$ Hence $\{g(x_n)\} = \{4, 2, 4, 2, \ldots\}$. Thus $\lim_{n \to \infty} g(x_n)$ DNE. Hence $\lim_{x \to 0} g(x)$ DNE.

Example 0.6: Let $g(x) = \begin{cases} x, & \text{if } x \in \mathbb{Q}; \\ 0, & \text{if } x \in \mathbb{Q}^c \end{cases}$. Let $a \in \mathbb{R} - \{0\}$, prove that $\lim_{x \to a} g(x)$ does not exist.

Solution: Let $a \in \mathbb{R} - \{0\}$. There exist two sequences $\{x_n\} \subseteq \mathbb{Q}$ such that $\lim_{n \to \infty} x_n = a$ and $\{y_n\} \subseteq \mathbb{Q}^c$ such that $\lim_{n \to \infty} y_n = a$. Now, $g(x_n) = x_n$ and $g(y_n) = 0$. Hence $\lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} x_n = a$ and $\lim_{n \to \infty} g(y_n) = \lim_{n \to \infty} 0 = 0$. Since $a \neq 0$, then $\lim_{n \to \infty} g(y_n) = 0 \neq a = \lim_{n \to \infty} g(x_n)$. Thus $\lim_{x \to a} g(x)$ DNE for all $a \in \mathbb{R} - \{0\}$.

December 23, 2012 6 Dr.Hamed Al-Sulami

Definition 0.2: Let $E \subseteq \mathbb{R}$, and let a be a limit point of E. Let $f: E \to \mathbb{R}$. We say that f is **bounded on an open interval about** a, if there exists $\delta > 0$ and M > 0 such that $|f(x)| \leq M \ \forall \ x \in (a - \delta, x + \delta) \cap E$.

Theorem 0.2: []

Let $f: E \to \mathbb{R}$ and let a be a limit point of E. If $\lim_{x \to a} f(x)$ exists, then f is bounded on some open interval about a.

Proof: Let $L = \lim_{x \to a} f(x)$. Since $\lim_{x \to a} f(x)$ exists, then there exist $\delta > 0$ such that

 $\text{if } x \in E \text{ and } 0 < |x-a| < \delta \ \Rightarrow |f(x)-L| < 7. \text{ Hence if } x \in (a-\delta,a+\delta) \cap E \text{ and } x \neq a \text{, then } |f(x)|-|L| \leq |f(x)-L| < 7.$

Thus if $x \in (a - \delta, a + \delta) \cap E$ and $x \neq a \Rightarrow |f(x)| < 7 + |L|$.

Now, if $a \notin E$, let M = 7 + |L| and if $a \in E$ let $M = \sup\{7 + |L|, |f(a)|\}$.

Thus if $x \in (a - \delta, a + \delta) \cap E \Rightarrow |f(x)| \leq M$.

Lemma 0.1: If $\lim_{x\to a} f(x) = L$, then there exists $\delta > 0$ such that if $0 < |x-a| < \delta \Rightarrow \frac{|L|}{2} < |f(x)| < |L| + 1$. **Proof:**

Since
$$\lim_{x\to a} f(x) = L$$
, $\exists \ \delta_1 > 0$ such that if $0 < |x-a| < \delta_1 \Rightarrow |f(x)-L| < 1$
$$\Rightarrow |f(x)| - |L| \le |f(x)-L| < 1$$

$$\Rightarrow |f(x)| < 1 + |L|$$
 Thus $\exists \ \delta_1 > 0$ such that if $0 < |x-a| < \delta_1 \Rightarrow |f(x)| < 1 + |L|$.

Also since
$$\lim_{x\to a} f(x) = L, \exists \ \delta_2 > 0$$
 such that if $0 < |x-a| < \delta_2 \Rightarrow |f(x)-L| < \frac{|L|}{2}$

$$\Rightarrow |L| - |f(x)| \le |f(x)-L| < \frac{|L|}{2}$$

$$\Rightarrow -|f(x)| < \frac{|L|}{2} - |L|$$

$$\Rightarrow -|f(x)| < -\frac{|L|}{2}$$

$$\Rightarrow \frac{|L|}{2} < |f(x)|$$
Thus $\exists \ \delta_2 > 0$ such that if $0 < |x-a| < \delta_2 \Rightarrow \frac{|L|}{2} < |f(x)|$.

Let $\delta = \min\{\delta_1, \delta_2\} > 0$. Then if $0 < |x - a| < \delta \Rightarrow \frac{|L|}{2} < |f(x)| < 1 + |L|$.

December 23, 2012 5 © Dr.Hamed Al-Sulami