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Definition 0.1: Let 𝑓 : 𝐸 → ℝ, and let 𝑎 ∈ 𝐸. We say 𝑓 is continuous at 𝑎 , if, for all 𝜖 > 0 there exists

𝛿 = 𝛿(𝜖, 𝑎) > 0 such that if 𝑥 ∈ 𝐸 and ∣𝑥− 𝑎∣ < 𝛿 ⇒ ∣𝑓(𝑥)− 𝑓(𝑎)∣ < 𝜖.
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Figure 1:

Note 0.1:

∙ If 𝑓 fails to be continuous at 𝑎, then we say 𝑓 is discontinuous at 𝑎.

∙ This definition requires three things if 𝑓 is continuous at 𝑎 :

– 𝑓(𝑎) is defined

– lim
𝑥→𝑎

𝑓(𝑥) exists

– lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎)

∙ One can say 𝑓 is continuous at 𝑎 if

lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎)

Example 0.1: Prove that 𝑓(𝑥) = 𝑥2 is continuous at 𝑎 ∈ ℝ.
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Discussion: Given 𝜖 > 0, we want to find 𝛿 > 0 such that if ∣𝑥− 𝑎∣ < 𝛿 ⇒ ∣𝑥2 − 𝑎2∣ < 𝜖. Now,

∣𝑥2 − 𝑎2∣ = ∣(𝑥 − 𝑎)(𝑥+ 𝑎)∣
= ∣𝑥− 𝑎∣∣𝑥+ 𝑎∣
≤ ∣𝑥− 𝑎∣(∣𝑥∣ + ∣𝑎∣).

If we assume that ∣𝑥− 𝑎∣ < 1, then ∣𝑥∣ − ∣𝑎∣ < ∣𝑥− 𝑎∣ < 1. Hence ∣𝑥∣ − ∣𝑎∣ < 1⇒ ∣𝑥∣ < 1 + ∣𝑎∣.
Now, ∣𝑥2 − 𝑎2∣ ≤ ∣𝑥− 𝑎∣(∣𝑥∣ + ∣𝑎∣)

≤ ∣𝑥− 𝑎∣(1 + ∣𝑎∣+ ∣𝑎∣)
≤ (1 + 2∣𝑎∣)∣𝑥− 𝑎∣.

Now, if we assume (1 + 2∣𝑎∣)∣𝑥− 𝑎∣ < 𝜀 ⇒ ∣𝑥− 𝑎∣ < 𝜖

1 + 2∣𝑎∣ .

Now, we have the following conditions on ∣𝑥− 𝑎∣ : ∣𝑥− 𝑎∣ <1 and ∣𝑥− 𝑎∣ < 𝜖

1 + 2∣𝑎∣ . If we choose 𝛿 = min{1,
𝜖

1 + 2∣𝑎∣}.

Proof: Let 𝜖 > 0 be given. Let 𝛿 = min{1, 𝜖

1 + 2∣𝑎∣}.

Now, if ∣𝑥− 𝑎∣ < 𝛿 ⇒ ∣𝑓(𝑥) − 𝑓(𝑎)∣ = ∣𝑥2 − 𝑎2∣ ≤ (1 + 2∣𝑎∣)∣𝑥− 𝑎∣
< (1 + 2∣𝑎∣)𝛿
< (1 + 2∣𝑎∣). 𝜖

1 + 2∣𝑎∣
= 𝜖.

Thus, if ∣𝑥− 𝑎∣ < 𝛿 ⇒ ∣𝑓(𝑥)− 𝑓(𝑎)∣ < 𝜖.

■

Theorem 0.1: []

Let 𝑓 : 𝐸 → ℝ and let 𝑎 ∈ 𝐸. Then 𝑓 is continuous at 𝑎 if and only if for every sequence {𝑥𝑛} ⊆ 𝐸 such that

lim
𝑛→∞ 𝑥𝑛 = 𝑎, then lim

𝑛→∞ 𝑓(𝑥𝑛) = 𝑓(𝑎).

Proof: (⇒) Suppose that 𝑓 is continuous at 𝑎. Let {𝑥𝑛} ⊆ 𝐸 such that lim
𝑛→∞𝑥𝑛 = 𝑎. We want to show that

lim
𝑛→∞ 𝑓(𝑥𝑛) = 𝑓(𝑎). Let 𝜖 > 0 be given.

Since 𝑓 is continuous at 𝑎, then there exist 𝛿 > 0 such that if ∣𝑥− 𝑎∣ < 𝛿, ⇒ ∣𝑓(𝑥) − 𝑓(𝑎)∣ < 𝜖. Since, lim
𝑛→∞𝑥𝑛 = 𝑎,

then there exists 𝑁 ∈ ℕ such that if 𝑛 > 𝑁 ⇒ ∣𝑥𝑛 − 𝑎∣ < 𝛿. Now, if 𝑛 > 𝑁 ⇒ ∣𝑥𝑛 − 𝑎∣ < 𝛿 ⇒ ∣𝑓(𝑥𝑛) − 𝑓(𝑎)∣ < 𝜖.

Hence , if 𝑛 > 𝑁 ⇒ ∣𝑓(𝑥𝑛)− 𝑓(𝑎)∣ < 𝜖. Thus lim
𝑛→∞ 𝑓(𝑥𝑛) = 𝑓(𝑎).

(⇐) Suppose that for every sequence {𝑥𝑛} ⊆ 𝐸 such that lim
𝑛→∞𝑥𝑛 = 𝑎, then lim

𝑛→∞ 𝑓(𝑥𝑛) = 𝑓(𝑎). Assume that 𝑓 is

discontinuous at 𝑎. Then there exist 𝜖0 > 0 such that for all 𝛿 > 0 there exist 𝑥 ∈ 𝐸 with ∣𝑥 − 𝑎∣ < 𝛿, but such that

∣𝑓(𝑥) − 𝑓(𝑎)∣ ≥ 𝜖0. For all 𝑛 ∈ ℕ, there exists 𝑥𝑛 ∈ 𝐸 with ∣𝑥𝑛 − 𝑎∣ < 1

𝑛
, but such that ∣𝑓(𝑥𝑛) − 𝑓(𝑎)∣ ≥ 𝜖0. Hence

we have a sequence {𝑥𝑛} ⊆ 𝐸 such that lim
𝑛→∞ 𝑥𝑛 = 𝑎, but the sequence {𝑓(𝑥𝑛)} does not converges. Contradiction.

Hence 𝑓 is continuous at 𝑎.

■

Example 0.2: Let 𝑓(𝑥) =

⎧⎨
⎩

𝑥+ 1, if 𝑥 ∈ ℚ;

−2𝑥+ 4, if 𝑥 ∈ ℚ𝑐
. Discuses the continuity of 𝑓.
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Solution:Let 𝑎 ∈ ℝ− {1}.
Case I: If 𝑎 ∈ ℚ. There exists a sequence {𝑦𝑛} ⊆ ℚ𝑐 such that lim

𝑛→∞ 𝑦𝑛 = 𝑎. Now, 𝑓(𝑦𝑛) = −2𝑦𝑛 + 4. Hence
lim
𝑛→∞ 𝑓(𝑦𝑛) = lim

𝑛→∞(−2𝑦𝑛 + 4) = −2𝑎+ 4 ∕= 𝑎+ 1 = 𝑓(𝑎). Hence 𝑓 is discontinuous at any 𝑎 ∈ ℚ− {1}.
Case II:

If 𝑎 ∈ ℚ𝑐. There exists a sequence {𝑥𝑛} ⊆ ℚ such that lim
𝑛→∞ 𝑥𝑛 = 𝑎. Now, 𝑓(𝑥𝑛) = 𝑥𝑛 + 1. Hence lim

𝑛→∞ 𝑓(𝑥𝑛) =

lim
𝑛→∞(𝑥𝑛 + 1) = 𝑎 + 1 ∕= −2𝑎 + 4 = 𝑓(𝑎). Hence 𝑓 is discontinuous at any 𝑎 ∈ ℚ𝑐. By the two cases we have 𝑓 is

discontinuous at any 𝑎 ∈ ℝ− {1}. Now, to see that 𝑓 is continuous at 1. Since 𝑓(1) = 2, then

∣𝑓(𝑥)− 𝑓(1)∣ =
⎧⎨
⎩

∣𝑥+ 1− 2∣, if 𝑥 ∈ ℚ ;

∣ − 2𝑥+ 4− 2∣, if 𝑥 ∈ ℚ𝑐 .

Hence

∣𝑓(𝑥)− 𝑓(1)∣ =
⎧⎨
⎩

∣𝑥− 1∣, if 𝑥 ∈ ℚ;

2∣𝑥− 1∣, if 𝑥 ∈ ℚ𝑐.

Hence ∣𝑓(𝑥)− 𝑓(1)∣ ≤ max{∣𝑥− 1∣, 2∣𝑥− 1∣} = 2∣𝑥− 1∣.
So, let 𝜖 > 0 be given. Choose 𝛿 =

𝜖

2
. If ∣𝑥− 1∣ < 𝛿 ⇒ ∣𝑓(𝑥)− 𝑓(1)∣ ≤ 2∣𝑥− 1∣ < 2.𝛿 = 2

𝜖

2
= 𝜖.

Hence 𝑓 is continuous at 1.

■

Definition 0.2: Let 𝑓 : 𝐸 → ℝ, and let 𝐶 ⊆ 𝐸. We say 𝑓 is continuous on the set 𝐶 , if 𝑓 is continuous at

every point of 𝐶.

Definition 0.3: A function 𝑓 : 𝐸 → ℝ is said to be bounded on 𝐸 , if there exists a number 𝑀 > 0 such that

∣𝑓(𝑥)∣ ≤ 𝑀, ∀ 𝑥 ∈ 𝐸.

Note 0.2: A function 𝑓 is not bounded on the set 𝐸 if for all 𝑀 > 0, there exists 𝑥𝑀 ∈ 𝐸 such that ∣𝑓(𝑥𝑀 )∣ > 𝑀.

Theorem 0.2: []

Let [𝑎, 𝑏] be closed bounded interval and let 𝑓 : [𝑎, 𝑏]→ ℝ be continuous on [𝑎, 𝑏]. Then 𝑓 is bounded on 𝐼. Moreover,

𝑓 assume its maximum and minimum values on [𝑎, 𝑏]. [ there exist 𝑥0, 𝑥1 ∈ [𝑎, 𝑏] such that 𝑓(𝑥0) = inf{𝑓(𝑥) : 𝑥 ∈
[𝑎, 𝑏]} and 𝑓(𝑥1) = sup{𝑓(𝑥) : 𝑥 ∈ [𝑎, 𝑏]}.]
Proof: Suppose 𝑓 is not bounded on [𝑎, 𝑏]. Then for each 𝑛 ∈ ℕ there exists 𝑥𝑛 ∈ [𝑎, 𝑏] such that ∣𝑓(𝑥𝑛)∣ > 𝑛.

Now, we have a sequence {𝑥𝑛} ⊆ [𝑎, 𝑏]. Thus {𝑥𝑛} is bounded. Then by Bolzano-Weierstrass Theorem {𝑥𝑛} has a
convergent subsequence {𝑥𝑛𝑘

}. Let 𝛼 = lim
𝑘→∞

𝑥𝑛𝑘
. Since 𝑎 ≤ 𝑥𝑛𝑘

≤ 𝑏, then 𝑎 ≤ 𝛼 ≤ 𝑏. Since 𝑓 is continuous at 𝛼, then

we have lim
𝑘→∞

𝑓(𝑥𝑛𝑘
) = 𝑓(𝛼). Also we have ∣𝑓(𝑥𝑛𝑘

)∣ > 𝑛𝑘, then lim
𝑘→∞

∣𝑓(𝑥𝑛𝑘
)∣ =∞. Contradiction. Thus 𝑓 is bounded

on [𝑎, 𝑏].

Now, Let 𝑚 = inf{𝑓(𝑥) : 𝑥 ∈ [𝑎, 𝑏]}, then 𝑚 is finite. For each 𝑛 ∈ ℕ, 𝑚+
1

𝑛
is not a lower bound for {𝑓(𝑥) : 𝑥 ∈ [𝑎, 𝑏]}.

Then there exists 𝑥𝑛 ∈ [𝑎, 𝑏] such that 𝑚 ≤ 𝑓(𝑥𝑛) < 𝑚 +
1

𝑛
. Hence lim

𝑛→∞ 𝑓(𝑥𝑛) = 𝑚. Now,{𝑥𝑛} is bounded in [𝑎, 𝑏].
Then by Bolzano-Weierstrass Theorem {𝑥𝑛} has a convergent subsequence {𝑥𝑛𝑘

}. Let 𝑥0 = lim
𝑘→∞

𝑥𝑛𝑘
∈ [𝑎, 𝑏].

Since 𝑓 is continuous at 𝑥0, then we have 𝑚 = lim
𝑘→∞

𝑓(𝑥𝑛𝑘
) = 𝑓(𝑥0).

Hence 𝑓(𝑥0) = 𝑚 = inf{𝑓(𝑥) : 𝑥 ∈ [𝑎, 𝑏]}. Similarly, one can show the maximum value.

■
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Theorem 0.3: [The Intermediate Value Theorem]

Let 𝑓 : [𝑎, 𝑏] → ℝ be continuous on [𝑎, 𝑏]. Let 𝛼 be a number between 𝑓(𝑎) and 𝑓(𝑏). [ i.e. 𝑓(𝑎) < 𝛼 < 𝑓(𝑏) or

𝑓(𝑏) < 𝛼 < 𝑓(𝑎)] Then there is a number 𝑐 ∈ (𝑎, 𝑏) such that 𝑓(𝑐) = 𝛼.

Proof: Assume that 𝑓(𝑎) < 𝛼 < 𝑓(𝑏). Let 𝐸 = {𝑥 ∈ [𝑎, 𝑏] : 𝑓(𝑥) < 𝛼}. Since 𝑓(𝑎) < 𝛼, then 𝑎 ∈ 𝐸. Hence 𝐸 is

nonempty subset of [𝑎, 𝑏]. Thus 𝐸 is bounded. Then 𝑐 = sup𝐸 exists and 𝑐 ∈ [𝑎, 𝑏].
For each 𝑛 ∈ ℕ, since 𝑐 − 1

𝑛
is not an upper bound of 𝐸, then there exists 𝑥𝑛 ∈ 𝐸 such that 𝑐− 1

𝑛
< 𝑥𝑛 ≤ 𝑐. Hence

lim
𝑛→∞ 𝑥𝑛 = 𝑐 and, since 𝑓 is continuous at 𝑐, then 𝑓(𝑐) = lim

𝑛→∞ 𝑓(𝑥𝑛). Now, 𝑥𝑛 ∈ 𝐸 ∀, 𝑛 ∈ ℕ. Then 𝑓(𝑥𝑛) < 𝛼. Hence

𝑓(𝑐) = lim
𝑛→∞ 𝑓(𝑥𝑛) ≤ 𝛼. Thus 𝑓(𝑐) ≤ 𝛼 (1).

Let 𝑦𝑛 = min{𝑏, 𝑐+ 1

𝑛
}. Then 𝑦𝑛 ∈ [𝑎, 𝑏], and 𝑦𝑛 /∈ 𝐸 ∀ 𝑛 ∈ ℕ. Then 𝑓(𝑦𝑛) ≥ 𝛼. Now, since 𝑐 ≤ 𝑦𝑛 ≤ 𝑐 +

1

𝑛
, then

lim
𝑛→∞ 𝑦𝑛 = 𝑐. Since 𝑓 is continuous at 𝑐, then 𝑓(𝑐) = lim

𝑛→∞ 𝑓(𝑦𝑛) ≥ 𝛼. Thus 𝑓(𝑐) ≥ 𝛼 (2). Then by (1) and (2) we

have 𝑓(𝑐) = 𝛼. Since 𝑓(𝑎) < 𝑓(𝑐) < 𝑓(𝑏), then 𝑐 ∕= 𝑎 and 𝑐 ∕= 𝑏. Hence 𝑐 ∈ (𝑎, 𝑏), and 𝑓(𝑐) = 𝛼.

a b

f(a)

f(b)

y = f(x)

x

y

α

E

c

Figure 2:

■

Definition 0.4: Let 𝑓 : 𝐸 → ℝ, be a function. We say 𝑓 is uniformly continuous on 𝐸 , if, for all 𝜖 > 0

there exists 𝛿 = 𝛿(𝜖) > 0 such that if 𝑥, 𝑦 ∈ 𝐸 and ∣𝑥− 𝑦∣ < 𝛿 ⇒ ∣𝑓(𝑥) − 𝑓(𝑦)∣ < 𝜖.

Example 0.3: Prove that 𝑓(𝑥) = 𝑥2 is uniformly continuous on [𝑎, 𝑏], 𝑎, 𝑏 ∈ ℝ.

Discussion: Given 𝜖 > 0, we want to find 𝛿 > 0 such that if 𝑥, 𝑦 ∈ [𝑎, 𝑏], and ∣𝑥− 𝑦∣ < 𝛿 ⇒ ∣𝑥2 − 𝑦2∣ < 𝜀. Now,

∣𝑥2 − 𝑦2∣ = ∣(𝑥− 𝑦)(𝑥+ 𝑦)∣
= ∣𝑥− 𝑦∣∣𝑥+ 𝑦∣
≤ ∣𝑥− 𝑦∣(∣𝑥∣+ ∣𝑦∣).
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Let 𝑀 = max{∣𝑎∣, ∣𝑏∣}. Now, since 𝑥, 𝑦 ∈ [𝑎, 𝑏], then ∣𝑥∣, ∣𝑦∣ ≤ 𝑀.

∣𝑥2 − 𝑦2∣ = ∣(𝑥− 𝑦)(𝑥 + 𝑦)∣
= ∣𝑥− 𝑦∣∣𝑥+ 𝑦∣
≤ ∣𝑥− 𝑦∣(∣𝑥∣+ ∣𝑦∣)
≤ ∣𝑥− 𝑦∣(𝑀 +𝑀)

= 2𝑀 ∣𝑥− 𝑦∣

If we choose 𝛿 =
𝜖

2𝑀
.

Proof: Let 𝜖 > 0 be given. Let 𝛿 =
𝜖

2𝑀
.

Now, if 𝑥, 𝑦 ∈ [𝑎, 𝑏], with ∣𝑥− 𝑦∣ < 𝛿 ⇒ ∣𝑓(𝑥)− 𝑓(𝑦)∣ = ∣𝑥2 − 𝑦2∣ ≤ 2𝑀 ∣𝑥− 𝑦∣
< 2𝑀𝛿

< 2𝑀.
𝜖

2𝑀

= 𝜖.

Hence 𝑓 is uniformly continuous on [𝑎, 𝑏], 𝑎, 𝑏 ∈ ℝ.

■

Note 0.3: Let 𝑓 : 𝐸 → ℝ, be a function. 𝑓 is not uniformly continuous on 𝐸, if, there is 𝜖0 > 0 such that for every

𝛿 > 0 there are 𝑥𝛿, 𝑦𝛿 ∈ 𝐸 such that ∣𝑥𝛿 − 𝑦𝛿∣ < 𝛿 and ∣𝑓(𝑥𝛿)− 𝑓(𝑦𝛿)∣ ≥ 𝜖0.

Lemma 0.1: Let 𝑓 : 𝐸 → ℝ, be a function. Then 𝑓 is not uniformly continuous on 𝐸 if and only if there exist

𝜖0 > 0 and two sequence {𝑥𝑛} and {𝑦𝑛} in 𝐸 such that lim
𝑛→∞(𝑥𝑛 − 𝑦𝑛) = 0 and ∣𝑓(𝑥𝑛)− 𝑓(𝑦𝑛)∣ ≥ 𝜖0 for all 𝑛 ∈ ℕ.

Proof: (⇒) Suppose that 𝑓 is not uniformly continuous ont 𝐸. Then there is 𝜖0 > 0 such that for every 𝛿 > 0 there

are 𝑥𝛿, 𝑦𝛿 ∈ 𝐸such that ∣𝑥𝛿 −𝑦𝛿∣ < 𝛿 and ∣𝑓(𝑥𝛿)−𝑓(𝑦𝛿)∣ ≥ 𝜖0. for each 𝑛 ∈ ℕ, let 𝛿 =
1

𝑛
> 0, there are 𝑥𝑛, 𝑦𝑛 ∈ 𝐸 such

that ∣𝑥𝑛 − 𝑦𝑛∣ < 1

𝑛
and ∣𝑓(𝑥𝑛)− 𝑓(𝑦𝑛)∣ ≥ 𝜖0. Hence we two sequence {𝑥𝑛} and {𝑦𝑛} in 𝐸 such that lim

𝑛→∞(𝑥𝑛 − 𝑦𝑛) = 0

and ∣𝑓(𝑥𝑛)− 𝑓(𝑦𝑛)∣ ≥ 𝜖0.

(⇐) Suppose that there exist 𝜖0 > 0 and two sequence {𝑥𝑛} and {𝑦𝑛} in 𝐸 such that lim
𝑛→∞(𝑥𝑛 − 𝑦𝑛) = 0 and

∣𝑓(𝑥𝑛) − 𝑓(𝑦𝑛)∣ ≥ 𝜖0 for all 𝑛 ∈ ℕ. Let 𝛿 > 0 be given. Since lim
𝑛→∞(𝑥𝑛 − 𝑦𝑛) = 0 there exist 𝑁 ∈ ℕ such that

𝑛 > 𝑁 ⇒ ∣𝑥𝑛 − 𝑦𝑛∣ < 𝛿. Thus ∣𝑥𝑁+1 − 𝑦𝑁+1∣ < 𝛿 and ∣𝑓(𝑥𝑁+1)− 𝑓(𝑦𝑁+1)∣ ≥ 𝜖0. Hence 𝑓 is not uniformly continuous

on 𝐸.

■

Example 0.4: Prove that 𝑓(𝑥) = 𝑥2 is not uniformly continuous on [1,∞).
Solution:Let 𝑥𝑛 = 𝑛 and 𝑦𝑛 = 𝑛+

1

𝑛
. Now, {𝑛}, {𝑛+1

𝑛
} ⊂ [1,∞). Also, lim

𝑛→∞(𝑥𝑛−𝑦𝑛) = lim
𝑛→∞

1

𝑛
= 0, ∣𝑓(𝑥𝑛)−𝑓(𝑦𝑛)∣ =(

𝑛+
1

𝑛

)2

− 𝑛2 = 2 +
1

𝑛2
> 2. Hence 𝑓 is not uniformly continuous on [1,∞).

■

Theorem 0.4: []

Let 𝑎, 𝑏 ∈ ℝ such that 𝑎 < 𝑏. Let 𝑓 : [𝑎, 𝑏]→ ℝ be continuous on [𝑎, 𝑏]. Then 𝑓 is uniformly continuous on [𝑎, 𝑏].
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Proof: Suppose that 𝑓 is not uniformly continuous on [𝑎, 𝑏]. then there exist 𝜖0 > 0 and two sequence {𝑥𝑛} and
{𝑦𝑛} in [𝑎, 𝑏] such that lim

𝑛→∞(𝑥𝑛 − 𝑦𝑛) = 0 and ∣𝑓(𝑥𝑛) − 𝑓(𝑦𝑛)∣ ≥ 𝜖0 for all 𝑛 ∈ ℕ. Since {𝑥𝑛} ⊂ [𝑎, 𝑏], then it is

bounded and hence {𝑥𝑛} has a convergent subsequence {𝑥𝑛𝑘
} by Bolzano-Weierstrass Theorem. Since [𝑎, 𝑏] is closed

then 𝑥 = lim
𝑘→∞

𝑥𝑛𝑘
∈ [𝑎, 𝑏]. Also since lim

𝑛→∞(𝑥𝑛− 𝑦𝑛) = 0, then 𝑥 = lim
𝑘→∞

𝑥𝑛𝑘
= lim

𝑘→∞
𝑦𝑛𝑘

. Since 𝑓 is continuous on [𝑎, 𝑏],

then 𝑓(𝑥) = lim
𝑘→∞

𝑓(𝑥𝑛𝑘
) = lim

𝑘→∞
𝑓(𝑦𝑛𝑘

). But ∣𝑓(𝑥𝑛𝑘
) − 𝑓(𝑦𝑛𝑘

)∣ ≥ 𝜖0. Contradiction Hence 𝑓 is uniformly continuous

on [𝑎, 𝑏].

■

Definition 0.5: Let 𝐸 ⊆ ℝ and let 𝑓 : 𝐸 → ℝ. We say that 𝑓 is Lipschitz function on 𝐸 if there is 𝑀 > 0

such that ∣𝑓(𝑥) − 𝑓(𝑦)∣ ≤ 𝑀 ∣𝑥− 𝑦∣ for all 𝑥, 𝑦 ∈ 𝐸.

Example 0.5: Prove that 𝑓(𝑥) =
√
𝑥 is Lipschitz function on [1,∞).

Solution: Since if 𝑥, 𝑦 ∈ [1,∞), then 𝑥, 𝑦 ≥ 1 and hence
√
𝑥 ≥ 1 and

√
𝑦 ≥ 1. Thus

√
𝑥 +

√
𝑦 ≥ 2, therefore

1√
𝑥+

√
𝑦
≤ 1

2
. Now, ∣𝑓(𝑥)− 𝑓(𝑦)∣ = ∣∣√𝑥−√

𝑦
∣∣ =

∣∣∣∣ 𝑥− 𝑦√
𝑥+

√
𝑦

∣∣∣∣ = ∣𝑥− 𝑦∣√
𝑥+

√
𝑦
≤ 1

2
∣𝑥− 𝑦∣. Hence 𝑓(𝑥) = √

𝑥 is Lipschitz

function on [1,∞).
■

Theorem 0.5: []

If 𝑓 : 𝐸 → ℝ is Lipschitz function on 𝐸, then 𝑓 is uniformly continuous on 𝐸.

Proof: Since 𝑓 is Lipschitz function on 𝐸, then there is 𝑀 > 0 such that ∣𝑓(𝑥)− 𝑓(𝑦)∣ ≤ 𝑀 ∣𝑥− 𝑦∣ for all 𝑥, 𝑦 ∈ 𝐸.

Let 𝜖 > 0 be given. Choose 𝛿 =
𝜖

𝑀
> 0, if 𝑥, 𝑦 ∈ 𝐸 with ∣𝑥 − 𝑦∣ < 𝛿, then ∣𝑓(𝑥) − 𝑓(𝑦)∣ ≤ 𝑀 ∣𝑥 − 𝑦∣ < 𝑀.

𝜖

𝑀
= 𝜖.

Hence 𝑓 is Lipschitz function on 𝐸.

■
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