Continuity

Dr.Hamed Al-Sulami

December 25, 2012

Definition 0.1: Let $f: E \rightarrow \mathbb{R}$, and let $a \in E$. We say f is continuous at a, if, for all $\epsilon>0$ there exists $\delta=\delta(\epsilon, a)>0$ such that if $x \in E$ and $|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon$.

x

Figure 1:

Note 0.1:

- If f fails to be continuous at a, then we say f is discontinuous at a.
- This definition requires three things if f is continuous at a :
- $f(a)$ is defined
$-\lim _{x \rightarrow a} f(x)$ exists
$-\lim _{x \rightarrow a} f(x)=f(a)$
- One can say f is continuous at a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Example 0.1: Prove that $f(x)=x^{2}$ is continuous at $a \in \mathbb{R}$.

Discussion: Given $\epsilon>0$, we want to find $\delta>0$ such that if $|x-a|<\delta \Rightarrow\left|x^{2}-a^{2}\right|<\epsilon$. Now,

$$
\begin{aligned}
\left|x^{2}-a^{2}\right| & =|(x-a)(x+a)| \\
& =|x-a||x+a| \\
& \leq|x-a|(|x|+|a|) .
\end{aligned}
$$

If we assume that $|x-a|<1$, then $|x|-|a|<|x-a|<1$. Hence $|x|-|a|<1 \Rightarrow|x|<1+|a|$.

$$
\text { Now, } \begin{aligned}
\left|x^{2}-a^{2}\right| & \leq|x-a|(|x|+|a|) \\
& \leq|x-a|(1+|a|+|a|) \\
& \leq(1+2|a|)|x-a| .
\end{aligned}
$$

$$
\text { Now, if we assume }(1+2|a|)|x-a|<\varepsilon \Rightarrow|x-a|<\frac{\epsilon}{1+2|a|}
$$

Now, we have the following conditions on $|x-a|:|x-a|<1$ and $|x-a|<\frac{\epsilon}{1+2|a|}$. If we choose $\delta=\min \left\{1, \frac{\epsilon}{1+2|a|}\right\}$.

Proof: Let $\epsilon>0$ be given. Let $\delta=\min \left\{1, \frac{\epsilon}{1+2|a|}\right\}$.

$$
\begin{aligned}
\text { Now, if }|x-a|<\delta \Rightarrow|f(x)-f(a)|=\left|x^{2}-a^{2}\right| & \leq(1+2|a|)|x-a| \\
& <(1+2|a|) \delta \\
& <(1+2|a|) \cdot \frac{\epsilon}{1+2|a|} \\
& =\epsilon
\end{aligned}
$$

Thus, if $|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon$.

Theorem 0.1: []

Let $f: E \rightarrow \mathbb{R}$ and let $a \in E$. Then f is continuous at a if and only if for every sequence $\left\{x_{n}\right\} \subseteq E$ such that $\lim _{n \rightarrow \infty} x_{n}=a$, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$.
Proof: $\quad(\Rightarrow)$ Suppose that f is continuous at a. Let $\left\{x_{n}\right\} \subseteq E$ such that $\lim _{n \rightarrow \infty} x_{n}=a$. We want to show that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$. Let $\epsilon>0$ be given.
Since f is continuous at a, then there exist $\delta>0$ such that if $|x-a|<\delta, \Rightarrow|f(x)-f(a)|<\epsilon$. Since, $\lim _{n \rightarrow \infty} x_{n}=a$, then there exists $N \in \mathbb{N}$ such that if $n>N \Rightarrow\left|x_{n}-a\right|<\delta$. Now, if $n>N \Rightarrow\left|x_{n}-a\right|<\delta \Rightarrow\left|f\left(x_{n}\right)-f(a)\right|<\epsilon$. Hence, if $n>N \Rightarrow\left|f\left(x_{n}\right)-f(a)\right|<\epsilon$. Thus $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$.
(\Leftarrow) Suppose that for every sequence $\left\{x_{n}\right\} \subseteq E$ such that $\lim _{n \rightarrow \infty} x_{n}=a$, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$. Assume that f is discontinuous at a. Then there exist $\epsilon_{0}>0$ such that for all $\delta>0$ there exist $x \in E$ with $|x-a|<\delta$, but such that $|f(x)-f(a)| \geq \epsilon_{0}$. For all $n \in \mathbb{N}$, there exists $x_{n} \in E$ with $\left|x_{n}-a\right|<\frac{1}{n}$, but such that $\left|f\left(x_{n}\right)-f(a)\right| \geq \epsilon_{0}$. Hence we have a sequence $\left\{x_{n}\right\} \subseteq E$ such that $\lim _{n \rightarrow \infty} x_{n}=a$, but the sequence $\left\{f\left(x_{n}\right)\right\}$ does not converges. Contradiction. Hence f is continuous at a.

Example 0.2: Let $f(x)=\left\{\begin{array}{ll}x+1, & \text { if } x \in \mathbb{Q} ; \\ -2 x+4, & \text { if } x \in \mathbb{Q}^{c}\end{array}\right.$. Discuses the continuity of f.

Solution: Let $a \in \mathbb{R}-\{1\}$.
Case I: If $a \in \mathbb{Q}$. There exists a sequence $\left\{y_{n}\right\} \subseteq \mathbb{Q}^{c}$ such that $\lim _{n \rightarrow \infty} y_{n}=a$. Now, $f\left(y_{n}\right)=-2 y_{n}+4$. Hence $\lim _{n \rightarrow \infty} f\left(y_{n}\right)=\lim _{n \rightarrow \infty}\left(-2 y_{n}+4\right)=-2 a+4 \neq a+1=f(a)$. Hence f is discontinuous at any $a \in \mathbb{Q}-\{1\}$.

Case II:

If $a \in \mathbb{Q}^{c}$. There exists a sequence $\left\{x_{n}\right\} \subseteq \mathbb{Q}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$. Now, $f\left(x_{n}\right)=x_{n}+1$. Hence $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ $\lim _{n \rightarrow \infty}\left(x_{n}+1\right)=a+1 \neq-2 a+4=f(a)$. Hence f is discontinuous at any $a \in \mathbb{Q}^{c}$. By the two cases we have f is discontinuous at any $a \in \mathbb{R}-\{1\}$. Now, to see that f is continuous at 1 . Since $f(1)=2$, then

$$
|f(x)-f(1)|= \begin{cases}|x+1-2|, & \text { if } x \in \mathbb{Q} \\ |-2 x+4-2|, & \text { if } x \in \mathbb{Q}^{c}\end{cases}
$$

Hence

$$
|f(x)-f(1)|= \begin{cases}|x-1|, & \text { if } x \in \mathbb{Q} \\ 2|x-1|, & \text { if } x \in \mathbb{Q}^{c}\end{cases}
$$

Hence $|f(x)-f(1)| \leq \max \{|x-1|, 2|x-1|\}=2|x-1|$.
So, let $\epsilon>0$ be given. Choose $\delta=\frac{\epsilon}{2}$. If $|x-1|<\delta \Rightarrow|f(x)-f(1)| \leq 2|x-1|<2 . \delta=2 \frac{\epsilon}{2}=\epsilon$.
Hence f is continuous at 1 .

Definition 0.2: Let $f: E \rightarrow \mathbb{R}$, and let $C \subseteq E$. We say f is continuous on the set C, if f is continuous at every point of C.

Definition 0.3: A function $f: E \rightarrow \mathbb{R}$ is said to be bounded on E, if there exists a number $M>0$ such that $|f(x)| \leq M, \forall x \in E$.

Note 0.2: A function f is not bounded on the set E if for all $M>0$, there exists $x_{M} \in E$ such that $\left|f\left(x_{M}\right)\right|>M$.

Theorem 0.2: []

Let $[a, b]$ be closed bounded interval and let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$. Then f is bounded on I. Moreover, f assume its maximum and minimum values on $[a, b]$. [there exist $x_{0}, x_{1} \in[a, b]$ such that $f\left(x_{0}\right)=\inf \{f(x): x \in$ $[a, b]\}$ and $f\left(x_{1}\right)=\sup \{f(x): x \in[a, b]\}$.]
Proof: Suppose f is not bounded on $[a, b]$. Then for each $n \in \mathbb{N}$ there exists $x_{n} \in[a, b]$ such that $\left|f\left(x_{n}\right)\right|>n$. Now, we have a sequence $\left\{x_{n}\right\} \subseteq[a, b]$. Thus $\left\{x_{n}\right\}$ is bounded. Then by Bolzano-Weierstrass Theorem $\left\{x_{n}\right\}$ has a convergent subsequence $\left\{x_{n_{k}}\right\}$. Let $\alpha=\lim _{k \rightarrow \infty} x_{n_{k}}$. Since $a \leq x_{n_{k}} \leq b$, then $a \leq \alpha \leq b$. Since f is continuous at α, then we have $\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=f(\alpha)$. Also we have $\left|f\left(x_{n_{k}}\right)\right|>n_{k}$, then $\lim _{k \rightarrow \infty}\left|f\left(x_{n_{k}}\right)\right|=\infty$. Contradiction. Thus f is bounded on $[a, b]$.
Now, Let $m=\inf \{f(x): x \in[a, b]\}$, then m is finite. For each $n \in \mathbb{N}, m+\frac{1}{n}$ is not a lower bound for $\{f(x): x \in[a, b]\}$. Then there exists $x_{n} \in[a, b]$ such that $m \leq f\left(x_{n}\right)<m+\frac{1}{n}$. Hence $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=m$. Now, $\left\{x_{n}\right\}$ is bounded in $[a, b]$. Then by Bolzano-Weierstrass Theorem $\left\{x_{n}\right\}$ has a convergent subsequence $\left\{x_{n_{k}}\right\}$. Let $x_{0}=\lim _{k \rightarrow \infty} x_{n_{k}} \in[a, b]$. Since f is continuous at x_{0}, then we have $m=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=f\left(x_{0}\right)$.
Hence $f\left(x_{0}\right)=m=\inf \{f(x): x \in[a, b]\}$. Similarly, one can show the maximum value.

Theorem 0.3: [The Intermediate Value Theorem]

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$. Let α be a number between $f(a)$ and $f(b)$. [i.e. $f(a)<\alpha<f(b)$ or $f(b)<\alpha<f(a)]$ Then there is a number $c \in(a, b)$ such that $f(c)=\alpha$.

Proof: Assume that $f(a)<\alpha<f(b)$. Let $E=\{x \in[a, b]: f(x)<\alpha\}$. Since $f(a)<\alpha$, then $a \in E$. Hence E is nonempty subset of $[a, b]$. Thus E is bounded. Then $c=\sup E$ exists and $c \in[a, b]$.
For each $n \in \mathbb{N}$, since $c-\frac{1}{n}$ is not an upper bound of E, then there exists $x_{n} \in E$ such that $c-\frac{1}{n}<x_{n} \leq c$. Hence $\lim _{n \rightarrow \infty} x_{n}=c$ and, since f is continuous at c, then $f(c)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$. Now, $x_{n} \in E \forall, n \in \mathbb{N}$. Then $f\left(x_{n}\right)<\alpha$. Hence $f(c)=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \leq \alpha$. Thus $f(c) \leq \alpha$
Let $y_{n}=\min \left\{b, c+\frac{1}{n}\right\}$. Then $y_{n} \in[a, b]$, and $y_{n} \notin E \forall n \in \mathbb{N}$. Then $f\left(y_{n}\right) \geq \alpha$. Now, since $c \leq y_{n} \leq c+\frac{1}{n}$, then $\lim _{n \rightarrow \infty} y_{n}=c$. Since f is continuous at c, then $f(c)=\lim _{n \rightarrow \infty} f\left(y_{n}\right) \geq \alpha$. Thus $f(c) \geq \alpha \quad$ (2). Then by (1) and (2) we have $f(c)=\alpha$. Since $f(a)<f(c)<f(b)$, then $c \neq a$ and $c \neq b$. Hence $c \in(a, b)$, and $f(c)=\alpha$.

Figure 2:

Definition 0.4: Let $f: E \rightarrow \mathbb{R}$, be a function. We say f is uniformly continuous on E, if, for all $\epsilon>0$ there exists $\delta=\delta(\epsilon)>0$ such that if $x, y \in E$ and $|x-y|<\delta \Rightarrow|f(x)-f(y)|<\epsilon$.

Example 0.3: Prove that $f(x)=x^{2}$ is uniformly continuous on $[a, b], a, b \in \mathbb{R}$.
Discussion: Given $\epsilon>0$, we want to find $\delta>0$ such that if $x, y \in[a, b]$, and $|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\varepsilon$. Now,

$$
\begin{aligned}
\left|x^{2}-y^{2}\right| & =|(x-y)(x+y)| \\
& =|x-y||x+y| \\
& \leq|x-y|(|x|+|y|) .
\end{aligned}
$$

Let $M=\max \{|a|,|b|\}$. Now, since $x, y \in[a, b]$, then $|x|,|y| \leq M$.

$$
\begin{aligned}
\left|x^{2}-y^{2}\right| & =|(x-y)(x+y)| \\
& =|x-y||x+y| \\
& \leq|x-y|(|x|+|y|) \\
& \leq|x-y|(M+M) \\
& =2 M|x-y|
\end{aligned}
$$

If we choose $\delta=\frac{\epsilon}{2 M}$.
Proof: Let $\epsilon>0$ be given. Let $\delta=\frac{\epsilon}{2 M}$.

$$
\begin{aligned}
\text { Now, if } x, y \in[a, b] \text {, with }|x-y|<\delta \Rightarrow|f(x)-f(y)|=\left|x^{2}-y^{2}\right| & \leq 2 M|x-y| \\
& <2 M \delta \\
& <2 M \cdot \frac{\epsilon}{2 M} \\
& =\epsilon .
\end{aligned}
$$

Hence f is uniformly continuous on $[a, b], a, b \in \mathbb{R}$.

Note 0.3: Let $f: E \rightarrow \mathbb{R}$, be a function. f is not uniformly continuous on E, if, there is $\epsilon_{0}>0$ such that for every $\delta>0$ there are $x_{\delta}, y_{\delta} \in E$ such that $\left|x_{\delta}-y_{\delta}\right|<\delta$ and $\left|f\left(x_{\delta}\right)-f\left(y_{\delta}\right)\right| \geq \epsilon_{0}$.

Lemma 0.1: Let $f: E \rightarrow \mathbb{R}$, be a function. Then f is not uniformly continuous on E if and only if there exist $\epsilon_{0}>0$ and two sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in E such that $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$ for all $n \in \mathbb{N}$. Proof: (\Rightarrow) Suppose that f is not uniformly continuous ont E. Then there is $\epsilon_{0}>0$ such that for every $\delta>0$ there are $x_{\delta}, y_{\delta} \in E$ such that $\left|x_{\delta}-y_{\delta}\right|<\delta$ and $\left|f\left(x_{\delta}\right)-f\left(y_{\delta}\right)\right| \geq \epsilon_{0}$. for each $n \in \mathbb{N}$, let $\delta=\frac{1}{n}>0$, there are $x_{n}, y_{n} \in E$ such that $\left|x_{n}-y_{n}\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$. Hence we two sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in E such that $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$.
(\Leftarrow) Suppose that there exist $\epsilon_{0}>0$ and two sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in E such that $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$ for all $n \in \mathbb{N}$. Let $\delta>0$ be given. Since $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$ there exist $N \in \mathbb{N}$ such that $n>N \Rightarrow\left|x_{n}-y_{n}\right|<\delta$. Thus $\left|x_{N+1}-y_{N+1}\right|<\delta$ and $\left|f\left(x_{N+1}\right)-f\left(y_{N+1}\right)\right| \geq \epsilon_{0}$. Hence f is not uniformly continuous on E.

Example 0.4: Prove that $f(x)=x^{2}$ is not uniformly continuous on $[1, \infty)$.
Solution: Let $x_{n}=n$ and $y_{n}=n+\frac{1}{n}$. Now, $\{n\},\left\{n+\frac{1}{n}\right\} \subset[1, \infty)$. Also, $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{n}=0,\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=$ $\left(n+\frac{1}{n}\right)^{2}-n^{2}=2+\frac{1}{n^{2}}>2$. Hence f is not uniformly continuous on $[1, \infty)$.

Theorem 0.4: []

Let $a, b \in \mathbb{R}$ such that $a<b$. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$. Then f is uniformly continuous on $[a, b]$.

Proof: Suppose that f is not uniformly continuous on $[a, b]$. then there exist $\epsilon_{0}>0$ and two sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in $[a, b]$ such that $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$ for all $n \in \mathbb{N}$. Since $\left\{x_{n}\right\} \subset[a, b]$, then it is bounded and hence $\left\{x_{n}\right\}$ has a convergent subsequence $\left\{x_{n_{k}}\right\}$ by Bolzano-Weierstrass Theorem. Since $[a, b]$ is closed then $x=\lim _{k \rightarrow \infty} x_{n_{k}} \in[a, b]$. Also since $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$, then $x=\lim _{k \rightarrow \infty} x_{n_{k}}=\lim _{k \rightarrow \infty} y_{n_{k}}$. Since f is continuous on $[a, b]$, then $f(x)=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=\lim _{k \rightarrow \infty} f\left(y_{n_{k}}\right)$. But $\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right| \geq \epsilon_{0}$. Contradiction Hence f is uniformly continuous on $[a, b]$.

Definition 0.5: Let $E \subseteq \mathbb{R}$ and let $f: E \rightarrow \mathbb{R}$. We say that f is Lipschitz function on E if there is $M>0$ such that $|f(x)-f(y)| \leq M|x-y|$ for all $x, y \in E$.

Example 0.5: Prove that $f(x)=\sqrt{x}$ is Lipschitz function on $[1, \infty)$.

Solution: Since if $x, y \in[1, \infty)$, then $x, y \geq 1$ and hence $\sqrt{x} \geq 1$ and $\sqrt{y} \geq 1$. Thus $\sqrt{x}+\sqrt{y} \geq 2$, therefore $\frac{1}{\sqrt{x}+\sqrt{y}} \leq \frac{1}{2}$. Now, $|f(x)-f(y)|=|\sqrt{x}-\sqrt{y}|=\left|\frac{x-y}{\sqrt{x}+\sqrt{y}}\right|=\frac{|x-y|}{\sqrt{x}+\sqrt{y}} \leq \frac{1}{2}|x-y|$. Hence $f(x)=\sqrt{x}$ is Lipschitz function on $[1, \infty)$.

Theorem 0.5: []

If $f: E \rightarrow \mathbb{R}$ is Lipschitz function on E, then f is uniformly continuous on E.
Proof: Since f is Lipschitz function on E, then there is $M>0$ such that $|f(x)-f(y)| \leq M|x-y|$ for all $x, y \in E$.
Let $\epsilon>0$ be given. Choose $\delta=\frac{\epsilon}{M}>0$, if $x, y \in E$ with $|x-y|<\delta$, then $|f(x)-f(y)| \leq M|x-y|<M \cdot \frac{\epsilon}{M}=\epsilon$. Hence f is Lipschitz function on E.

