

# Continuity

#### Dr. Hamed Al-Sulami

December 25, 2012

**Definition 0.1:** Let  $f: E \to \mathbb{R}$ , and let  $a \in E$ . We say f is **continuous at** a, if, for all  $\epsilon > 0$  there exists  $\delta = \delta(\epsilon, a) > 0$  such that if  $x \in E$  and  $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$ .



Figure 1:

#### *Note 0.1:*

- If f fails to be continuous at a, then we say f is **discontinuous** at a.
- This definition requires three things if f is continuous at a:
  - f(a) is defined
  - $-\lim_{x\to a} f(x)$  exists
  - $-\lim_{x\to a} f(x) = f(a)$
- One can say f is continuous at a if

$$\lim_{x \to a} f(x) = f(a)$$

**Example 0.1:** Prove that  $f(x) = x^2$  is continuous at  $a \in \mathbb{R}$ .



Discussion: Given  $\epsilon > 0$ , we want to find  $\delta > 0$  such that if  $|x - a| < \delta \Rightarrow |x^2 - a^2| < \epsilon$ . Now,

$$|x^{2} - a^{2}| = |(x - a)(x + a)|$$
  
=  $|x - a||x + a|$   
 $\leq |x - a|(|x| + |a|).$ 

If we assume that |x-a|<1, then |x|-|a|<|x-a|<1. Hence  $|x|-|a|<1\Rightarrow |x|<1+|a|$ .

Now, 
$$|x^2 - a^2| \le |x - a|(|x| + |a|)$$
  
 $\le |x - a|(1 + |a| + |a|)$   
 $\le (1 + 2|a|)|x - a|.$ 

Now, if we assume  $(1+2|a|)|x-a|<\varepsilon \Rightarrow |x-a|<\frac{\epsilon}{1+2|a|}$ .

Now, we have the following conditions on |x-a|:|x-a|<1 and  $|x-a|<\frac{\epsilon}{1+2|a|}.$  If we choose  $\delta=\min\{1,\frac{\epsilon}{1+2|a|}\}.$ 

**Proof:** Let  $\epsilon > 0$  be given. Let  $\delta = \min\{1, \frac{\epsilon}{1 + 2|a|}\}.$ 

Now, if 
$$|x-a|<\delta \Rightarrow |f(x)-f(a)|=|x^2-a^2|\leq (1+2|a|)|x-a|$$
 
$$<(1+2|a|)\delta$$
 
$$<(1+2|a|).\frac{\epsilon}{1+2|a|}$$
 
$$=\epsilon.$$

Thus, if  $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$ .

### Theorem 0.1:

Let  $f: E \to \mathbb{R}$  and let  $a \in E$ . Then f is continuous at a if and only if for every sequence  $\{x_n\} \subseteq E$  such that  $\lim_{n \to \infty} x_n = a$ , then  $\lim_{n \to \infty} f(x_n) = f(a)$ .

**Proof:** ( $\Rightarrow$ ) Suppose that f is continuous at a. Let  $\{x_n\} \subseteq E$  such that  $\lim_{n \to \infty} x_n = a$ . We want to show that  $\lim_{n \to \infty} f(x_n) = f(a)$ . Let  $\epsilon > 0$  be given.

Since f is continuous at a, then there exist  $\delta > 0$  such that if  $|x - a| < \delta$ ,  $\Rightarrow |f(x) - f(a)| < \epsilon$ . Since,  $\lim_{n \to \infty} x_n = a$ , then there exists  $N \in \mathbb{N}$  such that if  $n > N \Rightarrow |x_n - a| < \delta$ . Now, if  $n > N \Rightarrow |x_n - a| < \delta \Rightarrow |f(x_n) - f(a)| < \epsilon$ . Hence, if  $n > N \Rightarrow |f(x_n) - f(a)| < \epsilon$ . Thus  $\lim_{n \to \infty} f(x_n) = f(a)$ .

( $\Leftarrow$ ) Suppose that for every sequence  $\{x_n\} \subseteq E$  such that  $\lim_{n \to \infty} x_n = a$ , then  $\lim_{n \to \infty} f(x_n) = f(a)$ . Assume that f is discontinuous at a. Then there exist  $\epsilon_0 > 0$  such that for all  $\delta > 0$  there exist  $x \in E$  with  $|x - a| < \delta$ , but such that  $|f(x) - f(a)| \ge \epsilon_0$ . For all  $n \in \mathbb{N}$ , there exists  $x_n \in E$  with  $|x_n - a| < \frac{1}{n}$ , but such that  $|f(x_n) - f(a)| \ge \epsilon_0$ . Hence we have a sequence  $\{x_n\} \subseteq E$  such that  $\lim_{n \to \infty} x_n = a$ , but the sequence  $\{f(x_n)\}$  does not converges. Contradiction. Hence f is continuous at a.

**Example 0.2:** Let 
$$f(x) = \begin{cases} x+1, & \text{if } x \in \mathbb{Q}; \\ -2x+4, & \text{if } x \in \mathbb{Q}^c \end{cases}$$
. Discuses the continuity of  $f$ .

December 25, 2012 2 © Dr.Hamed Al-Sulami



**Solution:** Let  $a \in \mathbb{R} - \{1\}$ .

Case I: If  $a \in \mathbb{Q}$ . There exists a sequence  $\{y_n\} \subseteq \mathbb{Q}^c$  such that  $\lim_{n \to \infty} y_n = a$ . Now,  $f(y_n) = -2y_n + 4$ . Hence  $\lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} (-2y_n + 4) = -2a + 4 \neq a + 1 = f(a)$ . Hence f is discontinuous at any  $a \in \mathbb{Q} - \{1\}$ .

Case II:

If  $a \in \mathbb{Q}^c$ . There exists a sequence  $\{x_n\} \subseteq \mathbb{Q}$  such that  $\lim_{n \to \infty} x_n = a$ . Now,  $f(x_n) = x_n + 1$ . Hence  $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} (x_n + 1) = a + 1 \neq -2a + 4 = f(a)$ . Hence f is discontinuous at any  $a \in \mathbb{Q}^c$ . By the two cases we have f is discontinuous at any  $a \in \mathbb{R} - \{1\}$ . Now, to see that f is continuous at 1. Since f(1) = 2, then

$$|f(x) - f(1)| = \begin{cases} |x+1-2|, & \text{if } x \in \mathbb{Q}; \\ |-2x+4-2|, & \text{if } x \in \mathbb{Q}^c. \end{cases}$$

Hence

$$|f(x) - f(1)| = \begin{cases} |x - 1|, & \text{if } x \in \mathbb{Q}; \\ 2|x - 1|, & \text{if } x \in \mathbb{Q}^c. \end{cases}$$

Hence  $|f(x) - f(1)| \le \max\{|x - 1|, 2|x - 1|\} = 2|x - 1|$ .

So, let  $\epsilon > 0$  be given. Choose  $\delta = \frac{\epsilon}{2}$ . If  $|x - 1| < \delta \Rightarrow |f(x) - f(1)| \le 2|x - 1| < 2.\delta = 2\frac{\epsilon}{2} = \epsilon$ .

Hence f is continuous at 1.

**Definition 0.2:** Let  $f: E \to \mathbb{R}$ , and let  $C \subseteq E$ . We say f is **continuous on the set** C, if f is continuous at every point of C.

**Definition 0.3:** A function  $f: E \to \mathbb{R}$  is said to be **bounded on** E, if there exists a number M > 0 such that  $|f(x)| \le M, \ \forall \ x \in E$ .

**Note 0.2:** A function f is not bounded on the set E if for all M > 0, there exists  $x_M \in E$  such that  $|f(x_M)| > M$ .

## **Theorem 0.2:** []

Let [a, b] be closed bounded interval and let  $f : [a, b] \to \mathbb{R}$  be continuous on [a, b]. Then f is bounded on I. Moreover, f assume its maximum and minimum values on [a, b]. [ there exist  $x_0, x_1 \in [a, b]$  such that  $f(x_0) = \inf\{f(x) : x \in [a, b]\}$  and  $f(x_1) = \sup\{f(x) : x \in [a, b]\}$ .]

**Proof:** Suppose f is not bounded on [a,b]. Then for each  $n \in \mathbb{N}$  there exists  $x_n \in [a,b]$  such that  $|f(x_n)| > n$ . Now, we have a sequence  $\{x_n\} \subseteq [a,b]$ . Thus  $\{x_n\}$  is bounded. Then by Bolzano-Weierstrass Theorem  $\{x_n\}$  has a convergent subsequence  $\{x_{n_k}\}$ . Let  $\alpha = \lim_{k \to \infty} x_{n_k}$ . Since  $a \le x_{n_k} \le b$ , then  $a \le \alpha \le b$ . Since f is continuous at  $\alpha$ , then we have  $\lim_{k \to \infty} f(x_{n_k}) = f(\alpha)$ . Also we have  $|f(x_{n_k})| > n_k$ , then  $\lim_{k \to \infty} |f(x_{n_k})| = \infty$ . Contradiction. Thus f is bounded on [a,b].

Now, Let  $m = \inf\{f(x) : x \in [a,b]\}$ , then m is finite. For each  $n \in \mathbb{N}$ ,  $m + \frac{1}{n}$  is not a lower bound for  $\{f(x) : x \in [a,b]\}$ . Then there exists  $x_n \in [a,b]$  such that  $m \le f(x_n) < m + \frac{1}{n}$ . Hence  $\lim_{n \to \infty} f(x_n) = m$ . Now, $\{x_n\}$  is bounded in [a,b]. Then by Bolzano-Weierstrass Theorem  $\{x_n\}$  has a convergent subsequence  $\{x_{n_k}\}$ . Let  $x_0 = \lim_{k \to \infty} x_{n_k} \in [a,b]$ .

Since f is continuous at  $x_0$ , then we have  $m = \lim_{k \to \infty} f(x_{n_k}) = f(x_0)$ .

Hence  $f(x_0) = m = \inf\{f(x) : x \in [a, b]\}$ . Similarly, one can show the maximum value.



#### Theorem 0.3: [The Intermediate Value Theorem]

Let  $f:[a,b] \to \mathbb{R}$  be continuous on [a,b]. Let  $\alpha$  be a number between f(a) and f(b). [i.e.  $f(a) < \alpha < f(b)$  or  $f(b) < \alpha < f(a)$ ] Then there is a number  $c \in (a,b)$  such that  $f(c) = \alpha$ .

**Proof:** Assume that  $f(a) < \alpha < f(b)$ . Let  $E = \{x \in [a,b] : f(x) < \alpha\}$ . Since  $f(a) < \alpha$ , then  $a \in E$ . Hence E is nonempty subset of [a,b]. Thus E is bounded. Then  $c = \sup E$  exists and  $c \in [a,b]$ .

For each  $n \in \mathbb{N}$ , since  $c - \frac{1}{n}$  is not an upper bound of E, then there exists  $x_n \in E$  such that  $c - \frac{1}{n} < x_n \le c$ . Hence  $\lim_{n \to \infty} x_n = c$  and, since f is continuous at c, then  $f(c) = \lim_{n \to \infty} f(x_n)$ . Now,  $x_n \in E \ \forall$ ,  $n \in \mathbb{N}$ . Then  $f(x_n) < \alpha$ . Hence  $f(c) = \lim_{n \to \infty} f(x_n) \le \alpha$ . Thus  $f(c) \le \alpha$  (1).

Let  $y_n = \min\{b, c + \frac{1}{n}\}$ . Then  $y_n \in [a, b]$ , and  $y_n \notin E \ \forall \ n \in \mathbb{N}$ . Then  $f(y_n) \ge \alpha$ . Now, since  $c \le y_n \le c + \frac{1}{n}$ , then  $\lim_{n \to \infty} y_n = c$ . Since f is continuous at c, then  $f(c) = \lim_{n \to \infty} f(y_n) \ge \alpha$ . Thus  $f(c) \ge \alpha$  (2). Then by (1) and (2) we have  $f(c) = \alpha$ . Since f(a) < f(c) < f(b), then  $c \ne a$  and  $c \ne b$ . Hence  $c \in (a, b)$ , and  $f(c) = \alpha$ .



Figure 2:

**Definition 0.4:** Let  $f: E \to \mathbb{R}$ , be a function. We say f is **uniformly continuous on** E, if, for all  $\epsilon > 0$  there exists  $\delta = \delta(\epsilon) > 0$  such that if  $x, y \in E$  and  $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$ .

**Example 0.3:** Prove that  $f(x) = x^2$  is uniformly continuous on  $[a, b], a, b \in \mathbb{R}$ .

Discussion: Given  $\epsilon > 0$ , we want to find  $\delta > 0$  such that if  $x, y \in [a, b]$ , and  $|x - y| < \delta \Rightarrow |x^2 - y^2| < \varepsilon$ . Now,

$$|x^{2} - y^{2}| = |(x - y)(x + y)|$$
  
=  $|x - y||x + y|$   
 $\leq |x - y|(|x| + |y|).$ 

December 25, 2012 4 © Dr.Hamed Al-Sulami



Let  $M = \max\{|a|, |b|\}$ . Now, since  $x, y \in [a, b]$ , then  $|x|, |y| \leq M$ .

$$|x^{2} - y^{2}| = |(x - y)(x + y)|$$

$$= |x - y||x + y|$$

$$\leq |x - y|(|x| + |y|)$$

$$\leq |x - y|(M + M)$$

$$= 2M|x - y|$$

If we choose  $\delta = \frac{\epsilon}{2M}$ . **Proof:** Let  $\epsilon > 0$  be given. Let  $\delta = \frac{\epsilon}{2M}$ .

Now, if 
$$x, y \in [a, b]$$
, with  $|x - y| < \delta \Rightarrow |f(x) - f(y)| = |x^2 - y^2| \le 2M|x - y|$   
 $< 2M\delta$   
 $< 2M \cdot \frac{\epsilon}{2M}$   
 $= \epsilon$ .

Hence f is uniformly continuous on  $[a, b], a, b \in \mathbb{R}$ .

**Note 0.3:** Let  $f: E \to \mathbb{R}$ , be a function. f is not uniformly continuous on E, if, there is  $\epsilon_0 > 0$  such that for every  $\delta > 0$  there are  $x_{\delta}, y_{\delta} \in E$  such that  $|x_{\delta} - y_{\delta}| < \delta$  and  $|f(x_{\delta}) - f(y_{\delta})| \ge \epsilon_0$ .

**Lemma 0.1:** Let  $f: E \to \mathbb{R}$ , be a function. Then f is not uniformly continuous on E if and only if there exist  $\epsilon_0 > 0$  and two sequence  $\{x_n\}$  and  $\{y_n\}$  in E such that  $\lim_{n \to \infty} (x_n - y_n) = 0$  and  $|f(x_n) - f(y_n)| \ge \epsilon_0$  for all  $n \in \mathbb{N}$ . **Proof:** ( $\Rightarrow$ ) Suppose that f is not uniformly continuous ont E. Then there is  $\epsilon_0 > 0$  such that for every  $\delta > 0$  there are  $x_{\delta}, y_{\delta} \in E$  such that  $|x_{\delta} - y_{\delta}| < \delta$  and  $|f(x_{\delta}) - f(y_{\delta})| \ge \epsilon_0$ . for each  $n \in \mathbb{N}$ , let  $\delta = \frac{1}{n} > 0$ , there are  $x_n, y_n \in E$  such that  $|x_n - y_n| < \frac{1}{n}$  and  $|f(x_n) - f(y_n)| \ge \epsilon_0$ . Hence we two sequence  $\{x_n\}$  and  $\{y_n\}$  in E such that  $\lim_{n \to \infty} (x_n - y_n) = 0$ and  $|f(x_n) - f(y_n)| \ge \epsilon_0$ .

 $(\Leftarrow)$  Suppose that there exist  $\epsilon_0 > 0$  and two sequence  $\{x_n\}$  and  $\{y_n\}$  in E such that  $\lim_{n \to \infty} (x_n - y_n) = 0$  and  $|f(x_n)-f(y_n)| \ge \epsilon_0$  for all  $n \in \mathbb{N}$ . Let  $\delta > 0$  be given. Since  $\lim_{n \to \infty} (x_n - y_n) = 0$  there exist  $N \in \mathbb{N}$  such that  $n > N \Rightarrow |x_n - y_n| < \delta$ . Thus  $|x_{N+1} - y_{N+1}| < \delta$  and  $|f(x_{N+1}) - f(y_{N+1})| \ge \epsilon_0$ . Hence f is not uniformly continuous on E.

**Example 0.4:** Prove that  $f(x) = x^2$  is not uniformly continuous on  $[1, \infty)$ . **Solution:** Let  $x_n = n$  and  $y_n = n + \frac{1}{n}$ . Now,  $\{n\}, \{n + \frac{1}{n}\} \subset [1, \infty)$ . Also,  $\lim_{n \to \infty} (x_n - y_n) = \lim_{n \to \infty} \frac{1}{n} = 0$ ,  $|f(x_n) - f(y_n)| = 1$  $\left(n+\frac{1}{n}\right)^2-n^2=2+\frac{1}{n^2}>2$ . Hence f is not uniformly continuous on  $[1,\infty)$ .

Theorem 0.4:

Let  $a, b \in \mathbb{R}$  such that a < b. Let  $f : [a, b] \to \mathbb{R}$  be continuous on [a, b]. Then f is uniformly continuous on [a, b].

December 25, 2012 5 © Dr.Hamed Al-Sulami





**Proof:** Suppose that f is not uniformly continuous on [a,b], then there exist  $\epsilon_0 > 0$  and two sequence  $\{x_n\}$  and  $\{y_n\}$  in [a,b] such that  $\lim_{n\to\infty}(x_n-y_n)=0$  and  $|f(x_n)-f(y_n)|\geq \epsilon_0$  for all  $n\in\mathbb{N}$ . Since  $\{x_n\}\subset [a,b]$ , then it is bounded and hence  $\{x_n\}$  has a convergent subsequence  $\{x_{n_k}\}$  by Bolzano-Weierstrass Theorem. Since [a,b] is closed then  $x=\lim_{k\to\infty}x_{n_k}\in [a,b]$ . Also since  $\lim_{n\to\infty}(x_n-y_n)=0$ , then  $x=\lim_{k\to\infty}x_{n_k}=\lim_{k\to\infty}y_{n_k}$ . Since f is continuous on [a,b], then  $f(x)=\lim_{k\to\infty}f(x_{n_k})=\lim_{k\to\infty}f(y_{n_k})$ . But  $|f(x_{n_k})-f(y_{n_k})|\geq \epsilon_0$ . Contradiction Hence f is uniformly continuous on [a,b].

**Definition 0.5:** Let  $E \subseteq \mathbb{R}$  and let  $f: E \to \mathbb{R}$ . We say that f is **Lipschitz function** on E if there is M > 0 such that  $|f(x) - f(y)| \le M|x - y|$  for all  $x, y \in E$ .

**Example 0.5:** Prove that  $f(x) = \sqrt{x}$  is Lipschitz function on  $[1, \infty)$ .

**Solution:** Since if  $x, y \in [1, \infty)$ , then  $x, y \ge 1$  and hence  $\sqrt{x} \ge 1$  and  $\sqrt{y} \ge 1$ . Thus  $\sqrt{x} + \sqrt{y} \ge 2$ , therefore  $\frac{1}{\sqrt{x} + \sqrt{y}} \le \frac{1}{2}$ . Now,  $|f(x) - f(y)| = \left|\sqrt{x} - \sqrt{y}\right| = \left|\frac{x - y}{\sqrt{x} + \sqrt{y}}\right| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} \le \frac{1}{2}|x - y|$ . Hence  $f(x) = \sqrt{x}$  is Lipschitz function on  $[1, \infty)$ .

#### **Theorem 0.5:** []

If  $f: E \to \mathbb{R}$  is Lipschitz function on E, then f is uniformly continuous on E.

**Proof:** Since f is Lipschitz function on E, then there is M>0 such that  $|f(x)-f(y)|\leq M|x-y|$  for all  $x,y\in E$ . Let  $\epsilon>0$  be given. Choose  $\delta=\frac{\epsilon}{M}>0$ , if  $x,y\in E$  with  $|x-y|<\delta$ , then  $|f(x)-f(y)|\leq M|x-y|< M$ .  $\frac{\epsilon}{M}=\epsilon$ . Hence f is Lipschitz function on E.

December 25, 2012 6 © Dr.Hamed Al-Sulami