

A Glimpse Into Topology of $\mathbb R$

Dr.Hamed Alsulami

November 30, 2016

Definition 0.1: An *interval* of \mathbb{R} is a subset of \mathbb{R} of one of the following types:

 $[a,b],(a,b),[a,b),(a,b],[c,\infty),(c,\infty),(-\infty,c],(-\infty,c),(-\infty,\infty)=\mathbb{R},$

where $a, b, c \in \mathbb{R}$ and $a \leq b$.

Note 0.1: A subset E of \mathbb{R} is an interval if and only if $\forall x, y \in E$, with $x \leq y \Rightarrow [x, y] \subset E$.

Definition 0.2: A set *E* of real numbers is said to be **open set** if, for each $x \in E$ there is a number $\delta > 0$ such that $(x - \delta, x + \delta) \subset E$.

Lemma 0.1: Let $a, b \in \mathbb{R}$, with $a \leq b$. The intervals $(a, b), (a, \infty)$, and $(-\infty, a)$ are open sets.

Proof: To show (a,b) is open: Let $x \in (a,b)$. Let $\delta = \min\{x-a, b-x\}$, then $\delta \le x-a$ and $\delta \le b-x$. Now, $a = x - (x-a) \le x - \delta < x + \delta \le x + \delta = x + (b-x) = b$. Hence $(x - \delta, x + \delta) \subset (a, b)$. Thus (a, b) is open.

To show (a, ∞) is open: Let $x \in (a, \infty)$. Let $\delta = x - a$, then $a = x - (x - a) = x - \delta < x + \delta = x + (x - a) = 2x - a < \infty$. Hence $(x - \delta, x + \delta) \subset (a, \infty)$. Thus (a, ∞) is open.

To show $(-\infty, a)$ is open: Let $x \in (-\infty, a)$. Let $\delta = a - x$, then $-\infty < 2x - a = x - (a - x) = x - \delta < x + \delta = x + (a - x) = a$. Hence $(x - \delta, x + \delta) \subset (-\infty, a)$. Thus $(-\infty, a)$ is open.

Theorem 0.1: [Open set properties]

- (i) \mathbb{R} , and \emptyset are open sets.
- (ii) If O_1, O_2, \dots, O_n are open subsets of \mathbb{R} , then $\bigcap_{k=1}^n O_k$ is an open set.
- (iii) If $\{O_{\alpha} : \alpha \in I\}$ be a collection of open subsets of \mathbb{R} , then $\bigcup_{\alpha \in I} O_{\alpha}$ is an open set.

Proof:

- (i) For all $x \in \mathbb{R}$ and for all $\delta > 0$, $(x \delta, x + \delta) \subset \mathbb{R}$. Also since \emptyset has no elements, then it is Open.
- (ii) Let $x \in \bigcap_{k=1}^{n} O_k$. Then $x \in O_k$ for every $k = 1, 2, \dots, n$. Now, since every O_k is open for every $k = 1, 2, \dots, n$, then there is $\delta_k > 0$ such that $(x - \delta_k, x + \delta_k) \subseteq O_k$. Let $\delta = \min\{\delta_1, \delta_2, \dots, \delta_n\} > 0$. Since $\delta \leq \delta_k$ for every $k = 1, 2, \dots, n$, then $(x - \delta, x + \delta) \subseteq (x - \delta_k, x + \delta_k) \subseteq O_k$. Hence $(x - \delta, x + \delta) \subseteq \bigcap_{k=1}^{n} O_k$. Thus $\bigcap_{k=1}^{n} O_k$ is open.

(ii) Let $x \in \bigcup_{\alpha \in I} O_{\alpha}$. Then there exists $\alpha_0 \in I$ such that $x \in O_{\alpha_0}$. Now, O_{α_0} is open, then there exist $\delta > 0$ such that $(x - \delta, x + \delta) \subseteq O_{\alpha_0}$. Now, $(x - \delta, x + \delta) \subseteq O_{\alpha_0} \subseteq \bigcup_{\alpha \in I} O_{\alpha}$. Hence $\bigcup_{\alpha \in I} O_{\alpha}$ is open.

Note 0.2: The intersection of an infinite number of open sets might not be open. For example, if $E_n = \left(1 - \frac{1}{n}, 1 + \frac{1}{n}\right)$ is open for every $n \in \mathbb{N}$. Now, $\bigcap_{n=1}^{\infty} E_n = \bigcap_{n=1}^{\infty} \left(1 - \frac{1}{n}, 1 + \frac{1}{n}\right) = \{1\}$ which is closed as we can show later.

Note 0.3: Let E be subset of \mathbb{R} . The **complement** of E, denoted by E^c ($\mathbb{R} - E$), is the set of elements not in E.

Definition 0.3: A set E of real numbers is said to be **closed set** if E^c is open.

Lemma 0.2: Let $a, b \in \mathbb{R}$, with $a \leq b$. The intervals $[a, b], [a, \infty), \{a\}$, and $(-\infty, a]$ are closed sets.

Proof: To show [a, b] is closed: Since $[a, b]^c = (-\infty, a) \cup (b, \infty)$ which is open, then [a, b] is closed set.

To show $[a, \infty)$ is closed: Since $[a, \infty)^c = (-\infty, a)$ which is open, then $[a, \infty)$ is closed set.

To show $\{a\}$ is closed: Since $\{a\}^c = (-\infty, a) \cup (a, \infty)$ which is open, then $\{a\}$ is closed set.

To show $(-\infty, a]$ is closed: Since $(-\infty, a]^c = (a, \infty)$ which is open, then $(-\infty, a]$ is closed set.

Theorem 0.2: [Closed set properties]

- (i) \mathbb{R} , and \emptyset are closed sets.
- (ii) If E_1, E_2, \dots, E_n are closed subsets of \mathbb{R} , then $\bigcup_{k=1}^n E_k$ is a closed set.
- (iii) If $\{E_{\alpha} : \alpha \in I\}$ be a collection of closed subsets of \mathbb{R} , then $\bigcap_{\alpha \in I} E_{\alpha}$ is a closed set.

Proof:

- (i) Since $\mathbb{R}^c = \emptyset$ which is open, then \mathbb{R} is closed. Also since $\emptyset^c = \mathbb{R}$ which is open, hence \emptyset is closed.
- (ii) Since, E_k is closed, for every $k = 1, 2, \dots, n$, then E_k^c is open. Now, $(\bigcup_{k=1}^n E_k)^c = \bigcap_{k=1}^n E_k^c$ which is open. Hence $\bigcup_{k=1}^n E_k$ is a closed set.
- (iii) Since, E_{α} is closed, for every $\alpha \in I$, then E_{α}^c is open. Now, $(\bigcap_{\alpha \in I} E_{\alpha})^c = \bigcup_{\alpha \in I} E_{\alpha}^c$ which is open. Hence $\bigcap_{\alpha \in I} E_{\alpha}$ is a closed set.

Definition 0.4: Let E be subset of the real numbers. Let $x \in \mathbb{R}$.

- (i) We say x is an *interior point* of E if there is a δ > 0 such that (x − δ, x + δ) ⊆ E. We denote the set of all interior points of E by E°, and it called the interior set of E.
- (ii) We say x is a *limit point* of E if for every $\delta > 0$, $(x \delta, x + \delta) \cap (E \{x\}) \neq \emptyset$. We denote the set of all limit points of E by E', and it called the derived set of E.

Example 0.1: Let E = (1, 5]. Then every $x \in (1, 5)$ is an interior point and every $x \in [1, 5]$ is a limit point. Thus $E^{\circ} = (1, 5)$, and E' = [1, 5].

Example 0.2: Let $E = \mathbb{Q}$. Let $x \in \mathbb{R}$. For every $\delta > 0$, the interval $(x - \delta, x + \delta)$ has irrational number in it, then $(x - \delta, x + \delta) \notin \mathbb{Q}$. Hence there are no interior points. Thus $\mathbb{Q}^{\circ} = \emptyset$. For every $\delta > 0$, the interval $(x - \delta, x + \delta)$ has rational number in it other than x, then $(x - \delta, x + \delta) \cap (\mathbb{Q} - \{x\}) \neq \emptyset$. Hence every point is a limit point. Thus $\mathbb{Q}' = \mathbb{R}$.

Theorem 0.3: [Characterization of Closed sets]

Let $E \subseteq \mathbb{R}$. Then the following are equivalent:

- (i) E is a closed subset of \mathbb{R}
- (ii) If $\{x_n\} \subset E$ is a sequence such that $\lim_{n \to \infty} x_n = x \in \mathbb{R}$, then $x \in E$.

Proof: $(i) \Rightarrow (ii)$ Suppose that E is a closed subset of \mathbb{R} and $\{x_n\} \subset E$ is a sequence such that $\lim_{n \to \infty} x_n = x \in \mathbb{R}$. We want to show that $x \in E$. Assume that $x \in E^c$, and since E is closed, then E^c is open. Hence there is $\delta > 0$ such that $(x - \delta, x + \delta) \subset E^c$. Since $\lim_{n \to \infty} x_n = x \in \mathbb{R}$, there is $N \in \mathbb{N}$ such that $n > N \Rightarrow |x_n - x| < \delta$. Thus $n > N \Rightarrow x - \delta < x_n < x + \delta$. Hence if $n > N \Rightarrow x_n \in (x - \delta, x + \delta) \subset E^c$. Contradiction since $x_n \in E$, for all $n \in \mathbb{N}$. Thus E is closed.

 $(ii) \Rightarrow (i)$ Suppose that If $\{x_n\} \subset E$ is a sequence such that $\lim_{n \to \infty} x_n = x \in \mathbb{R}$, then $x \in E$. We want to show that E is closed. Let $x \in E^c$ if for all $\delta > 0$, $(x - \delta, x + \delta) \nsubseteq E^c$. Then $(x - \delta, x + \delta) \cap E \neq \emptyset$. Hence for each $n \ge 1$, there is $x_n \in (x - \frac{1}{n}, x + \frac{1}{n}) \cap E$. Thus $x_n \in E$ and $|x_n - x| < \frac{1}{n}$. Thus $\{x_n\} \subset E$ and $\lim_{n \to \infty} x_n = x \in E$. Then $x \in E$. Contradiction Hence there is $\delta > 0$ such that $(x - \delta, x + \delta) \subset E^c$. Hence E^c is open. Thus E is closed.

Lemma 0.3: Let $E \subseteq \mathbb{R}$. Then E is closed if and only if E contains all of its limit points $(E' \subseteq E)$.

Proof: \Rightarrow Suppose *E* is closed and *x* is a limit point of *E*. We want to show that $x \in E$. Assume that $x \in E^c$. Since *E* is closed, then E^c is open and $x \in E^c$, then there is $\delta > 0$ such that $(x - \delta, x + \delta) \subset E^c$. Hence $(x - \delta, x + \delta) \cap E = \emptyset$. Contradiction to the fact that *x* is a limit point of *E*. Hence $x \in E$.

 \Leftarrow Suppose *E* contains all of its limit points. We want to show that *E* is closed. Let $y \in E^c$. Then *y* is not a limit point of *E*. Hence there is $\delta > 0$ such that $(y - \delta, y + \delta) \cap E = \emptyset$. Hence $(y - \delta, y + \delta) \subset E^c$. Thus E^c is open. Hence *E* is closed.

Lemma 0.4: Let $E \subseteq \mathbb{R}$. Then E' is closed.

Proof: Let $x \in (E')^c$. Then x is not a limit point of E. Thus there exists $\delta > 0$ such that $(x - \delta, x + \delta) \cap (E - \{x\}) = \emptyset$. Let $y \in (x - \delta, x + \delta)$, and $y \neq x$. Since $(x - \delta, x + \delta)$ is open then there is $\beta > 0$ such that $(y - \beta, y + \beta) \subseteq (x - \delta, x + \delta)$. Now $(y - \beta, y + \beta) \cap (E - \{y\}) \subseteq (x - \delta, x + \delta) \cap (E - \{x\}) = \emptyset$, thus $(y - \beta, y + \beta) \cap (E - \{y\}) = \emptyset$. Therefore $y \notin E'$. Thus $(x - \delta, x + \delta) \subseteq (E')^c$. Thus $(E')^c$ is open. Hence E' is closed.

Definition 0.5: Let E be a subset of the real numbers. The collection of open sets $\{U_i\}_{i \in I}$ is said to be an **open cover** if $E \subset \bigcup_{i \in I} U_i$. If the number of sets in the collection I is finite, then the collection is said to be **finite** cover

Example 0.3: Let E = (1,3). Let $U_n = (1 - \frac{1}{n}, 3 + \frac{1}{n})$ For every n > 0, the collection $\{U_n : n \in \mathbb{N}\}$ is an open cover of E.

Definition 0.6: A subset *E* of the real numbers is said to be **compact** if every open cover has a finite subcover.

Example 0.4:

- (i) Let $E = \{x_1, x_2, \dots, x_n\}$ be a finite subset of \mathbb{R} . If $\{U_i\}_{i \in I}$ is an open cover of E, then for each x_k , for $k = 1, 2, \dots, n$, there exists $U_{i_k} \subset \bigcup_{i \in I} U_i$ such that $x_k \in U_{i_k}$. Hence $E \subset \bigcup_{k=1}^n U_{i_k}$. Thus E is compact.
- (ii) Let $B = [0, \infty)$. Then B is not compact. Let $U_n = (-1, n)$. The collection $\{U_n : n \in \mathbb{N}\}$ is an open cover of B. Now, any finite subcover will have the form (-1, m) for some $m \in \mathbb{N}$ which will not cover B.

Theorem 0.4: [Heine-Borel Theorem]

Let $a, b \in \mathbb{R}$ with $a \leq b$. Then [a, b] is compact.

Proof: Let $\mathcal{U} = \{U_i : i \in I\}$ be an open cover of [a, b]. Let $E = \{x \in [a, b] \mid [a, x] \text{ is covered by finite sets in } \mathcal{U}\}$. Now $a \in E$ and $E \subseteq [a, b]$, then $\sup E$ exists and in \mathbb{R} . Let $m = \sup E$, then $a \leq m \leq b$. Since $m \in [a, b] \subset \bigcup_{i \in I} U_i$, then there exists $U_{i_0} \in \mathcal{U}$ such that $m \in U_{i_0}$. Now, U_{i_0} is open, then there is a $\delta > 0$ such that $(m - \delta, m + \delta) \subseteq U_{i_0}$. Since $m - \delta$ is not an upper bound of E, then there exists $x \in E$ such that $m - \delta < x$. Now, [a, x] is covered by finite sets in \mathcal{U} . Thus there exist $U_{i_1}, U_{i_2}, \cdots, U_{i_n} \in \mathcal{U}$ such that $[a, x] \subseteq \bigcup_{k=1}^n U_{i_k}$. Also $[x, m + \frac{\delta}{2}] \subseteq (m - \delta, m + \delta) \subseteq U_{i_0}$. Hence $[a, m + \frac{\delta}{2}] \subseteq U_{i_0} \cup \bigcup_{k=1}^n U_{i_k}$. Thus $[a, m + \frac{\delta}{2}]$ is covered by finite sets in \mathcal{U} , hence if $m + \frac{\delta}{2} \leq b$, then $m + \frac{\delta}{2} \in E$. Contradiction since $\sup E = m < m + \frac{\delta}{2} \in E$. Hence $b < m + \frac{\delta}{2}$ and for all $0 < \epsilon < \frac{\delta}{2}$, we have $b < m + \epsilon$. Hence $b \leq m$ and $m \leq b$. Thus m = b. Therefor $[a, b] \subseteq U_{i_0} \cup \bigcup_{k=1}^n U_{i_k}$. Hence [a, b] is compact.

Lemma 0.5: Let *E* be subset of \mathbb{R} . Then *E* is compact if and only if *E* is closed and bounded. *Proof:* \Rightarrow Suppose that *E* is compact. Then every open cover has a finite subcover. Let $U_n = (-n, n)$ which is open set in \mathbb{R} . Now, $E \subset \mathbb{R} = \bigcup_{n=1}^{\infty} U_n$. Hence $\{U_n : n \ge 1\}$ is an open cover and since *E* is compact then there exist $m \in \mathbb{N}$ such that $E \subset \bigcup_{n=1}^m U_n = (-m, m)$. Hence *E* is bounded. Let $y \in E^c$. Let $U_n = (-\infty, y - \frac{1}{n}) \cup (y + \frac{1}{n}, \infty)$. Then U_n

is open set and $E \subset \mathbb{R} - \{y\} = \bigcup_{n=1}^{\infty}$. Since E is compact then there exist $m \in \mathbb{N}$ such that $E \subset \bigcup_{n=1}^{m} U_n = U_m$. Now $(y - \frac{1}{m}, y + \frac{1}{m}) \subset [y - \frac{1}{m}, y + \frac{1}{m}] = U_m^c \subset E^c$. Hence E^c is open and hence E is closed. \Leftarrow Suppose that E is closed and bounded. Since E is bounded then $m = \inf E \in \mathbb{R}$ and $M = \sup E \in \mathbb{R}$.

 $\in \text{ Suppose that } E \text{ is closed and bounded. Since } E \text{ is bounded then } m = \inf E \in \mathbb{R} \text{ and } M = \sup E \in \mathbb{R}.$ and $E \subseteq [m, M]$. Now $[m, M] = E \cup ([m, M] - E)$ and since E is closed, then $E^c = \mathbb{R} - E$ is open set. Also notice that $[m, M] - E \subseteq E^c$. Let $\mathcal{U} = \{U_i : i \in I\}$ be an open cover of E. Hence $E \subset \bigcup_{i \in I}$. Then $[m, M] = E \cup ([m, M] - E) \subset \bigcup_{i \in I} U_i \cup E^c$. Since [m, M] is compact, then there exist $U_{i_1}, U_{i_2}, \cdots, U_{i_n} \in \mathcal{U}, E^c$ such that $[m, M] = E \cup ([m, M] - E) \subset \bigcup_{k=1}^n U_{i_k} \cup E^c$. Since $E \cap ([m, M] - E) = \emptyset$ and $[m, M] - E \subseteq E^c$, then $E \subseteq \bigcup_{k=1}^n U_{i_k}$. Hence E is compact.