The Fundamental Theorem of Calculus

Dr.Hamed Al-Sulami

October 19, 2011

Theorem 4.1: []

Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded function on $[a, b]$ and let $a<c<b$. Then f is integrable on $[a, b]$ if and only if f is integrable on $[a, c]$ and $[c, b]$ and

$$
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f
$$

Proof: (\Rightarrow) This left for you as homework.
(\Leftarrow) Suppose f is integrable on $[a, c]$ and $[c, b]$. Let $\epsilon>0$ be given. Since f is integrable on $[a, c]$ and $[c, b]$, there exist partitions P_{1} of $[a, c]$ and P_{2} of $[c, b]$ such that

$$
U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\frac{\epsilon}{2} \quad \text { and } \quad U\left(f, P_{2}\right)-L\left(f, P_{2}\right)<\frac{\epsilon}{2} .
$$

Let $P_{\epsilon}=P_{1} \cup P_{2}$, then P_{ϵ} is a partition of $[a, b]$. Also $U\left(f, P_{\epsilon}\right)=U\left(f, P_{1}\right)+U\left(f, P_{2}\right)$ and $L\left(f, P_{\epsilon}\right)=L\left(f, P_{1}\right)+L\left(f, P_{2}\right)$. Now,
$U\left(f, P_{\epsilon}\right)-L\left(f, P_{\epsilon}\right)=\left[U\left(f, P_{1}\right)+U\left(f, P_{2}\right)\right]-\left[L\left(f, P_{1}\right)+L\left(f, P_{2}\right)\right]=\left[U\left(f, P_{1}\right)-L\left(f, P_{1}\right)\right]+\left[U\left(f, P_{2}\right)-L\left(f, P_{2}\right)\right]<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.
Hence f is integrable on $[a, b]$.

Theorem 4.2: [The Fundamental Theorem of Calculus (first form)]

Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable function on $[a, b]$ and let $F:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and $F^{\prime}(x)=f(x)$ for all $x \in(a, b)$. Then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
Proof: Let $\epsilon>0$ be given. Since $F^{\prime}=f$ is integrable on $[a, b]$, then there exist a partition $P=\left\{a=x_{0}<x_{1}<\right.$ $\left.\ldots<x_{n}=b\right\}$ of $[a, b]$ such that

$$
U\left(F^{\prime}, P\right)-L\left(F^{\prime}, P\right)=U(f, P)-L(f, P)<\epsilon .
$$

Now, since F is continuous on $[a, b]$, then F is continuous on each interval $\left[x_{k-1}, x_{k}\right]$ for $k=1,2, \ldots, n$. Hence by the Mean Value Theorem there exist $t_{k} \in\left[x_{k-1}, x_{k}\right]$ such that

$$
F\left(x_{k}\right)-F\left(x_{k-1}\right)=F^{\prime}\left(t_{k}\right)\left(x_{k}-x_{k-1}\right)=f\left(t_{k}\right) \Delta x_{k} .
$$

Also we have

$$
m_{k} \leq f\left(t_{k}\right) \leq M_{k}
$$

then

$$
m_{k} \triangle x_{k} \leq f\left(t_{k}\right) \triangle x_{k} \leq M_{k} \triangle x_{k}
$$

Hence

$$
m_{k} \triangle x_{k} \leq\left[F\left(x_{k}\right)-F\left(x_{k-1}\right)\right] \leq M_{k} \triangle x_{k}
$$

Therefore

$$
\sum_{k=1}^{n} m_{k} \triangle x_{k} \leq \sum_{k=1}^{n}\left[F\left(x_{k}\right)-F\left(x_{k-1}\right)\right] \leq \sum_{k=1}^{n} M_{k} \triangle x_{k}
$$

Hence

$$
L\left(F^{\prime}, P\right)=L(f, P) \leq[F(b)-F(a)] \leq U(f, P)=U\left(F^{\prime}, P\right)
$$

Thus

$$
\begin{equation*}
-U(f, P) \leq-[F(b)-F(a)] \leq-L(f, P) \tag{1}
\end{equation*}
$$

Also

$$
\begin{equation*}
L(f, P) \leq \int_{a}^{b} f \leq U(f, P) \tag{2}
\end{equation*}
$$

Hence by adding (1) and (2) we get

$$
-U(f, P)+L(f, P) \leq \int_{a}^{b} f-[F(b)-F(a)] \leq U(f, P)-L(f, P)
$$

Therefore

$$
-\epsilon<-(U(f, P)-L(f, P)) \leq \int_{a}^{b} f-[F(b)-F(a)] \leq U(f, P)-L(f, P)<\epsilon \Rightarrow\left|\int_{a}^{b} f-[F(b)-F(a)]\right|<\epsilon
$$

Hence $\int_{a}^{b} f(x) d x=F(b)-F(a)$.

Theorem 4.3: [The Fundamental Theorem of Calculus (second form)]

Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable function on $[a, b]$ and let $F(x)=\int_{a}^{x} f(t) d t$ for $x \in[a, b]$, then F is continuous on $[a, b]$. Moreover, if f is continuous at $c \in[a, b]$, then F is differentiable at c and

$$
F^{\prime}(c)=f(c)
$$

Proof: Let $\epsilon>0$ be given. Since f is bounded on $[a, b]$, then there exist a partition $M>0$ such that

$$
|f(x)|<M \text { for } x \in[a, b] .
$$

Now, let $\delta=\frac{\epsilon}{M}$.

$$
\text { If } \begin{aligned}
x, y \in[a, b] \text { such that }|x-y|<\delta \Rightarrow|F(x)-F(y)| & =\left|\int_{a}^{x} f(t) d t-\int_{a}^{y} f(t) d t\right| \\
& =\left|\int_{x}^{y} f(t) d t\right| \quad \text { assume } x<y \\
& \leq \int_{y}^{x}|f(t)| d t \\
& <\int_{y}^{x} M d t \\
& =M(x-y) \\
& =M|x-y| \\
& <M \frac{\epsilon}{M}=\epsilon
\end{aligned}
$$

Thus F is uniformly continuous on $[a, b]$. Now, if f is continuous at $c \in[a, b]$, then there exist $\delta>0$ such that

$$
\text { if } x \in[a, b] \text { and }|x-c|<\delta \Rightarrow|f(x)-f(c)|<\epsilon
$$

Now,
If $x \in[a, b]$ such that $0<|x-c|<\delta \Rightarrow\left|\frac{F(x)-F(c)}{x-c}-f(c)\right|=\left|\frac{\int_{a}^{x} f(t) d t-\int_{a}^{c} f(t) d t}{x-c}-f(c)\right|$

$$
=\left|\frac{\int_{c}^{x} f(t) d t}{x-c}-f(c)\right| \quad \text { assume } c<x
$$

$$
=\left|\frac{\int_{c}^{x} f(t) d t-\int_{c}^{x} f(c) d t}{x-c}\right| \text { note: } f(c)=\frac{\int_{c}^{x} f(c) d t}{x-c}
$$

$$
=\left|\frac{\int_{c}^{x}[f(t)-f(c)] d t}{x-c}\right|
$$

$$
\leq \frac{\int_{c}^{x}|f(t)-f(c)| d t}{|x-c|}
$$

$$
<\frac{\int_{c}^{x} \epsilon d t}{|x-c|}
$$

$$
=\frac{\epsilon(x-c)}{|x-c|} \quad \text { but } x-c=|x-c|
$$

$$
<\frac{\epsilon\rfloor x-c \mid}{|x-c|}=\epsilon
$$

Hence F is differentiable at c with $F^{\prime}(c)=f(c)$.

