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2.1 Supremum and Infimum of a Set

‘ Definition 2.1:‘ Let A be a nonempty subset of R.

(a) The set A is said to be bounded above if there exists a number u € R such that a < u for all @ € A. Each

such number w is called an upper bound of A.

(b) The set A is said to be bounded below if there exists a number w € R such that w < a for all a € A. Each

such number w is called an lower bound of A.

(c) A set is said to be bounded if it is both bounded above and bounded below. A set is said to be unbounded if

it is not bounded.

‘ Ezxample 2.1:‘ Determine whether the given set bounded above, bounded below, and bounded.

1. A:{l:neN}
n

2. B={zeR:2<T}

3. C={zxeR:az>2}
Solution:

1 1
1. Since -~ <1 for all n € N, then A is bounded above. Also, since 0 < - for all n € N, then A is bounded below.

Hence A is bounded set.

2. Since x < 7 for all x € B, then B is bounded above. B is not bounded below since for all m € Z such that

m < 7, then m € B. Thus B is unbounded.

3. Since 2 < x for all x € C, then C' is bounded below. C' is not bounded above since for all m € Z such that m > 2
then m € C. Thus C is unbounded.

‘ Definition 2.2:|Let A be a nonempty subset of R.

(a) If A is bounded above, then a number u € R is said to be supremum ( least upper bound ) of A if it satisfies

the conditions:

(1) u is an upper bound of A (i.e. a < w for all a € A.), and

September 24, 2012 1 (© Dr.Hamed Al-Sulami



The Completeness Property of R Dr.Hamed Al-Sulami

(2) If v is any upper bound of A then u < v.
We will denote the supremum of A by sup A.

(b) If A is bounded below, then a number w € R is said to be infimum ( greatest lower bound ) of A if it

satisfies the conditions:

(1) w is a lower bound of A (i.e. w < a for all a € A.), and

(2) If ¢ is any lower bound of A, then ¢t < w.

We will denote the infimum of A by inf A.

Ezxample 22‘ Find sup and inf for each set if they exist.

1. A:{l:neN}
n

2. B={zcR:z<T7}

3. C={xeR:z>2}
Solution:
1. We will prove later that sup A = 1 and inf A = 0.
2. sup B =7 and inf B = —c0.
3. supC = oo and inf B = 2.

Let A be nonempty subset of R. Let u € R. Then u = sup A if and only if u is an upper bound for
A and for each ¢ > 0 there exists a. € A such that u — € < a..

Proof: (=) Suppose that u = sup A. Then u is an upper bound of A. Let € > 0 be given since u — € < u and u is
the least upper bound, then u — € is not an upper bound for A. Hence there exists a. € A such that a. > u — €.

(<) Suppose that « is an upper bound for A and for each ¢ > 0 there exists a. € A such that u — ¢ < a.. Let v be
any upper bound for A. Assume that v < u. Let ¢¢ = u — v > 0. Now there exist a., € A such that ae, > u — ¢y =
u—(u—v)=u—u+v=wv Thus v < a,. Contradiction. Hence u < v. Therefore v = sup A.

||

Let A be nonempty subset of R. Let u € R. Then w = inf A if and only if w is a lower bound for
A and for each ¢ > 0 there exists a. € A such that a. < w + €.

‘ Definition 2.3:‘ Let F' be an ordered field. We say that F' is complete if for any nonempty subset A of F' that

is bounded above, then sup A € F.

‘ Completeness Axiom 2.1: ‘ Every nonempty subset of R that has an upper bound also has a supremum in R.

‘ Definition 2.4:‘ Let A, B be two nonempty subsets of R, and ¢ € R. We define the following sets:

1. A+ B={a+b:ac Aandbec B}

2. A-B={a—-b:acAand b e B}
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3. A+c={a+c:ac A}
4. cA={ca:a€ A}
5. AB={ab:a € Aand b e B}

Note that 24 may not be the same as A+ A. For, example if A = {—2,2}, then 24 = {—4,4} and A+ A = {—4,0,4},
and hence 24 # A + A.

‘ Corollary 2.1:‘ Every nonempty subset A of R that is bounded below has a infimum in R.

Proof: Let —A = {—a:a € A}. Since A is bounded below there is m € R such that m < a for all a € A. Hence
—a < —m for all @ € A. Thus the set —A is bounded above. Then by Completeness axiom sup(—A) exist and is a real
number. Let a = sup(—A) Now, —a < « for all a € A. Hence —a < a for all a € A. Thus —a is a lower bound for A.
Let B be a lower bound for A. hence § < a for all @ € A. Thus —a < —f for all @ € A. Thus —f is an upper bound for
—A, but @ = sup(—A) and hence o« < —f and therefore 8 < —a. Thus inf A = —« € R. Hence inf A = — sup(—A4).

||

Let A, B be two nonempty subsets of R, and ¢ € R. Then
a. sup(A + B) = sup A + sup B,
b. inf(cA) = cinf A, if ¢ > 0, and inf(cA) = csup 4, if ¢ < 0.
c. sup(A+c¢)=supA+c
d. inf(A— B) =inf A —sup B.
Proof:

a. Let @« = sup A, and 8 = sup B. we want to show that sup(A + B) = a + (. Since o = sup A, then a < «, for all
a € A. Also, since f = sup B, then b < 3, for all b € B. By adding the inequalities we have a + b < «a + 3, for
all a € A, and b € B. Thus a + (8 is an upper bound for the set A + B. Let v be an upper bound for A + B.
Suppose that v < a4+ 8. Then v — 5 < « and since « = sup A, hence v — 8 is not an upper bound for A. Then
there exist ag € A such that v — § < ag. Thus v — ag < 8 and since 5 = sup B, then v — ag is not an upper
bound for B. Then there exist by € B such that v — ag < by. Therefore v < ag + bg. Contradiction since 7 is an
upper bound for A + B. Thus o + 8 < «y. Hence sup(A + B) = a + 8 = sup A + sup B.

b. Let @ = inf A, and 3 = sup A, we want to show that inf(cA) = ca, if ¢ > 0 and inf(cA) = ¢f, if ¢ < 0. Since

a =inf A, then o < a, for all a € A.

e Case I: if ¢ > 0, then ca < ca, for all a € A. Hence ca is a lower bound for cA. Let v be a lower bound for
cA. Assume that ca < 7, then a < 1, and since a = inf A, then i is not a lower bound for A. Hence there
c
is ag € A such that q¢ < 1. Thus cag < ~. Contradiction since 7 is a lower bound for cA. Thus v < ca.
c

Hence inf(cA) = ca = cinf A.

e Case II: if ¢ < 0, since 5 = sup A, then a < 3, for all a € A. Hence ¢f < ca, for all a € A. Thus ¢f is a lower
0 0
bound for cA. Let ¢ be a lower bound for cA. Assume that ¢ < 0, then - < [. Since B = sup A, then -

0
is not an upper bound for A. Then there exist ag € A such that — < ag and hence cag < 6. Contradiction
c

since 0 is a lower bound for cA. Thus ¢ < ¢f. Therefore inf(cA) = ¢f = csup A.
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c. Let @« = sup A4, and ¢ € R. we want to show that sup(A 4 ¢) = a + ¢. Since o = sup A, then a < «, for all
a € A. Hence a+ ¢ < a+ ¢, for all a € A. Thus «a + ¢ is an upper bound for A + c. Let € > 0 be given. Since
o = sup A, then there exist a. € A such that a — ¢ < a., hence a. +c € A+ c and a + ¢ — € < a, + ¢. Therefore

sup(A+c¢)=a+c=supA—+ec.

d. Since A — B = A+ (—B), then using argument similar to part (a) we have inf(A 4+ B) = inf A + inf B and using
part (b) inf(—A) = —sup A. Hence inf(A — B) = inf(A + (—B)) = inf A + inf(—B) = inf A — sup B.

2.2 Archimedean Property

| Theorem 2.1:| [Archimedean Property]

If z € R, then there exist n, € N such that z < n,.

Proof: Suppose that n < z, for all n € N. Hence N is bounded above by . Then by the Completeness Axiom sup N
is a real number. Let u = supN. Now, u — 1 is not an upper bound for N, then there exist m € N such that u —1 < m
and hence u < m + 1. Contradiction, since © = supN and m + 1 € N. There for for each x € R there exist n, € N such
that x < n,.

|

Corollary 2.2:

1. If a > 0, there exist n € N such that 1 < a.
n
2. If a > 0 and b > 0, there exist n € N such that na > b.
Proof:

1 1 1
1. If a > 0, then — > 0 and hence by Archimedean Property, there exist n € N such that — < n. Thus — < a.
a a n

b b
2. If a > 0 and b € R, then — € R and hence by Archimedean Property, there exist n € N such that — < n. Thus
a a

b < na.

‘ Ezxample 23‘ Prove the following

1 1
1. sup{—:neN}zlandinf{—:neN}zo.
n n

1
2. sup{nLH:neN}zlandinf{nLH:neN}:i

Solution:

1 1
1. Let A = {— NS N} . Clearly that for all n € N, we have n > 1 and hence — < 1. Thus 1 is an upper bound
n n

1
for A. Let € > 0 be given. Since 1 —e¢ < 1 € A then sup A = 1. Clearly that 0 < o for all n € N. Hence 0 is
a lower bound for A.Now, suppose w = inf A, clearly 0 < w. Let € > 0 be given. Then there exist ng € N such

1 1
that — < e. Now, 0 <w < — < €. Thus w = 0.
no no
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n1<1.Thuslisan

n+

2. LetB:{
n+1

'n € N} . Clearly that for all n € N, we have n < n + 1 and hence

1 1
upper bound for B. Let € > 0 be given. There exist ng € N such that — < € and hence —e < ——. Thus
no o

1 -1 1
1—e<1——:n0 EB.Thussuszl.Now,1§n,andn+1§2n.Hence§§ i for all n € N.

no no n+1

Thus % is a lower bound for B. For each ¢ > 0, we have % < % + €. Then inf{ -
n

Let x € R. Then there exist n € Z such that n < x <n + 1.

Proof: By Archimedean Property, there exist m € N such that |z| < m. Hence —m < xz < m. The se A, =
{-m,—m+1,...,0,1,...,m — 1,m} is a finite set. The se B, = {k:k € A, and k <z} C A, is bounded above by
z. Letn=supB, € B,. Thenn <z andn+1¢ B,. Hence n <z <n+ 1.

[ |

2.3 The Existence of the Square Root

| Theorem 2.2:| [The Existence of the Square Root]

There exist a positive real number x such that 22 = 2.

Proof: Let A={ac€R:a>0anda®<2}. The A is nonempty subset of R (0,1 € A.) Let u > 2, then u? > 4.
Hence u ¢ A. Thus a < 2 for all @ € A. Thus A is bounded above. Then sup A € R. Let « = sup A. Then = > 1,
because 1 € A. Let € > 0 be given. Choose n € N such that 4% < € and % < z. Then 0 < x—% <z < x—l—%

1 1 1
and hence (z — —)? < 2% < (z + —)%. Now, z — — is not an upper bound for A. Then there exist a € A such that
n n

1 1 1 1 1 1
z - < a and hence (z — 5)2 <a®<2. Alsox—i—g ¢ A, hence (x+ﬁ)2 > 2. Thus (ac—g)2 <2< (l’+ﬁ)2. Now,

1 1 1 1
we have (z — —)? < 2? < (z + —)?, and —(2 + —)? < =2 < —(x — —)?. By adding the last two inequalities we have
n n n
1., 1, 1, 1., 2, 2 iz, 4z
- =)= —)<zr-2< —)*—(x——)". Thus (2z)(—) < 2" —2 < (2z)(—). Therefore —— < 2* -2 < —.
(x n) (x+n)4 x (m—!—n) (x n) us (2z)( - )<=z ( m)(n) erefore —— <z -
Hence |2% — 2| < ~¥ < €. Since for each ¢ > 0 we have |2? — 2| < ¢, then 2> —2 = 0. Thus 2? = 2.
n
[ |

2.4 Density of Rational and Irrational Numbers in R

| Theorem 2.3:| [Density of Q]

If a,b € R with a < b, then there exist a rational number r € QQ such that a < r <b.

Proof: Since a < b, then b—a > 0 and 1 > 0, using Archimedean Property, there exist n € N such that n(b—a) > 1.
Now, nb > na + 1 and since na + 1 € R, there exist m € Z such that m < na+1<m+1. m <na+1 < nb and
na+ 1 < m+ 1, and hence na < m. Hence na < m < nb and therefore a < m <b. Let r = % € Q, then a < r < b.

n

The above theorem saying that between any two real numbers there is a rational number. Using this theorem we
can prove that any real number can be approximated by a rational number. Another version of the above theorem is

the following:

Theorem 2.4:‘ [Approzimation of R by Q]

Let a € R. For each € > 0 there exist r. € Q such that |a — r¢| < e.
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1
Proof: Let € > 0 be given. Choose N € N such that — < e. Now, Na € R, then there exist m € Z such that

N
1 1 1
m§Na<m+1.Hence%§a<%—i—N.ThuSOga—%<N.Hence\a—%|<N<6.Letr€:%€Q.Then

for each € > 0 there exist r. € Q such that |a — r.| <e.
||

| Theorem 2.5:| [Density of Q°]

If a,b € R with a < b, then there exist a irrational number z € Q° such that a < z < b.

Proof: Since a < b, then V2 > 0 then av/2 < bv/2. Using the Density Theorem of Q there exist 7 € Q such that
aVv2 < r < bV2. Hence a < rv/2 < b. Let z = rv/2 € Q°, then a < z < b.

||
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