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2.1 Supremum and Infimum of a Set

Definition 2.1: Let A be a nonempty subset of R.

(a) The set A is said to be bounded above if there exists a number u ∈ R such that a ≤ u for all a ∈ A. Each

such number u is called an upper bound of A.

(b) The set A is said to be bounded below if there exists a number w ∈ R such that w ≤ a for all a ∈ A. Each

such number w is called an lower bound of A.

(c) A set is said to be bounded if it is both bounded above and bounded below. A set is said to be unbounded if

it is not bounded.

Example 2.1: Determine whether the given set bounded above, bounded below, and bounded.

1. A =

{
1

n
: n ∈ N

}

2. B = {x ∈ R : x < 7}

3. C = {x ∈ R : x > 2}

Solution:

1. Since
1

n
≤ 1 for all n ∈ N, then A is bounded above. Also, since 0 <

1

n
for all n ∈ N, then A is bounded below.

Hence A is bounded set.

2. Since x < 7 for all x ∈ B, then B is bounded above. B is not bounded below since for all m ∈ Z such that

m < 7, then m ∈ B. Thus B is unbounded.

3. Since 2 < x for all x ∈ C, then C is bounded below. C is not bounded above since for all m ∈ Z such that m > 2

then m ∈ C. Thus C is unbounded.

�

Definition 2.2: Let A be a nonempty subset of R.

(a) If A is bounded above, then a number u ∈ R is said to be supremum ( least upper bound ) of A if it satisfies

the conditions:

(1) u is an upper bound of A (i.e. a ≤ u for all a ∈ A.), and
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(2) If v is any upper bound of A then u ≤ v.

We will denote the supremum of A by supA.

(b) If A is bounded below, then a number w ∈ R is said to be infimum ( greatest lower bound ) of A if it

satisfies the conditions:

(1) w is a lower bound of A (i.e. w ≤ a for all a ∈ A.), and

(2) If t is any lower bound of A, then t ≤ w.

We will denote the infimum of A by inf A.

Example 2.2: Find sup and inf for each set if they exist.

1. A =

{
1

n
: n ∈ N

}

2. B = {x ∈ R : x < 7}

3. C = {x ∈ R : x > 2}

Solution:

1. We will prove later that supA = 1 and inf A = 0.

2. supB = 7 and inf B = −∞.

3. supC = ∞ and inf B = 2.

�

Lemma 2.1: Let A be nonempty subset of R. Let u ∈ R. Then u = supA if and only if u is an upper bound for

A and for each ε > 0 there exists aε ∈ A such that u− ε < aε.

Proof: (⇒) Suppose that u = supA. Then u is an upper bound of A. Let ε > 0 be given since u − ε < u and u is

the least upper bound, then u− ε is not an upper bound for A. Hence there exists aε ∈ A such that aε > u− ε.

(⇐) Suppose that u is an upper bound for A and for each ε > 0 there exists aε ∈ A such that u − ε < aε. Let v be

any upper bound for A. Assume that v < u. Let ε0 = u − v > 0. Now there exist aε0 ∈ A such that aε0 > u − ε0 =

u− (u − v) = u− u+ v = v. Thus v < aε0 . Contradiction. Hence u ≤ v. Therefore u = supA.

�

Lemma 2.2: Let A be nonempty subset of R. Let u ∈ R. Then w = inf A if and only if w is a lower bound for

A and for each ε > 0 there exists aε ∈ A such that aε < w + ε.

Definition 2.3: Let F be an ordered field. We say that F is complete if for any nonempty subset A of F that

is bounded above, then supA ∈ F.

Completeness Axiom 2.1: Every nonempty subset of R that has an upper bound also has a supremum in R.

Definition 2.4: Let A,B be two nonempty subsets of R, and c ∈ R. We define the following sets:

1. A+B = {a+ b : a ∈ A and b ∈ B}

2. A−B = {a− b : a ∈ A and b ∈ B}
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3. A+ c = {a+ c : a ∈ A}

4. cA = {ca : a ∈ A}

5. AB = {ab : a ∈ A and b ∈ B}

Note that 2Amay not be the same as A+A. For, example if A = {−2, 2}, then 2A = {−4, 4} and A+A = {−4, 0, 4},
and hence 2A �= A+A.

Corollary 2.1: Every nonempty subset A of R that is bounded below has a infimum in R.

Proof: Let −A = {−a : a ∈ A}. Since A is bounded below there is m ∈ R such that m ≤ a for all a ∈ A. Hence

−a ≤ −m for all a ∈ A. Thus the set −A is bounded above. Then by Completeness axiom sup(−A) exist and is a real

number. Let α = sup(−A) Now, −a ≤ α for all a ∈ A. Hence −α ≤ a for all a ∈ A. Thus −α is a lower bound for A.

Let β be a lower bound for A. hence β ≤ a for all a ∈ A. Thus −a ≤ −β for all a ∈ A. Thus −β is an upper bound for

−A, but α = sup(−A) and hence α ≤ −β and therefore β ≤ −α. Thus inf A = −α ∈ R. Hence inf A = − sup(−A).

�

Lemma 2.3: Let A,B be two nonempty subsets of R, and c ∈ R. Then

a. sup(A+B) = supA+ supB,

b. inf(cA) = c inf A, if c > 0, and inf(cA) = c supA, if c < 0.

c. sup(A+ c) = supA+ c

d. inf(A−B) = inf A− supB.

Proof:

a. Let α = supA, and β = supB. we want to show that sup(A+B) = α+ β. Since α = supA, then a ≤ α, for all

a ∈ A. Also, since β = supB, then b ≤ β, for all b ∈ B. By adding the inequalities we have a + b ≤ α + β, for

all a ∈ A, and b ∈ B. Thus α + β is an upper bound for the set A + B. Let γ be an upper bound for A + B.

Suppose that γ < α+ β. Then γ − β < α and since α = supA, hence γ − β is not an upper bound for A. Then

there exist a0 ∈ A such that γ − β < a0. Thus γ − a0 < β and since β = supB, then γ − a0 is not an upper

bound for B. Then there exist b0 ∈ B such that γ − a0 < b0. Therefore γ < a0 + b0. Contradiction since γ is an

upper bound for A+B. Thus α+ β ≤ γ. Hence sup(A+B) = α+ β = supA+ supB.

b. Let α = inf A, and β = supA, we want to show that inf(cA) = cα, if c > 0 and inf(cA) = cβ, if c < 0. Since

α = inf A, then α ≤ a, for all a ∈ A.

• Case I: if c > 0, then cα ≤ ca, for all a ∈ A. Hence cα is a lower bound for cA. Let γ be a lower bound for

cA. Assume that cα < γ, then α <
γ

c
, and since α = inf A, then

γ

c
is not a lower bound for A. Hence there

is a0 ∈ A such that a0 ≤ γ

c
. Thus ca0 ≤ γ. Contradiction since γ is a lower bound for cA. Thus γ ≤ cα.

Hence inf(cA) = cα = c inf A.

• Case II: if c < 0, since β = supA, then a ≤ β, for all a ∈ A. Hence cβ ≤ ca, for all a ∈ A. Thus cβ is a lower

bound for cA. Let δ be a lower bound for cA. Assume that cβ < δ, then
δ

c
< β. Since β = supA, then

δ

c

is not an upper bound for A. Then there exist a0 ∈ A such that
δ

c
< a0 and hence ca0 < δ. Contradiction

since δ is a lower bound for cA. Thus δ ≤ cβ. Therefore inf(cA) = cβ = c supA.
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c. Let α = supA, and c ∈ R. we want to show that sup(A + c) = α + c. Since α = supA, then a ≤ α, for all

a ∈ A. Hence a + c ≤ α + c, for all a ∈ A. Thus α + c is an upper bound for A + c. Let ε > 0 be given. Since

α = supA, then there exist aε ∈ A such that α− ε < aε, hence aε + c ∈ A+ c and α+ c− ε < aε + c. Therefore

sup(A+ c) = α+ c = supA+ c.

d. Since A−B = A+(−B), then using argument similar to part (a) we have inf(A+B) = inf A+ inf B and using

part (b) inf(−A) = − supA. Hence inf(A −B) = inf(A+ (−B)) = inf A+ inf(−B) = inf A− supB.

�

2.2 Archimedean Property

Theorem 2.1: [Archimedean Property]

If x ∈ R, then there exist nx ∈ N such that x < nx.

Proof: Suppose that n ≤ x, for all n ∈ N. Hence N is bounded above by x. Then by the Completeness Axiom supN

is a real number. Let u = supN. Now, u− 1 is not an upper bound for N, then there exist m ∈ N such that u− 1 < m

and hence u < m+1. Contradiction, since u = supN and m+1 ∈ N. There for for each x ∈ R there exist nx ∈ N such

that x < nx.

�

Corollary 2.2:

1. If a > 0, there exist n ∈ N such that
1

n
< a.

2. If a > 0 and b > 0, there exist n ∈ N such that na > b.

Proof:

1. If a > 0, then
1

a
> 0 and hence by Archimedean Property, there exist n ∈ N such that

1

a
< n. Thus

1

n
< a.

2. If a > 0 and b ∈ R, then
b

a
∈ R and hence by Archimedean Property, there exist n ∈ N such that

b

a
< n. Thus

b < na.

�

Example 2.3: Prove the following

1. sup

{
1

n
: n ∈ N

}
= 1 and inf

{
1

n
: n ∈ N

}
= 0.

2. sup

{
n

n+ 1
: n ∈ N

}
= 1 and inf

{
n

n+ 1
: n ∈ N

}
=

1

2
.

Solution:

1. Let A =

{
1

n
: n ∈ N

}
. Clearly that for all n ∈ N, we have n ≥ 1 and hence

1

n
≤ 1. Thus 1 is an upper bound

for A. Let ε > 0 be given. Since 1 − ε < 1 ∈ A then supA = 1. Clearly that 0 <
1

n
, for all n ∈ N. Hence 0 is

a lower bound for A.Now, suppose w = inf A, clearly 0 ≤ w. Let ε > 0 be given. Then there exist n0 ∈ N such

that
1

n0
< ε. Now, 0 ≤ w ≤ 1

n0
< ε. Thus w = 0.
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2. Let B =

{
n

n+ 1
: n ∈ N

}
. Clearly that for all n ∈ N, we have n < n + 1 and hence

n

n+ 1
< 1. Thus 1 is an

upper bound for B. Let ε > 0 be given. There exist n0 ∈ N such that
1

n0
< ε and hence −ε < − 1

n0
. Thus

1 − ε < 1 − 1

n0
=

n0 − 1

n0
∈ B. Thus supB = 1. Now, 1 ≤ n, and n + 1 ≤ 2n. Hence

1

2
≤ n

n+ 1
for all n ∈ N.

Thus
1

2
is a lower bound for B. For each ε > 0, we have

1

2
<

1

2
+ ε. Then inf

{
n

n+ 1
: n ∈ N

}
=

1

2
.

�

Lemma 2.4: Let x ∈ R. Then there exist n ∈ Z such that n ≤ x < n+ 1.

Proof: By Archimedean Property, there exist m ∈ N such that |x| < m. Hence −m < x < m. The se Ax =

{−m,−m+ 1, . . . , 0, 1, . . . ,m− 1,m} is a finite set. The se Bx = {k : k ∈ Ax and k ≤ x} ⊂ Ax is bounded above by

x. Let n = supBx ∈ Bx. Then n ≤ x and n+ 1 /∈ Bx. Hence n ≤ x < n+ 1.

�

2.3 The Existence of the Square Root

Theorem 2.2: [The Existence of the Square Root]

There exist a positive real number x such that x2 = 2.

Proof: Let A = {a ∈ R : a ≥ 0 and a2 ≤ 2}. The A is nonempty subset of R (0, 1 ∈ A.) Let u > 2, then u2 > 4.

Hence u /∈ A. Thus a < 2 for all a ∈ A. Thus A is bounded above. Then supA ∈ R. Let x = supA. Then x ≥ 1,

because 1 ∈ A. Let ε > 0 be given. Choose n ∈ N such that
4x

n
< ε and

1

n
< x. Then 0 < x − 1

n
< x < x +

1

n

and hence (x − 1

n
)2 < x2 < (x +

1

n
)2. Now, x − 1

n
is not an upper bound for A. Then there exist a ∈ A such that

x − 1

n
< a and hence (x− 1

n
)2 < a2 ≤ 2. Also x +

1

n
/∈ A, hence (x +

1

n
)2 > 2. Thus (x − 1

n
)2 < 2 < (x +

1

n
)2. Now,

we have (x − 1

n
)2 < x2 < (x +

1

n
)2, and −(x +

1

n
)2 < −2 < −(x − 1

n
)2. By adding the last two inequalities we have

(x− 1

n
)2−(x+

1

n
)2 < x2−2 < (x+

1

n
)2−(x− 1

n
)2. Thus (2x)(

−2

n
) < x2−2 < (2x)(

2

n
). Therefore −4x

n
< x2−2 <

4x

n
.

Hence |x2 − 2| < 4x

n
< ε. Since for each ε > 0 we have |x2 − 2| < ε, then x2 − 2 = 0. Thus x2 = 2.

�

2.4 Density of Rational and Irrational Numbers in R

Theorem 2.3: [Density of Q]

If a, b ∈ R with a < b, then there exist a rational number r ∈ Q such that a < r < b.

Proof: Since a < b, then b−a > 0 and 1 > 0, using Archimedean Property, there exist n ∈ N such that n(b−a) > 1.

Now, nb > na + 1 and since na + 1 ∈ R, there exist m ∈ Z such that m ≤ na + 1 < m + 1. m ≤ na + 1 < nb and

na+ 1 < m+ 1, and hence na < m. Hence na < m < nb and therefore a <
m

n
< b. Let r =

m

n
∈ Q, then a < r < b.

�

The above theorem saying that between any two real numbers there is a rational number. Using this theorem we

can prove that any real number can be approximated by a rational number. Another version of the above theorem is

the following:

Theorem 2.4: [Approximation of R by Q]

Let a ∈ R. For each ε > 0 there exist rε ∈ Q such that |a− rε| < ε.
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Proof: Let ε > 0 be given. Choose N ∈ N such that
1

N
< ε. Now, Na ∈ R, then there exist m ∈ Z such that

m ≤ Na < m+ 1. Hence
m

N
≤ a <

m

N
+

1

N
. Thus 0 ≤ a− m

N
<

1

N
. Hence |a− m

N
| < 1

N
< ε. Let rε =

m

N
∈ Q. Then

for each ε > 0 there exist rε ∈ Q such that |a− rε| < ε.

�

Theorem 2.5: [Density of Qc]

If a, b ∈ R with a < b, then there exist a irrational number z ∈ Qc such that a < z < b.

Proof: Since a < b, then
√
2 > 0 then a

√
2 < b

√
2. Using the Density Theorem of Q there exist r ∈ Q such that

a
√
2 < r < b

√
2. Hence a < r

√
2 < b. Let z = r

√
2 ∈ Qc, then a < z < b.

�
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