# The Completeness Property of $\mathbb{R}$ 

Dr.Hamed Al-Sulami

September 24, 2012

### 2.1 Supremum and Infimum of a Set

Definition 2.1: Let $A$ be a nonempty subset of $\mathbb{R}$.
(a) The set $A$ is said to be bounded above if there exists a number $u \in \mathbb{R}$ such that $a \leq u$ for all $a \in A$. Each such number $u$ is called an upper bound of $A$.
(b) The set $A$ is said to be bounded below if there exists a number $w \in \mathbb{R}$ such that $w \leq a$ for all $a \in A$. Each such number $w$ is called an lower bound of $A$.
(c) A set is said to be bounded if it is both bounded above and bounded below. A set is said to be unbounded if it is not bounded.

Example 2.1: Determine whether the given set bounded above, bounded below, and bounded.

1. $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
2. $B=\{x \in \mathbb{R}: x<7\}$
3. $C=\{x \in \mathbb{R}: x>2\}$

## Solution:

1. Since $\frac{1}{n} \leq 1$ for all $n \in \mathbb{N}$, then $A$ is bounded above. Also, since $0<\frac{1}{n}$ for all $n \in \mathbb{N}$, then $A$ is bounded below. Hence $A$ is bounded set.
2. Since $x<7$ for all $x \in B$, then $B$ is bounded above. $B$ is not bounded below since for all $m \in \mathbb{Z}$ such that $m<7$, then $m \in B$. Thus $B$ is unbounded.
3. Since $2<x$ for all $x \in C$, then $C$ is bounded below. $C$ is not bounded above since for all $m \in \mathbb{Z}$ such that $m>2$ then $m \in C$. Thus $C$ is unbounded.

Definition 2.2: Let $A$ be a nonempty subset of $\mathbb{R}$.
(a) If $A$ is bounded above, then a number $u \in \mathbb{R}$ is said to be supremum (least upper bound) of $A$ if it satisfies the conditions:
(1) $u$ is an upper bound of $A$ (i.e. $a \leq u$ for all $a \in A$.), and
(2) If $v$ is any upper bound of $A$ then $u \leq v$.

We will denote the supremum of $A$ by sup $A$.
(b) If $A$ is bounded below, then a number $w \in \mathbb{R}$ is said to be infimum (greatest lower bound) of $A$ if it satisfies the conditions:
(1) $w$ is a lower bound of $A$ (i.e. $w \leq a$ for all $a \in A$.), and
(2) If $t$ is any lower bound of $A$, then $t \leq w$.

We will denote the infimum of $A$ by $\inf A$.

Example 2.2: Find sup and inf for each set if they exist.

1. $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
2. $B=\{x \in \mathbb{R}: x<7\}$
3. $C=\{x \in \mathbb{R}: x>2\}$

## Solution:

1. We will prove later that $\sup A=1$ and $\inf A=0$.
2. $\sup B=7$ and $\inf B=-\infty$.
3. $\sup C=\infty$ and $\inf B=2$.

Lemma 2.1: Let $A$ be nonempty subset of $\mathbb{R}$. Let $u \in \mathbb{R}$. Then $u=\sup A$ if and only if $u$ is an upper bound for $A$ and for each $\epsilon>0$ there exists $a_{\epsilon} \in A$ such that $u-\epsilon<a_{\epsilon}$.

Proof: $(\Rightarrow)$ Suppose that $u=\sup A$. Then $u$ is an upper bound of $A$. Let $\epsilon>0$ be given since $u-\epsilon<u$ and $u$ is the least upper bound, then $u-\epsilon$ is not an upper bound for $A$. Hence there exists $a_{\epsilon} \in A$ such that $a_{\epsilon}>u-\epsilon$.
$(\Leftarrow)$ Suppose that $u$ is an upper bound for $A$ and for each $\epsilon>0$ there exists $a_{\epsilon} \in A$ such that $u-\epsilon<a_{\epsilon}$. Let $v$ be any upper bound for $A$. Assume that $v<u$. Let $\epsilon_{0}=u-v>0$. Now there exist $a_{\epsilon_{0}} \in A$ such that $a_{\epsilon_{0}}>u-\epsilon_{0}=$ $u-(u-v)=u-u+v=v$. Thus $v<a_{\epsilon_{0}}$. Contradiction. Hence $u \leq v$. Therefore $u=\sup A$.

Lemma 2.2: Let $A$ be nonempty subset of $\mathbb{R}$. Let $u \in \mathbb{R}$. Then $w=\inf A$ if and only if $w$ is a lower bound for $A$ and for each $\epsilon>0$ there exists $a_{\epsilon} \in A$ such that $a_{\epsilon}<w+\epsilon$.

Definition 2.3: Let $F$ be an ordered field. We say that $F$ is complete if for any nonempty subset $A$ of $F$ that is bounded above, then $\sup A \in F$.

Completeness Axiom 2.1: Every nonempty subset of $\mathbb{R}$ that has an upper bound also has a supremum in $\mathbb{R}$.
Definition 2.4: Let $A, B$ be two nonempty subsets of $\mathbb{R}$, and $c \in \mathbb{R}$. We define the following sets:

1. $A+B=\{a+b: a \in A$ and $b \in B\}$
2. $A-B=\{a-b: a \in A$ and $b \in B\}$
3. $A+c=\{a+c: a \in A\}$
4. $c A=\{c a: a \in A\}$
5. $A B=\{a b: a \in A$ and $b \in B\}$

Note that $2 A$ may not be the same as $A+A$. For, example if $A=\{-2,2\}$, then $2 A=\{-4,4\}$ and $A+A=\{-4,0,4\}$, and hence $2 A \neq A+A$.

Corollary 2.1: Every nonempty subset $A$ of $\mathbb{R}$ that is bounded below has a infimum in $\mathbb{R}$.
Proof: Let $-A=\{-a: a \in A\}$. Since $A$ is bounded below there is $m \in \mathbb{R}$ such that $m \leq a$ for all $a \in A$. Hence $-a \leq-m$ for all $a \in A$. Thus the set $-A$ is bounded above. Then by Completeness axiom $\sup (-A)$ exist and is a real number. Let $\alpha=\sup (-A)$ Now, $-a \leq \alpha$ for all $a \in A$. Hence $-\alpha \leq a$ for all $a \in A$. Thus $-\alpha$ is a lower bound for $A$. Let $\beta$ be a lower bound for $A$. hence $\beta \leq a$ for all $a \in A$. Thus $-a \leq-\beta$ for all $a \in A$. Thus $-\beta$ is an upper bound for $-A$, but $\alpha=\sup (-A)$ and hence $\alpha \leq-\beta$ and therefore $\beta \leq-\alpha$. Thus inf $A=-\alpha \in \mathbb{R}$. Hence inf $A=-\sup (-A)$.

## Lemma 2.3: Let $A, B$ be two nonempty subsets of $\mathbb{R}$, and $c \in \mathbb{R}$. Then

a. $\sup (A+B)=\sup A+\sup B$,
b. $\inf (c A)=c \inf A$, if $c>0$, and $\inf (c A)=c \sup A$, if $c<0$.
c. $\sup (A+c)=\sup A+c$
d. $\inf (A-B)=\inf A-\sup B$.

## Proof:

a. Let $\alpha=\sup A$, and $\beta=\sup B$. we want to show that $\sup (A+B)=\alpha+\beta$. Since $\alpha=\sup A$, then $a \leq \alpha$, for all $a \in A$. Also, since $\beta=\sup B$, then $b \leq \beta$, for all $b \in B$. By adding the inequalities we have $a+b \leq \alpha+\beta$, for all $a \in A$, and $b \in B$. Thus $\alpha+\beta$ is an upper bound for the set $A+B$. Let $\gamma$ be an upper bound for $A+B$. Suppose that $\gamma<\alpha+\beta$. Then $\gamma-\beta<\alpha$ and since $\alpha=\sup A$, hence $\gamma-\beta$ is not an upper bound for $A$. Then there exist $a_{0} \in A$ such that $\gamma-\beta<a_{0}$. Thus $\gamma-a_{0}<\beta$ and since $\beta=\sup B$, then $\gamma-a_{0}$ is not an upper bound for $B$. Then there exist $b_{0} \in B$ such that $\gamma-a_{0}<b_{0}$. Therefore $\gamma<a_{0}+b_{0}$. Contradiction since $\gamma$ is an upper bound for $A+B$. Thus $\alpha+\beta \leq \gamma$. Hence $\sup (A+B)=\alpha+\beta=\sup A+\sup B$.
b. Let $\alpha=\inf A$, and $\beta=\sup A$, we want to show that $\inf (c A)=c \alpha$, if $c>0$ and $\inf (c A)=c \beta$, if $c<0$. Since $\alpha=\inf A$, then $\alpha \leq a$, for all $a \in A$.

- Case I: if $c>0$, then $c \alpha \leq c a$, for all $a \in A$. Hence $c \alpha$ is a lower bound for $c A$. Let $\gamma$ be a lower bound for $c A$. Assume that $c \alpha<\gamma$, then $\alpha<\frac{\gamma}{c}$, and since $\alpha=\inf A$, then $\frac{\gamma}{c}$ is not a lower bound for $A$. Hence there is $a_{0} \in A$ such that $a_{0} \leq \frac{\gamma}{c}$. Thus $c a_{0} \leq \gamma$. Contradiction since $\gamma$ is a lower bound for $c A$. Thus $\gamma \leq c \alpha$. Hence $\inf (c A)=c \alpha=c \inf A$.
- Case II: if $c<0$, since $\beta=\sup A$, then $a \leq \beta$, for all $a \in A$. Hence $c \beta \leq c a$, for all $a \in A$. Thus $c \beta$ is a lower bound for $c A$. Let $\delta$ be a lower bound for $c A$. Assume that $c \beta<\delta$, then $\frac{\delta}{c}<\beta$. Since $\beta=\sup A$, then $\frac{\delta}{c}$ is not an upper bound for $A$. Then there exist $a_{0} \in A$ such that $\frac{\delta}{c}<a_{0}$ and hence $c a_{0}<\delta$. Contradiction since $\delta$ is a lower bound for $c A$. Thus $\delta \leq c \beta$. Therefore $\inf (c A)=c \beta=c \sup A$.
c. Let $\alpha=\sup A$, and $c \in \mathbb{R}$. we want to show that $\sup (A+c)=\alpha+c$. Since $\alpha=\sup A$, then $a \leq \alpha$, for all $a \in A$. Hence $a+c \leq \alpha+c$, for all $a \in A$. Thus $\alpha+c$ is an upper bound for $A+c$. Let $\epsilon>0$ be given. Since $\alpha=\sup A$, then there exist $a_{\epsilon} \in A$ such that $\alpha-\epsilon<a_{\epsilon}$, hence $a_{\epsilon}+c \in A+c$ and $\alpha+c-\epsilon<a_{\epsilon}+c$. Therefore $\sup (A+c)=\alpha+c=\sup A+c$.
d. Since $A-B=A+(-B)$, then using argument similar to part (a) we have $\inf (A+B)=\inf A+\inf B$ and using part (b) $\inf (-A)=-\sup A$. Hence $\inf (A-B)=\inf (A+(-B))=\inf A+\inf (-B)=\inf A-\sup B$.


### 2.2 Archimedean Property

## Theorem 2.1: [Archimedean Property]

If $x \in \mathbb{R}$, then there exist $n_{x} \in \mathbb{N}$ such that $x<n_{x}$.
Proof: Suppose that $n \leq x$, for all $n \in \mathbb{N}$. Hence $\mathbb{N}$ is bounded above by $x$. Then by the Completeness Axiom sup $\mathbb{N}$ is a real number. Let $u=\sup \mathbb{N}$. Now, $u-1$ is not an upper bound for $\mathbb{N}$, then there exist $m \in \mathbb{N}$ such that $u-1<m$ and hence $u<m+1$. Contradiction, since $u=\sup \mathbb{N}$ and $m+1 \in \mathbb{N}$. There for for each $x \in \mathbb{R}$ there exist $n_{x} \in \mathbb{N}$ such that $x<n_{x}$.

## Corollary 2.2:

1. If $a>0$, there exist $n \in \mathbb{N}$ such that $\frac{1}{n}<a$.
2. If $a>0$ and $b>0$, there exist $n \in \mathbb{N}$ such that $n a>b$.

## Proof:

1. If $a>0$, then $\frac{1}{a}>0$ and hence by Archimedean Property, there exist $n \in \mathbb{N}$ such that $\frac{1}{a}<n$. Thus $\frac{1}{n}<a$.
2. If $a>0$ and $b \in \mathbb{R}$, then $\frac{b}{a} \in \mathbb{R}$ and hence by Archimedean Property, there exist $n \in \mathbb{N}$ such that $\frac{b}{a}<n$. Thus $b<n a$.

## Example 2.3: Prove the following

1. $\sup \left\{\frac{1}{n}: n \in \mathbb{N}\right\}=1$ and $\inf \left\{\frac{1}{n}: n \in \mathbb{N}\right\}=0$.
2. $\sup \left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}=1$ and $\inf \left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}=\frac{1}{2}$.

## Solution:

1. Let $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Clearly that for all $n \in \mathbb{N}$, we have $n \geq 1$ and hence $\frac{1}{n} \leq 1$. Thus 1 is an upper bound for $A$. Let $\epsilon>0$ be given. Since $1-\epsilon<1 \in A$ then $\sup A=1$. Clearly that $0<\frac{1}{n}$, for all $n \in \mathbb{N}$. Hence 0 is a lower bound for $A$.Now, suppose $w=\inf A$, clearly $0 \leq w$. Let $\epsilon>0$ be given. Then there exist $n_{0} \in \mathbb{N}$ such that $\frac{1}{n_{0}}<\epsilon$. Now, $0 \leq w \leq \frac{1}{n_{0}}<\epsilon$. Thus $w=0$.
2. Let $B=\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}$. Clearly that for all $n \in \mathbb{N}$, we have $n<n+1$ and hence $\frac{n}{n+1}<1$. Thus 1 is an upper bound for $B$. Let $\epsilon>0$ be given. There exist $n_{0} \in \mathbb{N}$ such that $\frac{1}{n_{0}}<\epsilon$ and hence $-\epsilon<-\frac{1}{n_{0}}$. Thus $1-\epsilon<1-\frac{1}{n_{0}}=\frac{n_{0}-1}{n_{0}} \in B$. Thus $\sup B=1$. Now, $1 \leq n$, and $n+1 \leq 2 n$. Hence $\frac{1}{2} \leq \frac{n}{n+1}$ for all $n \in \mathbb{N}$. Thus $\frac{1}{2}$ is a lower bound for $B$. For each $\epsilon>0$, we have $\frac{1}{2}<\frac{1}{2}+\epsilon$. Then $\inf \left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}=\frac{1}{2}$.

## Lemma 2.4: Let $x \in \mathbb{R}$. Then there exist $n \in \mathbb{Z}$ such that $n \leq x<n+1$.

Proof: By Archimedean Property, there exist $m \in \mathbb{N}$ such that $|x|<m$. Hence $-m<x<m$. The se $A_{x}=$ $\{-m,-m+1, \ldots, 0,1, \ldots, m-1, m\}$ is a finite set. The se $B_{x}=\left\{k: k \in A_{x}\right.$ and $\left.k \leq x\right\} \subset A_{x}$ is bounded above by $x$. Let $n=\sup B_{x} \in B_{x}$. Then $n \leq x$ and $n+1 \notin B_{x}$. Hence $n \leq x<n+1$.

### 2.3 The Existence of the Square Root

## Theorem 2.2: [The Existence of the Square Root]

There exist a positive real number $x$ such that $x^{2}=2$.
Proof: Let $A=\left\{a \in \mathbb{R}: a \geq 0\right.$ and $\left.a^{2} \leq 2\right\}$. The $A$ is nonempty subset of $\mathbb{R}\left(0,1 \in A\right.$.) Let $u>2$, then $u^{2}>4$.
Hence $u \notin A$. Thus $a<2$ for all $a \in A$. Thus $A$ is bounded above. Then $\sup A \in \mathbb{R}$. Let $x=\sup A$. Then $x \geq 1$, because $1 \in A$. Let $\epsilon>0$ be given. Choose $n \in \mathbb{N}$ such that $\frac{4 x}{n}<\epsilon$ and $\frac{1}{n}<x$. Then $0<x-\frac{1}{n}<x<x+\frac{1}{n}$ and hence $\left(x-\frac{1}{n}\right)^{2}<x^{2}<\left(x+\frac{1}{n}\right)^{2}$. Now, $x-\frac{1}{n}$ is not an upper bound for $A$. Then there exist $a \in A$ such that $x-\frac{1}{n}<a$ and hence $\left(x-\frac{1}{n}\right)^{2}<a^{2} \leq 2$. Also $x+\frac{1}{n} \notin A$, hence $\left(x+\frac{1}{n}\right)^{2}>2$. Thus $\left(x-\frac{1}{n}\right)^{2}<2<\left(x+\frac{1}{n}\right)^{2}$. Now, we have $\left(x-\frac{1}{n}\right)^{2}<x^{2}<\left(x+\frac{1}{n}\right)^{2}$, and $-\left(x+\frac{1}{n}\right)^{2}<-2<-\left(x-\frac{1}{n}\right)^{2}$. By adding the last two inequalities we have $\left(x-\frac{1}{n}\right)^{2}-\left(x+\frac{1}{n}\right)^{2}<x^{2}-2<\left(x+\frac{1}{n}\right)^{2}-\left(x-\frac{1}{n}\right)^{2}$. Thus $(2 x)\left(\frac{-2}{n}\right)<x^{2}-2<(2 x)\left(\frac{2}{n}\right)$. Therefore $-\frac{4 x}{n}<x^{2}-2<\frac{4 x}{n}$. Hence $\left|x^{2}-2\right|<\frac{4 x}{n}<\epsilon$. Since for each $\epsilon>0$ we have $\left|x^{2}-2\right|<\epsilon$, then $x^{2}-2=0$. Thus $x^{2}=2$.

### 2.4 Density of Rational and Irrational Numbers in $\mathbb{R}$

## Theorem 2.3: [Density of $\mathbb{Q}]$

If $a, b \in \mathbb{R}$ with $a<b$, then there exist a rational number $r \in \mathbb{Q}$ such that $a<r<b$.
Proof: Since $a<b$, then $b-a>0$ and $1>0$, using Archimedean Property, there exist $n \in \mathbb{N}$ such that $n(b-a)>1$. Now, $n b>n a+1$ and since $n a+1 \in \mathbb{R}$, there exist $m \in \mathbb{Z}$ such that $m \leq n a+1<m+1 . m \leq n a+1<n b$ and $n a+1<m+1$, and hence $n a<m$. Hence $n a<m<n b$ and therefore $a<\frac{m}{n}<b$. Let $r=\frac{m}{n} \in \mathbb{Q}$, then $a<r<b$.

The above theorem saying that between any two real numbers there is a rational number. Using this theorem we can prove that any real number can be approximated by a rational number. Another version of the above theorem is the following:

## Theorem 2.4: [Approximation of $\mathbb{R}$ by $\mathbb{Q}$ ]

Let $a \in \mathbb{R}$. For each $\epsilon>0$ there exist $r_{\epsilon} \in \mathbb{Q}$ such that $\left|a-r_{\epsilon}\right|<\epsilon$.

Proof: Let $\epsilon>0$ be given. Choose $N \in \mathbb{N}$ such that $\frac{1}{N}<\epsilon$. Now, $N a \in \mathbb{R}$, then there exist $m \in \mathbb{Z}$ such that $m \leq N a<m+1$. Hence $\frac{m}{N} \leq a<\frac{m}{N}+\frac{1}{N}$. Thus $0 \leq a-\frac{m}{N}<\frac{1}{N}$. Hence $\left|a-\frac{m}{N}\right|<\frac{1}{N}<\epsilon$. Let $r_{\epsilon}=\frac{m}{N} \in \mathbb{Q}$. Then for each $\epsilon>0$ there exist $r_{\epsilon} \in \mathbb{Q}$ such that $\left|a-r_{\epsilon}\right|<\epsilon$.

## Theorem 2.5: [Density of $\left.\mathbb{Q}^{c}\right]$

If $a, b \in \mathbb{R}$ with $a<b$, then there exist a irrational number $z \in \mathbb{Q}^{c}$ such that $a<z<b$.
Proof: Since $a<b$, then $\sqrt{2}>0$ then $a \sqrt{2}<b \sqrt{2}$. Using the Density Theorem of $\mathbb{Q}$ there exist $r \in \mathbb{Q}$ such that $a \sqrt{2}<r<b \sqrt{2}$. Hence $a<r \sqrt{2}<b$. Let $z=r \sqrt{2} \in \mathbb{Q}^{c}$, then $a<z<b$.

