The Completeness Property of $\mathbb R$

Dr.Hamed Al-Sulami

September 24, 2012

2.1 Supremum and Infimum of a Set

Definition 2.1: Let A be a nonempty subset of \mathbb{R} .

- (a) The set A is said to be **bounded above** if there exists a number $u \in \mathbb{R}$ such that $a \leq u$ for all $a \in A$. Each such number u is called an **upper bound** of A.
- (b) The set A is said to be **bounded below** if there exists a number $w \in \mathbb{R}$ such that $w \leq a$ for all $a \in A$. Each such number w is called an **lower bound** of A.
- (c) A set is said to be **bounded** if it is both bounded above and bounded below. A set is said to be **unbounded** if it is not bounded.

Example 2.1: Determine whether the given set bounded above, bounded below, and bounded.

$$1. \ A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$$

2.
$$B = \{x \in \mathbb{R} : x < 7\}$$

3. $C = \{x \in \mathbb{R} : x > 2\}$

Solution:

- 1. Since $\frac{1}{n} \leq 1$ for all $n \in \mathbb{N}$, then A is bounded above. Also, since $0 < \frac{1}{n}$ for all $n \in \mathbb{N}$, then A is bounded below. Hence A is bounded set.
- 2. Since x < 7 for all $x \in B$, then B is bounded above. B is not bounded below since for all $m \in \mathbb{Z}$ such that m < 7, then $m \in B$. Thus B is unbounded.
- 3. Since 2 < x for all $x \in C$, then C is bounded below. C is not bounded above since for all $m \in \mathbb{Z}$ such that m > 2 then $m \in C$. Thus C is unbounded.

Definition 2.2: Let A be a nonempty subset of \mathbb{R} .

- (a) If A is bounded above, then a number $u \in \mathbb{R}$ is said to be *supremum* (*least upper bound*) of A if it satisfies the conditions:
 - (1) u is an upper bound of A (i.e. $a \le u$ for all $a \in A$.), and

(2) If v is any upper bound of A then $u \leq v$.

We will denote the supremum of A by $\sup A$.

- (b) If A is bounded below, then a number $w \in \mathbb{R}$ is said to be *infimum (greatest lower bound)* of A if it satisfies the conditions:
 - (1) w is a lower bound of A (i.e. $w \le a$ for all $a \in A$.), and
 - (2) If t is any lower bound of A, then $t \leq w$.

We will denote the infimum of A by $\inf A$.

Example 2.2: Find sup and inf for each set if they exist.

- 1. $A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$
- 2. $B = \{x \in \mathbb{R} : x < 7\}$
- 3. $C = \{x \in \mathbb{R} : x > 2\}$

Solution:

- 1. We will prove later that $\sup A = 1$ and $\inf A = 0$.
- 2. $\sup B = 7$ and $\inf B = -\infty$.
- 3. $\sup C = \infty$ and $\inf B = 2$.

Lemma 2.1: Let A be nonempty subset of \mathbb{R} . Let $u \in \mathbb{R}$. Then $u = \sup A$ if and only if u is an upper bound for A and for each $\epsilon > 0$ there exists $a_{\epsilon} \in A$ such that $u - \epsilon < a_{\epsilon}$.

Proof: (\Rightarrow) Suppose that $u = \sup A$. Then u is an upper bound of A. Let $\epsilon > 0$ be given since $u - \epsilon < u$ and u is the least upper bound, then $u - \epsilon$ is not an upper bound for A. Hence there exists $a_{\epsilon} \in A$ such that $a_{\epsilon} > u - \epsilon$. (\Leftarrow) Suppose that u is an upper bound for A and for each $\epsilon > 0$ there exists $a_{\epsilon} \in A$ such that $u - \epsilon < a_{\epsilon}$. Let v be any upper bound for A. Assume that v < u. Let $\epsilon_0 = u - v > 0$. Now there exist $a_{\epsilon_0} \in A$ such that $a_{\epsilon_0} > u - \epsilon_0 = u - (u - v) = u - u + v = v$. Thus $v < a_{\epsilon_0}$. Contradiction. Hence $u \le v$. Therefore $u = \sup A$.

Lemma 2.2: Let A be nonempty subset of \mathbb{R} . Let $u \in \mathbb{R}$. Then $w = \inf A$ if and only if w is a lower bound for A and for each $\epsilon > 0$ there exists $a_{\epsilon} \in A$ such that $a_{\epsilon} < w + \epsilon$.

Definition 2.3: Let F be an ordered field. We say that F is complete if for any nonempty subset A of F that is bounded above, then $\sup A \in F$.

Completeness Axiom 2.1: Every nonempty subset of \mathbb{R} that has an upper bound also has a supremum in \mathbb{R} .

Definition 2.4: Let A, B be two nonempty subsets of \mathbb{R} , and $c \in \mathbb{R}$. We define the following sets:

- 1. $A + B = \{a + b : a \in A \text{ and } b \in B\}$
- 2. $A B = \{a b : a \in A \text{ and } b \in B\}$

- 3. $A + c = \{a + c : a \in A\}$
- 4. $cA = \{ca : a \in A\}$
- 5. $AB = \{ab : a \in A \text{ and } b \in B\}$

Note that 2*A* may not be the same as *A*+*A*. For, example if $A = \{-2, 2\}$, then $2A = \{-4, 4\}$ and $A+A = \{-4, 0, 4\}$, and hence $2A \neq A + A$.

Corollary 2.1: Every nonempty subset A of \mathbb{R} that is bounded below has a infimum in \mathbb{R} .

Proof: Let $-A = \{-a : a \in A\}$. Since A is bounded below there is $m \in \mathbb{R}$ such that $m \leq a$ for all $a \in A$. Hence $-a \leq -m$ for all $a \in A$. Thus the set -A is bounded above. Then by Completeness axiom $\sup(-A)$ exist and is a real number. Let $\alpha = \sup(-A)$ Now, $-a \leq \alpha$ for all $a \in A$. Hence $-\alpha \leq a$ for all $a \in A$. Thus $-\alpha$ is a lower bound for A. Let β be a lower bound for A. hence $\beta \leq a$ for all $a \in A$. Thus $-a \leq -\beta$ for all $a \in A$. Thus $-\beta$ is an upper bound for -A, but $\alpha = \sup(-A)$ and hence $\alpha \leq -\beta$ and therefore $\beta \leq -\alpha$. Thus $\inf A = -\alpha \in \mathbb{R}$. Hence $\inf A = -\sup(-A)$.

Lemma 2.3: Let A, B be two nonempty subsets of \mathbb{R} , and $c \in \mathbb{R}$. Then

- a. $\sup(A+B) = \sup A + \sup B$,
- b. $\inf(cA) = c \inf A$, if c > 0, and $\inf(cA) = c \sup A$, if c < 0.
- c. $\sup(A+c) = \sup A + c$
- d. $\inf(A B) = \inf A \sup B$.

Proof:

- a. Let $\alpha = \sup A$, and $\beta = \sup B$. we want to show that $\sup(A + B) = \alpha + \beta$. Since $\alpha = \sup A$, then $a \leq \alpha$, for all $a \in A$. Also, since $\beta = \sup B$, then $b \leq \beta$, for all $b \in B$. By adding the inequalities we have $a + b \leq \alpha + \beta$, for all $a \in A$, and $b \in B$. Thus $\alpha + \beta$ is an upper bound for the set A + B. Let γ be an upper bound for A + B. Suppose that $\gamma < \alpha + \beta$. Then $\gamma \beta < \alpha$ and since $\alpha = \sup A$, hence $\gamma \beta$ is not an upper bound for A. Then there exist $a_0 \in A$ such that $\gamma \beta < a_0$. Thus $\gamma a_0 < \beta$ and since $\beta = \sup B$, then γa_0 is not an upper bound for A. Then upper bound for B. Then there exist $b_0 \in B$ such that $\gamma a_0 < b_0$. Therefore $\gamma < a_0 + b_0$. Contradiction since γ is an upper bound for A + B. Thus $\alpha + \beta \leq \gamma$. Hence $\sup(A + B) = \alpha + \beta = \sup A + \sup B$.
- b. Let $\alpha = \inf A$, and $\beta = \sup A$, we want to show that $\inf(cA) = c\alpha$, if c > 0 and $\inf(cA) = c\beta$, if c < 0. Since $\alpha = \inf A$, then $\alpha \le a$, for all $a \in A$.
 - Case I: if c > 0, then $c\alpha \le ca$, for all $a \in A$. Hence $c\alpha$ is a lower bound for cA. Let γ be a lower bound for cA. Assume that $c\alpha < \gamma$, then $\alpha < \frac{\gamma}{c}$, and since $\alpha = \inf A$, then $\frac{\gamma}{c}$ is not a lower bound for A. Hence there is $a_0 \in A$ such that $a_0 \le \frac{\gamma}{c}$. Thus $ca_0 \le \gamma$. Contradiction since γ is a lower bound for cA. Thus $\gamma \le c\alpha$. Hence $\inf(cA) = c\alpha = c \inf A$.
 - Case II: if c < 0, since $\beta = \sup A$, then $a \le \beta$, for all $a \in A$. Hence $c\beta \le ca$, for all $a \in A$. Thus $c\beta$ is a lower bound for cA. Let δ be a lower bound for cA. Assume that $c\beta < \delta$, then $\frac{\delta}{c} < \beta$. Since $\beta = \sup A$, then $\frac{\delta}{c}$ is not an upper bound for A. Then there exist $a_0 \in A$ such that $\frac{\delta}{c} < a_0$ and hence $ca_0 < \delta$. Contradiction since δ is a lower bound for cA. Thus $\delta \le c\beta$. Therefore $\inf(cA) = c\beta = c \sup A$.

- c. Let $\alpha = \sup A$, and $c \in \mathbb{R}$. we want to show that $\sup(A + c) = \alpha + c$. Since $\alpha = \sup A$, then $a \leq \alpha$, for all $a \in A$. Hence $a + c \leq \alpha + c$, for all $a \in A$. Thus $\alpha + c$ is an upper bound for A + c. Let $\epsilon > 0$ be given. Since $\alpha = \sup A$, then there exist $a_{\epsilon} \in A$ such that $\alpha \epsilon < a_{\epsilon}$, hence $a_{\epsilon} + c \in A + c$ and $\alpha + c \epsilon < a_{\epsilon} + c$. Therefore $\sup(A + c) = \alpha + c = \sup A + c$.
- d. Since A B = A + (-B), then using argument similar to part (a) we have $\inf(A + B) = \inf A + \inf B$ and using part (b) $\inf(-A) = -\sup A$. Hence $\inf(A B) = \inf(A + (-B)) = \inf A + \inf(-B) = \inf A \sup B$.

2.2 Archimedean Property

Theorem 2.1: [Archimedean Property]

If $x \in \mathbb{R}$, then there exist $n_x \in \mathbb{N}$ such that $x < n_x$.

Proof: Suppose that $n \leq x$, for all $n \in \mathbb{N}$. Hence \mathbb{N} is bounded above by x. Then by the Completeness Axiom $\sup \mathbb{N}$ is a real number. Let $u = \sup \mathbb{N}$. Now, u - 1 is not an upper bound for \mathbb{N} , then there exist $m \in \mathbb{N}$ such that u - 1 < m and hence u < m + 1. Contradiction, since $u = \sup \mathbb{N}$ and $m + 1 \in \mathbb{N}$. There for for each $x \in \mathbb{R}$ there exist $n_x \in \mathbb{N}$ such that $x < n_x$.

Corollary 2.2:

- 1. If a > 0, there exist $n \in \mathbb{N}$ such that $\frac{1}{n} < a$.
- 2. If a > 0 and b > 0, there exist $n \in \mathbb{N}$ such that na > b.

Proof:

- 1. If a > 0, then $\frac{1}{a} > 0$ and hence by Archimedean Property, there exist $n \in \mathbb{N}$ such that $\frac{1}{a} < n$. Thus $\frac{1}{n} < a$.
- 2. If a > 0 and $b \in \mathbb{R}$, then $\frac{b}{a} \in \mathbb{R}$ and hence by Archimedean Property, there exist $n \in \mathbb{N}$ such that $\frac{b}{a} < n$. Thus b < na.

Example 2.3: Prove the following

1.
$$\sup\left\{\frac{1}{n}: n \in \mathbb{N}\right\} = 1$$
 and $\inf\left\{\frac{1}{n}: n \in \mathbb{N}\right\} = 0$.
2. $\sup\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\} = 1$ and $\inf\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\} = \frac{1}{2}$

Solution:

1. Let $A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$. Clearly that for all $n \in \mathbb{N}$, we have $n \ge 1$ and hence $\frac{1}{n} \le 1$. Thus 1 is an upper bound for A. Let $\epsilon > 0$ be given. Since $1 - \epsilon < 1 \in A$ then $\sup A = 1$. Clearly that $0 < \frac{1}{n}$, for all $n \in \mathbb{N}$. Hence 0 is a lower bound for A. Now, suppose $w = \inf A$, clearly $0 \le w$. Let $\epsilon > 0$ be given. Then there exist $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \epsilon$. Now, $0 \le w \le \frac{1}{n_0} < \epsilon$. Thus w = 0.

2. Let
$$B = \left\{\frac{n}{n+1} : n \in \mathbb{N}\right\}$$
. Clearly that for all $n \in \mathbb{N}$, we have $n < n+1$ and hence $\frac{n}{n+1} < 1$. Thus 1 is an upper bound for B . Let $\epsilon > 0$ be given. There exist $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \epsilon$ and hence $-\epsilon < -\frac{1}{n_0}$. Thus $1 - \epsilon < 1 - \frac{1}{n_0} = \frac{n_0 - 1}{n_0} \in B$. Thus $\sup B = 1$. Now, $1 \le n$, and $n+1 \le 2n$. Hence $\frac{1}{2} \le \frac{n}{n+1}$ for all $n \in \mathbb{N}$. Thus $\frac{1}{2}$ is a lower bound for B . For each $\epsilon > 0$, we have $\frac{1}{2} < \frac{1}{2} + \epsilon$. Then $\inf \left\{\frac{n}{n+1} : n \in \mathbb{N}\right\} = \frac{1}{2}$.

Lemma 2.4: Let $x \in \mathbb{R}$. Then there exist $n \in \mathbb{Z}$ such that $n \leq x < n + 1$.

Proof: By Archimedean Property, there exist $m \in \mathbb{N}$ such that |x| < m. Hence -m < x < m. The se $A_x = \{-m, -m+1, \dots, 0, 1, \dots, m-1, m\}$ is a finite set. The se $B_x = \{k : k \in A_x \text{ and } k \leq x\} \subset A_x$ is bounded above by x. Let $n = \sup B_x \in B_x$. Then $n \leq x$ and $n+1 \notin B_x$. Hence $n \leq x < n+1$.

2.3 The Existence of the Square Root

Theorem 2.2: [The Existence of the Square Root]

There exist a positive real number x such that $x^2 = 2$.

 $\begin{array}{ll} \textit{Proof:} \quad \text{Let } A = \{a \in \mathbb{R} : a \geq 0 \text{ and } a^2 \leq 2\}. \text{ The } A \text{ is nonempty subset of } \mathbb{R} \ (0,1 \in A.) \text{ Let } u > 2, \text{ then } u^2 > 4. \\ \text{Hence } u \notin A. \text{ Thus } a < 2 \text{ for all } a \in A. \text{ Thus } A \text{ is bounded above. Then } \sup A \in \mathbb{R}. \text{ Let } x = \sup A. \text{ Then } x \geq 1, \\ \text{because } 1 \in A. \text{ Let } \epsilon > 0 \text{ be given. Choose } n \in \mathbb{N} \text{ such that } \frac{4x}{n} < \epsilon \text{ and } \frac{1}{n} < x. \text{ Then } 0 < x - \frac{1}{n} < x < x + \frac{1}{n} \\ \text{and hence } (x - \frac{1}{n})^2 < x^2 < (x + \frac{1}{n})^2. \text{ Now, } x - \frac{1}{n} \text{ is not an upper bound for } A. \text{ Then there exist } a \in A \text{ such that } \\ x - \frac{1}{n} < a \text{ and hence } (x - \frac{1}{n})^2 < a^2 \leq 2. \text{ Also } x + \frac{1}{n} \notin A, \text{ hence } (x + \frac{1}{n})^2 > 2. \text{ Thus } (x - \frac{1}{n})^2 < 2 < (x + \frac{1}{n})^2. \text{ Now, } \\ \text{we have } (x - \frac{1}{n})^2 < x^2 < (x + \frac{1}{n})^2, \text{ and } -(x + \frac{1}{n})^2 < -2 < -(x - \frac{1}{n})^2. \\ \text{By adding the last two inequalities we have } \\ (x - \frac{1}{n})^2 - (x + \frac{1}{n})^2 - (x - \frac{1}{n})^2. \text{ Thus } (2x)(\frac{-2}{n}) < x^2 - 2 < (2x)(\frac{2}{n}). \\ \text{Therefore } -\frac{4x}{n} < x^2 - 2 < \frac{4x}{n}. \\ \text{Hence } |x^2 - 2| < \frac{4x}{n} < \epsilon. \\ \text{Since for each } \epsilon > 0 \text{ we have } |x^2 - 2| < \epsilon, \text{ then } x^2 - 2 = 0. \\ \text{Thus } x^2 = 2. \end{aligned}$

2.4 Density of Rational and Irrational Numbers in \mathbb{R}

Theorem 2.3: [Density of \mathbb{Q}]

If $a, b \in \mathbb{R}$ with a < b, then there exist a rational number $r \in \mathbb{Q}$ such that a < r < b.

Proof: Since a < b, then b - a > 0 and 1 > 0, using Archimedean Property, there exist $n \in \mathbb{N}$ such that n(b-a) > 1. Now, nb > na + 1 and since $na + 1 \in \mathbb{R}$, there exist $m \in \mathbb{Z}$ such that $m \le na + 1 < m + 1$. $m \le na + 1 < nb$ and na + 1 < m + 1, and hence na < m. Hence na < m < nb and therefore $a < \frac{m}{n} < b$. Let $r = \frac{m}{n} \in \mathbb{Q}$, then a < r < b.

The above theorem saying that between any two real numbers there is a rational number. Using this theorem we can prove that any real number can be approximated by a rational number. Another version of the above theorem is the following:

Theorem 2.4: [Approximation of \mathbb{R} by \mathbb{Q}]

Let $a \in \mathbb{R}$. For each $\epsilon > 0$ there exist $r_{\epsilon} \in \mathbb{Q}$ such that $|a - r_{\epsilon}| < \epsilon$.

Theorem 2.5: [Density of \mathbb{Q}^c]

If $a, b \in \mathbb{R}$ with a < b, then there exist a irrational number $z \in \mathbb{Q}^c$ such that a < z < b.

Proof: Since a < b, then $\sqrt{2} > 0$ then $a\sqrt{2} < b\sqrt{2}$. Using the Density Theorem of \mathbb{Q} there exist $r \in \mathbb{Q}$ such that $a\sqrt{2} < r < b\sqrt{2}$. Hence $a < r\sqrt{2} < b$. Let $z = r\sqrt{2} \in \mathbb{Q}^c$, then a < z < b.