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Definition 1.1: There are two operations on R addition and multiplication. These operations satisfy the

following properties:

(A1) a+ b = b+ a for all a, b ∈ R (commutative law for addition)

(A2) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R(associative law for addition)

(A3) there exists an element 0 ∈ R such that 0 + a = a+ 0 = a for all a ∈ R (existence of a zero element)

(A4) for all a ∈ R there exists an element −a ∈ R such that a+(−a) = (−a)+a = 0 (existence of negative elements )

(M1) ab = ba for all a, b ∈ R (commutative law for multiplication)

(M2) (ab)c = a(bc) for all a, b, c ∈ R(associative law for multiplication)

(M3) there exists an element 0 �= 1 ∈ R such that 1a = a1 = a for all a ∈ R (existence of a unit element)

(M4) for all 0 �= a ∈ R there exists an element
1

a
∈ R such that a

1

a
=

1

a
a = 1 (existence of reciprocals )

(D) a(b+ c) = ab+ ac and (b+ c)a = ba+ ca for all a, b, c ∈ R (distributive law of multiplication over addition )

Theorem 1.1: [uniqueness of units and inverses ]

(i) If z, a ∈ R with z + a = a, then z = 0.

(ii) If 0 �= b, u ∈ R with bu = b, then u = 1.

(iii) If a ∈ R, then a0 = 0.

(iv) If 0 �= a, b ∈ R with ab = 1, then b =
1

a
.

(v) If ab = 0, then either a = 0 or b = 0.

Proof:

(i)z = z + 0 = z + (a+ (−a)) = (z + a) + (−a) = a+ (−a) = 0.

(ii)u = u1 = u(b
1

b
) = (ub)

1

b
= b(

1

b
) = 1.

(iii)a0 + a = a0 + a1 = a(0 + 1) = a1 = a, then by (i) we have a0 = 0.

(iv)b = 1b = ((
1

a
)a)b = (

1

a
)(ab) = (

1

a
)1 = (

1

a
).

(v) suppose b �= 0, then a = a1 = a(b(
1

b
)) = (ab)(

1

b
) = 0(

1

b
) = 0.

�
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1.1 Subsets of the Real Numbers

• The set of natural numbers:

We denote it by N and N := {1, 2, 3, ...}. A natural number n is even if it has the form n = 2l for some l ∈ N. A

natural number n is odd if it has the form n = 2k + 1 for some k ∈ N.

• The set of integer numbers:

We denote it by Z and Z := {0,±1,±2,±3, ...}.

• The set of rational numbers:

We denote it by Q and Q :=
{ n

m
|n,m ∈ Z and m �= 0

}
.

Note that N ⊂ Z ⊂ Q ⊂ R.

• The set of irrational numbers: It may not look obvious, but there are some real numbers not rational

numbers. For example, if p is a prim number, then there is no rational number r such that r2 = p. We denote

the set of irrational numbers by Q
′
and Q

′
:= {x ∈ R|x /∈ Q}.

Theorem 1.2: [
√
p is not a rational number for any prim p.]

Let p is a prim number. Then there does not exist a rational number r such that r2 = p.

Proof: Suppose that there is n,m ∈ Z such that p =
( n

m

)2

and (n,m) = 1. Hence pm2 = n2 and p|n2. Since p is

a prim, then p|n. Thus n = pl for some l ∈ N. Therefore pm2 = n2 = p2l2 and hence m2 = pl2. Thus p|m2 and hence

p|m. Thus p|n and p|m. Contradiction since (n,m) = 1. Therefore there does not exist a rational number r such that

r2 = p.

�

1.2 The Order properties of R

Definition 1.2: There is a nonempty subset P of R, called the set of positive real numbers, that satisfies the

following:

• If a, b ∈ P, then a+ b ∈ P.

• If a, b ∈ P, then ab ∈ P.

• If a ∈ R, then exactly one of the following holds: a ∈ P, a = 0, −a ∈ P

Note 1.1: Note that R = P ∪ {0} ∪ {−a : a ∈ P}.
If a ∈ P we say a is positive and write a > 0.

If a ∈ P ∪ {0} we say a is nonnegative and write a ≥ 0.

If −a ∈ P we say a is negative and write a < 0.

If −a ∈ P ∪ {0} we say a is nonpositive and write a ≤ 0.

Definition 1.3: Let a, b ∈ R.

1. If a− b ∈ P, then we write a > b or b < a.

2. If a− b ∈ P ∪ {0}, then we write a ≥ b or b ≤ a.
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Theorem 1.3: [Rules of Inequalities]

Let a, b, c ∈ R.

(a) If a > b and b > c, then a > c.

(b) If a > b, then a+ c > b+ c.

(c) If a > b and c > 0, then ac > bc.

(d) If a > b and c < 0, then ac < bc.

Proof:

(a) If a > b and b > c, then a− b, b− c ∈ P and a− c = (a− b) + (b− c) ∈ P. Thus a > c.

(b) If a > b, then a− b ∈ P. Now, (a+ c)− (b + c) = a− b ∈ P, thus a+ c > b+ c.

(c) If a > b and c > 0, then a− b, c ∈ P. Hence ac− bc = (a− b)c ∈ P. Thus ac > bc.

(d) If a > b and c < 0, then a− b ∈ P and −c ∈ P. Now, bc− ac = (a− b)(−c) ∈ P. Thus ac < bc.

�

Theorem 1.4: [Positivity]

Let a, b ∈ R.

(i) a2 ≥ 0 for all a ∈ R.

(ii) 1 > 0.

(iii) If n ∈ N, then n > 0.

(iv) If a > 0, then
1

a
> 0.

(v) If 0 < a < b, then 0 <
1

b
<

1

a
.

(vi) If a > 0, then 0 <
a

2
< a.

Proof:

(i) If a ≥ 0, then a.a > a.0. Hence a2 > 0. If a < 0, then −a > 0. Hence −a.− a > −a.0, so a2 > 0.

(ii) we know by part (i) that 12 > 0. Now 1 = 12 > 0.

(iii) Using mathematical induction: by (ii) 1 > 0. Now, suppose that k ∈ N and k > 0. Hence k, 1 ∈ P and thus

k + 1 = (k) + (1) ∈ P. Therefore k + 1 > 0. Thus for all n ∈ N, n > 0.

(iv) Suppose
1

a
≤ 0. Then a.

1

a
≤ a.0. Hence 1 ≤ 0. contradiction. Thus

1

a
> 0.

(v) Since 0 < a < b, then
1

a
> 0,

1

b
> 0, and b − a > 0. Now,

1

a
− 1

b
=

b− a

ab
=

1

a
(b − a)

1

b
> 0. Hence 0 <

1

b
<

1

a
.

(vi) Since 0 < 1 < 2, then by (v) we have 0 <
1

2
< 1. Since a > 0, then a.0 < a.

1

2
< a.1 and hence 0 <

a

2
< a.
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�

Theorem 1.5: []

Let a ∈ R. If 0 ≤ a < ε for all ε > 0, then a = 0.

Proof: Suppose that a > 0. Choose ε0 =
a

2
> 0. Since 0 <

a

2
< a, then 0 < ε0 < a. Contradiction. Thus a = 0.

�

Theorem 1.6: []

Let a, b ∈ R. ab > 0 ⇔ a > 0, and b > 0 or a < 0, and b < 0.

Proof: (⇒) Suppose that ab > 0. Then a �= 0 and b �= 0. If a > 0, then
1

a
> 0 and hence b =

1

a
ab > 0. If a < 0, then

1

a
< 0 and hence b =

1

a
ab < 0.

(⇐) Suppose a > 0, and b > 0 or a < 0, and b < 0. If a > 0, and b > 0, then ab > 0. If a < 0, and b < 0, then ab > 0.

�

Theorem 1.7: []

Let a, b ∈ R.

(i) 0 < a ≤ b ⇔ √
a ≤

√
b

(ii) If a > 0, b > 0, then
√
ab ≤ a+ b

2

Proof:

(i)(⇒) Suppose a ≤ b ⇒ 0 ≤ b− a = (
√
b−√

a)(
√
b+

√
a) and since

√
b+

√
a ≥ 0 ⇒

√
b−√

a ≥ 0 ⇒ √
a ≤

√
b.

(⇐) Suppose
√
a ≤

√
b ⇒

√
b−√

a ≥ 0 and
√
b +

√
a ≥ 0 ⇒ b− a = (

√
b−√

a)(
√
b+

√
a) ≥ 0

(ii)0 ≤ (
√
a−

√
b)2 = a− 2

√
ab+ b ⇒ 2

√
ab ≤ a+ b ⇒

√
ab ≤ a+ b

2
.

�

1.3 Absolute Value

Definition 1.4: The absolute value of a real number a, denoted by|a|, is defined by |a| =
⎧⎨
⎩

a, if a ≥ 0;

−a, if a < 0.

Theorem 1.8: [Absolute Value Properties]

1. |ab| = |a||b| for all a ∈ R.

2. |a|2 = a2 for all a ∈ R.

3. If c ≥ 0, then |a| ≤ c ⇔ −c ≤ a ≤ c.

4. − |a| ≤ a ≤ |a| for all a ∈ R.

Proof:

1. We prove this with cases

• Case I: If a = 0 or b = 0, then ab = 0 and hence |ab| = 0 = |a||b|.
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• Case II: If a > 0 and b > 0, then ab > 0. Thus |ab| = ab, |a| = a, |b| = b.

Therefore |ab| = ab = |a||b|.

• Case III: If a > 0 and b < 0, then ab < 0. Thus |ab| = −ab, |a| = a, |b| = −b.

Therefore |ab| = −ab = a(−b) = |a||b|.

• Case IV: If a < 0 and b > 0, then ab < 0. Thus |ab| = −ab, |a| = −a, |b| = b.

Therefore |ab| = −ab = (−a)b = |a||b|.

• Case V: If a < 0 and b < 0, then ab > 0. Thus |ab| = ab, |a| = −a, |b| = −b.

Therefore |ab| = ab = (−a)(−b) = |a||b|.

2. Since a2 ≥ 0, then a2 = |a2| = |aa| = |a||a| = |a|2.

3. (⇒) Suppose |a| ≤ c. If a = 0, then −c ≤ 0 ≤ c.

If a > 0, then a = |a| ≤ c and −a < 0 < a = |a| ≤ c. So −c ≤ a. Thus −c ≤ a ≤ c.

If a < 0, then −a = |a| ≤ c. So, −c ≤ a and a < 0 < −a = |a| ≤ c. So a ≤ c. Thus −c ≤ a ≤ c.

(⇐) Suppose −c ≤ a ≤ c. Then a ≤ c and −c ≤ a ⇒ −a ≤ c. Thus a ≤ c and −a ≤ c. Hence |a| ≤ c.

4. Using (iii) with c = |a|, we have −|a| ≤ a ≤ |a|.

�

Theorem 1.9: [Triangle Inequality]

If a, b ∈ R, then |a+ b| ≤ |a|+ |b|.
Proof: We have−|a| ≤ a ≤ |a| and−|b| ≤ b ≤ |b|. By adding the two inequalites we get −(|a|+|b|) ≤ a+b ≤ (|a|+|b|).
Hence by the brevious theorem |a+ b| ≤ |a|+ |b|.

�

Theorem 1.10: []

If a, b ∈ R, then ||a| − |b|| ≤ |a− b|.
Proof: Since a = a− b+ b, then |a| = |a− b+ b| ≤ |a− b|+ |b|, and hence |a| − |b| ≤ |a− b|. Also, since b = b− a+ a,

then |b| = |b−a+a| ≤ |b−a|+ |a|, and hence |b|− |a| ≤ |b−a| = |a− b|. Now, |b|− |a| ≤ |a− b| ⇔ −|a− b| ≤ −|b|+ |a|
and hence −|a− b| ≤ |a| − |b|. Also we have |a| − |b| ≤ |a− b|. Thus −|a− b| ≤ |a| − |b| ≤ |a| − |b| ≤ |a− b|. Therefore
||a| − |b|| ≤ |a− b|.

�
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