The Algebraic and Order Properties of \mathbb{R}

Dr.Hamed Al-Sulami

September 24, 2012

Definition 1.1: There are two operations on \mathbb{R} addition and multiplication. These operations satisfy the following properties:
(A1) $a+b=b+a$ for all $a, b \in \mathbb{R}$ (commutative law for addition)
(A2) $(a+b)+c=a+(b+c)$ for all $a, b, c \in \mathbb{R}($ associative law for addition $)$
(A3) there exists an element $0 \in \mathbb{R}$ such that $0+a=a+0=a$ for all $a \in \mathbb{R}$ (existence of a zero element)
(A4) for all $a \in \mathbb{R}$ there exists an element $-a \in \mathbb{R}$ such that $a+(-a)=(-a)+a=0$ (existence of negative elements)
(M1) $a b=b a$ for all $a, b \in \mathbb{R}$ (commutative law for multiplication)
(M2) $(a b) c=a(b c)$ for all $a, b, c \in \mathbb{R}$ (associative law for multiplication)
(M3) there exists an element $0 \neq 1 \in \mathbb{R}$ such that $1 a=a 1=a$ for all $a \in \mathbb{R}$ (existence of a unit element)
(M4) for all $0 \neq a \in \mathbb{R}$ there exists an element $\frac{1}{a} \in \mathbb{R}$ such that $a \frac{1}{a}=\frac{1}{a} a=1$ (existence of reciprocals)
(D) $a(b+c)=a b+a c$ and $(b+c) a=b a+c a$ for all $a, b, c \in \mathbb{R}$ (distributive law of multiplication over addition)

Theorem 1.1: [uniqueness of units and inverses]

(i) If $z, a \in \mathbb{R}$ with $z+a=a$, then $z=0$.
(ii) If $0 \neq b, u \in \mathbb{R}$ with $b u=b$, then $u=1$.
(iii) If $a \in \mathbb{R}$, then $a 0=0$.
(iv) If $0 \neq a, b \in \mathbb{R}$ with $a b=1$, then $b=\frac{1}{a}$.
(v) If $a b=0$, then either $a=0$ or $b=0$.

Proof:
$(i) z=z+0=z+(a+(-a))=(z+a)+(-a)=a+(-a)=0$.
(ii) $u=u 1=u\left(b \frac{1}{b}\right)=(u b) \frac{1}{b}=b\left(\frac{1}{b}\right)=1$.
(iii) $a 0+a=a 0+a 1=a(0+1)=a 1=a$, then by (i) we have $a 0=0$.
$(i v) b=1 b=\left(\left(\frac{1}{a}\right) a\right) b=\left(\frac{1}{a}\right)(a b)=\left(\frac{1}{a}\right) 1=\left(\frac{1}{a}\right)$.
(v) suppose $b \neq 0$, then $a=a 1=a\left(b\left(\frac{1}{b}\right)\right)=(a b)\left(\frac{1}{b}\right)=0\left(\frac{1}{b}\right)=0$.

1.1 Subsets of the Real Numbers

- The set of natural numbers:

We denote it by \mathbb{N} and $\mathbb{N}:=\{1,2,3, \ldots\}$. A natural number n is even if it has the form $n=2 l$ for some $l \in \mathbb{N}$. A natural number n is odd if it has the form $n=2 k+1$ for some $k \in \mathbb{N}$.

- The set of integer numbers:

We denote it by \mathbb{Z} and $\mathbb{Z}:=\{0, \pm 1, \pm 2, \pm 3, \ldots\}$.

- The set of rational numbers:

We denote it by \mathbb{Q} and $\mathbb{Q}:=\left\{\left.\frac{n}{m} \right\rvert\, n, m \in \mathbb{Z}\right.$ and $\left.m \neq 0\right\}$.
Note that $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

- The set of irrational numbers: It may not look obvious, but there are some real numbers not rational numbers. For example, if p is a prim number, then there is no rational number r such that $r^{2}=p$. We denote the set of irrational numbers by \mathbb{Q}^{\prime} and $\mathbb{Q}^{\prime}:=\{x \in \mathbb{R} \mid x \notin \mathbb{Q}\}$.

Theorem 1.2: [\sqrt{p} is not a rational number for any prim p.]

Let p is a prim number. Then there does not exist a rational number r such that $r^{2}=p$.
Proof: Suppose that there is $n, m \in \mathbb{Z}$ such that $p=\left(\frac{n}{m}\right)^{2}$ and $(n, m)=1$. Hence $p m^{2}=n^{2}$ and $p \mid n^{2}$. Since p is a prim, then $p \mid n$. Thus $n=p l$ for some $l \in \mathbb{N}$. Therefore $p m^{2}=n^{2}=p^{2} l^{2}$ and hence $m^{2}=p l^{2}$. Thus $p \mid m^{2}$ and hence $p \mid m$. Thus $p \mid n$ and $p \mid m$. Contradiction since $(n, m)=1$. Therefore there does not exist a rational number r such that $r^{2}=p$.

1.2 The Order properties of \mathbb{R}

Definition 1.2: There is a nonempty subset \mathbb{P} of \mathbb{R}, called the set of positive real numbers, that satisfies the following:

- If $a, b \in \mathbb{P}$, then $a+b \in \mathbb{P}$.
- If $a, b \in \mathbb{P}$, then $a b \in \mathbb{P}$.
- If $a \in \mathbb{R}$, then exactly one of the following holds: $a \in \mathbb{P}, a=0,-a \in \mathbb{P}$

Note 1.1: Note that $\mathbb{R}=\mathbb{P} \cup\{0\} \cup\{-a: a \in \mathbb{P}\}$.

If $a \in \mathbb{P}$ we say a is positive and write $a>0$.
If $a \in \mathbb{P} \cup\{0\}$ we say a is nonnegative and write $a \geq 0$.
If $-a \in \mathbb{P}$ we say a is negative and write $a<0$.
If $-a \in \mathbb{P} \cup\{0\}$ we say a is nonpositive and write $a \leq 0$.
Definition 1.3: Let $a, b \in \mathbb{R}$.

1. If $a-b \in \mathbb{P}$, then we write $a>b$ or $b<a$.
2. If $a-b \in \mathbb{P} \cup\{0\}$, then we write $a \geq b$ or $b \leq a$.

Theorem 1.3: [Rules of Inequalities]

Let $a, b, c \in \mathbb{R}$.
(a) If $a>b$ and $b>c$, then $a>c$.
(b) If $a>b$, then $a+c>b+c$.
(c) If $a>b$ and $c>0$, then $a c>b c$.
(d) If $a>b$ and $c<0$, then $a c<b c$.

Proof:

(a) If $a>b$ and $b>c$, then $a-b, b-c \in \mathbb{P}$ and $a-c=(a-b)+(b-c) \in \mathbb{P}$. Thus $a>c$.
(b) If $a>b$, then $a-b \in \mathbb{P}$. Now, $(a+c)-(b+c)=a-b \in \mathbb{P}$, thus $a+c>b+c$.
(c) If $a>b$ and $c>0$, then $a-b, c \in \mathbb{P}$. Hence $a c-b c=(a-b) c \in \mathbb{P}$. Thus $a c>b c$.
(d) If $a>b$ and $c<0$, then $a-b \in \mathbb{P}$ and $-c \in \mathbb{P}$. Now, $b c-a c=(a-b)(-c) \in \mathbb{P}$. Thus $a c<b c$.

Theorem 1.4: [Positivity]

Let $a, b \in \mathbb{R}$.
(i) $a^{2} \geq 0$ for all $a \in \mathbb{R}$.
(ii) $1>0$.
(iii) If $n \in \mathbb{N}$, then $n>0$.
(iv) If $a>0$, then $\frac{1}{a}>0$.
(v) If $0<a<b$, then $0<\frac{1}{b}<\frac{1}{a}$.
(vi) If $a>0$, then $0<\frac{a}{2}<a$.

Proof:

(i) If $a \geq 0$, then $a . a>a .0$. Hence $a^{2}>0$. If $a<0$, then $-a>0$. Hence $-a .-a>-a .0$, so $a^{2}>0$.
(ii) we know by part (i) that $1^{2}>0$. Now $1=1^{2}>0$.
(iii) Using mathematical induction: by (ii) $1>0$. Now, suppose that $k \in \mathbb{N}$ and $k>0$. Hence $k, 1 \in \mathbb{P}$ and thus $k+1=(k)+(1) \in \mathbb{P}$. Therefore $k+1>0$. Thus for all $n \in \mathbb{N}, n>0$.
(iv) Suppose $\frac{1}{a} \leq 0$. Then $a \cdot \frac{1}{a} \leq a .0$. Hence $1 \leq 0$. contradiction. Thus $\frac{1}{a}>0$.
(v) Since $0<a<b$, then $\frac{1}{a}>0, \frac{1}{b}>0$, and $b-a>0$. Now, $\frac{1}{a}-\frac{1}{b}=\frac{b-a}{a b}=\frac{1}{a}(b-a) \frac{1}{b}>0$. Hence $0<\frac{1}{b}<\frac{1}{a}$.
(vi) Since $0<1<2$, then by (v) we have $0<\frac{1}{2}<1$. Since $a>0$, then $a .0<a \cdot \frac{1}{2}<a .1$ and hence $0<\frac{a}{2}<a$.

Theorem 1.5: []

Let $a \in \mathbb{R}$. If $0 \leq a<\epsilon$ for all $\epsilon>0$, then $a=0$.
Proof: Suppose that $a>0$. Choose $\epsilon_{0}=\frac{a}{2}>0$. Since $0<\frac{a}{2}<a$, then $0<\epsilon_{0}<a$. Contradiction. Thus $a=0$.

Theorem 1.6: []

Let $a, b \in \mathbb{R} . a b>0 \Leftrightarrow a>0$, and $b>0$ or $a<0$, and $b<0$.
Proof: (\Rightarrow) Suppose that $a b>0$. Then $a \neq 0$ and $b \neq 0$. If $a>0$, then $\frac{1}{a}>0$ and hence $b=\frac{1}{a} a b>0$. If $a<0$, then $\frac{1}{a}<0$ and hence $b=\frac{1}{a} a b<0$.
(\Leftarrow) Suppose $a>0$, and $b>0$ or $a<0$, and $b<0$. If $a>0$, and $b>0$, then $a b>0$. If $a<0$, and $b<0$, then $a b>0$.

Theorem 1.7: []

Let $a, b \in \mathbb{R}$.
(i) $0<a \leq b \Leftrightarrow \sqrt{a} \leq \sqrt{b}$
(ii) If $a>0, b>0$, then $\sqrt{a b} \leq \frac{a+b}{2}$

Proof:

$(i)(\Rightarrow)$ Suppose $a \leq b \Rightarrow 0 \leq b-a=(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a})$ and since $\sqrt{b}+\sqrt{a} \geq 0 \Rightarrow \sqrt{b}-\sqrt{a} \geq 0 \Rightarrow \sqrt{a} \leq \sqrt{b}$.
(\Leftarrow) Suppose $\sqrt{a} \leq \sqrt{b} \Rightarrow \sqrt{b}-\sqrt{a} \geq 0$ and $\sqrt{b}+\sqrt{a} \geq 0 \Rightarrow b-a=(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a}) \geq 0$
$\left(\right.$ ii) $0 \leq(\sqrt{a}-\sqrt{b})^{2}=a-2 \sqrt{a b}+b \Rightarrow 2 \sqrt{a b} \leq a+b \Rightarrow \sqrt{a b} \leq \frac{a+b}{2}$.

1.3 Absolute Value

Definition 1.4: The absolute value of a real number a, denoted by $|a|$, is defined by $|a|= \begin{cases}a, & \text { if } a \geq 0 ; \\ -a, & \text { if } a<0 .\end{cases}$

Theorem 1.8: [Absolute Value Properties]

1. $|a b|=|a||b|$ for all $a \in \mathbb{R}$.
2. $|a|^{2}=a^{2}$ for all $a \in \mathbb{R}$.
3. If $c \geq 0$, then $|a| \leq c \Leftrightarrow-c \leq a \leq c$.
4. $\quad-|a| \leq a \leq|a|$ for all $a \in \mathbb{R}$.

Proof:

1. We prove this with cases

- Case I: If $a=0$ or $b=0$, then $a b=0$ and hence $|a b|=0=|a||b|$.
- Case II: If $a>0$ and $b>0$, then $a b>0$. Thus $|a b|=a b,|a|=a,|b|=b$.

Therefore $|a b|=a b=|a||b|$.

- Case III: If $a>0$ and $b<0$, then $a b<0$. Thus $|a b|=-a b,|a|=a,|b|=-b$.

Therefore $|a b|=-a b=a(-b)=|a||b|$.

- Case IV: If $a<0$ and $b>0$, then $a b<0$. Thus $|a b|=-a b,|a|=-a,|b|=b$.

Therefore $|a b|=-a b=(-a) b=|a||b|$.

- Case V: If $a<0$ and $b<0$, then $a b>0$. Thus $|a b|=a b,|a|=-a,|b|=-b$.

Therefore $|a b|=a b=(-a)(-b)=|a||b|$.
2. Since $a^{2} \geq 0$, then $a^{2}=\left|a^{2}\right|=|a a|=|a||a|=|a|^{2}$.
3. (\Rightarrow) Suppose $|a| \leq c$. If $a=0$, then $-c \leq 0 \leq c$.

If $a>0$, then $a=|a| \leq c$ and $-a<0<a=|a| \leq c$. So $-c \leq a$. Thus $-c \leq a \leq c$.
If $a<0$, then $-a=|a| \leq c$. So, $-c \leq a$ and $a<0<-a=|a| \leq c$. So $a \leq c$. Thus $-c \leq a \leq c$.
(\Leftarrow) Suppose $-c \leq a \leq c$. Then $a \leq c$ and $-c \leq a \Rightarrow-a \leq c$. Thus $a \leq c$ and $-a \leq c$. Hence $|a| \leq c$.
4. Using (iii) with $c=|a|$, we have $-|a| \leq a \leq|a|$.

Theorem 1.9: [Triangle Inequality]

If $a, b \in \mathbb{R}$, then $|a+b| \leq|a|+|b|$.
Proof: We have $-|a| \leq a \leq|a|$ and $-|b| \leq b \leq|b|$. By adding the two inequalites we get $-(|a|+|b|) \leq a+b \leq(|a|+|b|)$. Hence by the brevious theorem $|a+b| \leq|a|+|b|$.

Theorem 1.10: []

If $a, b \in \mathbb{R}$, then $\| a|-|b|| \leq|a-b|$.
Proof: Since $a=a-b+b$, then $|a|=|a-b+b| \leq|a-b|+|b|$, and hence $|a|-|b| \leq|a-b|$. Also, since $b=b-a+a$, then $|b|=|b-a+a| \leq|b-a|+|a|$, and hence $|b|-|a| \leq|b-a|=|a-b|$. Now, $|b|-|a| \leq|a-b| \Leftrightarrow-|a-b| \leq-|b|+|a|$ and hence $-|a-b| \leq|a|-|b|$. Also we have $|a|-|b| \leq|a-b|$. Thus $-|a-b| \leq|a|-|b| \leq|a|-|b| \leq|a-b|$. Therefore $||a|-|b|| \leq|a-b|$.

