

The Algebraic and Order Properties of $\mathbb R$

Dr.Hamed Al-Sulami

September 24, 2012

Definition 1.1: There are two operations on \mathbb{R} addition and multiplication. These operations satisfy the following properties:

- (A1) a + b = b + a for all $a, b \in \mathbb{R}$ (commutative law for addition)
- (A2) (a+b)+c = a + (b+c) for all $a, b, c \in \mathbb{R}(associative \ law \ for \ addition)$
- (A3) there exists an element $0 \in \mathbb{R}$ such that 0 + a = a + 0 = a for all $a \in \mathbb{R}$ (existence of a zero element)
- (A4) for all $a \in \mathbb{R}$ there exists an element $-a \in \mathbb{R}$ such that a + (-a) = (-a) + a = 0 (existence of negative elements)
- (M1) ab = ba for all $a, b \in \mathbb{R}$ (commutative law for multiplication)
- (M2) (ab)c = a(bc) for all $a, b, c \in \mathbb{R}(associative \ law \ for \ multiplication)$
- (M3) there exists an element $0 \neq 1 \in \mathbb{R}$ such that 1a = a1 = a for all $a \in \mathbb{R}$ (existence of a unit element)
- (M4) for all $0 \neq a \in \mathbb{R}$ there exists an element $\frac{1}{a} \in \mathbb{R}$ such that $a\frac{1}{a} = \frac{1}{a}a = 1$ (existence of reciprocals)
 - (D) a(b+c) = ab + ac and (b+c)a = ba + ca for all $a, b, c \in \mathbb{R}$ (distributive law of multiplication over addition)

Theorem 1.1: [uniqueness of units and inverses]

- (i) If $z, a \in \mathbb{R}$ with z + a = a, then z = 0.
- (ii) If $0 \neq b, u \in \mathbb{R}$ with bu = b, then u = 1.
- (iii) If $a \in \mathbb{R}$, then a0 = 0.
- (iv) If $0 \neq a, b \in \mathbb{R}$ with ab = 1, then $b = \frac{1}{a}$.
- (v) If ab = 0, then either a = 0 or b = 0.

Proof:

$$\begin{aligned} (i)z &= z + 0 = z + (a + (-a)) = (z + a) + (-a) = a + (-a) = 0. \\ (ii)u &= u1 = u(b\frac{1}{b}) = (ub)\frac{1}{b} = b(\frac{1}{b}) = 1. \\ (iii)a0 + a &= a0 + a1 = a(0 + 1) = a1 = a, \text{ then by } (i) \text{ we have } a0 = 0. \\ (iv)b &= 1b = ((\frac{1}{a})a)b = (\frac{1}{a})(ab) = (\frac{1}{a})1 = (\frac{1}{a}). \\ (v) \text{ suppose } b \neq 0, \text{ then } a = a1 = a(b(\frac{1}{b})) = (ab)(\frac{1}{b}) = 0(\frac{1}{b}) = 0. \end{aligned}$$

1.1 Subsets of the Real Numbers

• The set of natural numbers:

We denote it by \mathbb{N} and $\mathbb{N} := \{1, 2, 3, ...\}$. A natural number n is even if it has the form n = 2l for some $l \in \mathbb{N}$. A natural number n is odd if it has the form n = 2k + 1 for some $k \in \mathbb{N}$.

• The set of integer numbers:

We denote it by \mathbb{Z} and $\mathbb{Z} := \{0, \pm 1, \pm 2, \pm 3, ...\}.$

- The set of rational numbers: We denote it by \mathbb{Q} and $\mathbb{Q} := \left\{ \frac{n}{m} | n, m \in \mathbb{Z} \text{ and } m \neq 0 \right\}$. Note that $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.
- The set of irrational numbers: It may not look obvious, but there are some real numbers not rational numbers. For example, if p is a prim number, then there is no rational number r such that r² = p. We denote the set of irrational numbers by Q['] and Q['] := {x ∈ ℝ|x ∉ Q}.

Theorem 1.2: $[\sqrt{p} \text{ is not a rational number for any prim } p.]$

Let p is a prim number. Then there does not exist a rational number r such that $r^2 = p$. **Proof:** Suppose that there is $n, m \in \mathbb{Z}$ such that $p = \left(\frac{n}{m}\right)^2$ and (n, m) = 1. Hence $pm^2 = n^2$ and $p|n^2$. Since p is a prim, then p|n. Thus n = pl for some $l \in \mathbb{N}$. Therefore $pm^2 = n^2 = p^2l^2$ and hence $m^2 = pl^2$. Thus $p|m^2$ and hence p|m. Thus p|n and p|m. Contradiction since (n, m) = 1. Therefore there does not exist a rational number r such that $r^2 = p$.

1.2 The Order properties of \mathbb{R}

Definition 1.2: There is a nonempty subset \mathbb{P} of \mathbb{R} , called the set of **positive real numbers**, that satisfies the following:

- If $a, b \in \mathbb{P}$, then $a + b \in \mathbb{P}$.
- If $a, b \in \mathbb{P}$, then $ab \in \mathbb{P}$.
- If $a \in \mathbb{R}$, then exactly one of the following holds: $a \in \mathbb{P}$, $a = 0, -a \in \mathbb{P}$

Note 1.1: Note that $\mathbb{R} = \mathbb{P} \cup \{0\} \cup \{-a : a \in \mathbb{P}\}.$

If $a \in \mathbb{P}$ we say a is positive and write a > 0. If $a \in \mathbb{P} \cup \{0\}$ we say a is nonnegative and write $a \ge 0$. If $-a \in \mathbb{P}$ we say a is negative and write a < 0. If $-a \in \mathbb{P} \cup \{0\}$ we say a is nonpositive and write $a \le 0$.

Definition 1.3: Let $a, b \in \mathbb{R}$.

- 1. If $a b \in \mathbb{P}$, then we write a > b or b < a.
- 2. If $a b \in \mathbb{P} \cup \{0\}$, then we write $a \ge b$ or $b \le a$.

Theorem 1.3: [Rules of Inequalities]

Let $a, b, c \in \mathbb{R}$.

- (a) If a > b and b > c, then a > c.
- (b) If a > b, then a + c > b + c.
- (c) If a > b and c > 0, then ac > bc.
- (d) If a > b and c < 0, then ac < bc.

Proof:

- (a) If a > b and b > c, then $a b, b c \in \mathbb{P}$ and $a c = (a b) + (b c) \in \mathbb{P}$. Thus a > c.
- (b) If a > b, then $a b \in \mathbb{P}$. Now, $(a + c) (b + c) = a b \in \mathbb{P}$, thus a + c > b + c.
- (c) If a > b and c > 0, then $a b, c \in \mathbb{P}$. Hence $ac bc = (a b)c \in \mathbb{P}$. Thus ac > bc.
- (d) If a > b and c < 0, then $a b \in \mathbb{P}$ and $-c \in \mathbb{P}$. Now, $bc ac = (a b)(-c) \in \mathbb{P}$. Thus ac < bc.

Theorem 1.4: [Positivity]

Let $a, b \in \mathbb{R}$.

- (i) $a^2 \ge 0$ for all $a \in \mathbb{R}$.
- (ii) 1 > 0.
- (iii) If $n \in \mathbb{N}$, then n > 0.
- (iv) If a > 0, then $\frac{1}{a} > 0$.
- (v) If 0 < a < b, then $0 < \frac{1}{b} < \frac{1}{a}$.
- (vi) If a > 0, then $0 < \frac{a}{2} < a$.

Proof:

- (i) If $a \ge 0$, then a.a > a.0. Hence $a^2 > 0$. If a < 0, then -a > 0. Hence -a. -a > -a.0, so $a^2 > 0$.
- (ii) we know by part (i) that $1^2 > 0$. Now $1 = 1^2 > 0$.
- (iii) Using mathematical induction: by (ii) 1 > 0. Now, suppose that $k \in \mathbb{N}$ and k > 0. Hence $k, 1 \in \mathbb{P}$ and thus $k+1 = (k) + (1) \in \mathbb{P}$. Therefore k+1 > 0. Thus for all $n \in \mathbb{N}$, n > 0.
- (iv) Suppose $\frac{1}{a} \le 0$. Then $a \cdot \frac{1}{a} \le a \cdot 0$. Hence $1 \le 0$. contradiction. Thus $\frac{1}{a} > 0$.
- (v) Since 0 < a < b, then $\frac{1}{a} > 0$, $\frac{1}{b} > 0$, and b a > 0. Now, $\frac{1}{a} \frac{1}{b} = \frac{b a}{ab} = \frac{1}{a}(b a)\frac{1}{b} > 0$. Hence $0 < \frac{1}{b} < \frac{1}{a}$.
- (vi) Since 0 < 1 < 2, then by (v) we have $0 < \frac{1}{2} < 1$. Since a > 0, then $a \cdot 0 < a \cdot \frac{1}{2} < a \cdot 1$ and hence $0 < \frac{a}{2} < a$.

Theorem 1.5: []

Let $a \in \mathbb{R}$. If $0 \le a < \epsilon$ for all $\epsilon > 0$, then a = 0.

Proof: Suppose that a > 0. Choose $\epsilon_0 = \frac{a}{2} > 0$. Since $0 < \frac{a}{2} < a$, then $0 < \epsilon_0 < a$. Contradiction. Thus a = 0.

Theorem 1.6: []

Let $a, b \in \mathbb{R}$. $ab > 0 \Leftrightarrow a > 0$, and b > 0 or a < 0, and b < 0. **Proof:** (\Rightarrow) Suppose that ab > 0. Then $a \neq 0$ and $b \neq 0$. If a > 0, then $\frac{1}{a} > 0$ and hence $b = \frac{1}{a}ab > 0$. If a < 0, then $\frac{1}{a} < 0$ and hence $b = \frac{1}{a}ab < 0$. (\Leftarrow) Suppose a > 0, and b > 0 or a < 0, and b < 0. If a > 0, and b > 0, then ab > 0. If a < 0, and b < 0, then ab > 0.

Theorem 1.7: []

Let $a, b \in \mathbb{R}$.

(i)
$$0 < a \le b \Leftrightarrow \sqrt{a} \le \sqrt{b}$$

(ii) If $a > 0, b > 0$, then $\sqrt{ab} \le \frac{a+b}{2}$

Proof:

$$\begin{aligned} (i)(\Rightarrow) \text{ Suppose } a &\leq b \Rightarrow 0 \leq b - a = (\sqrt{b} - \sqrt{a})(\sqrt{b} + \sqrt{a}) \text{ and since } \sqrt{b} + \sqrt{a} \geq 0 \Rightarrow \sqrt{b} - \sqrt{a} \geq 0 \Rightarrow \sqrt{a} \leq \sqrt{b}. \\ (\Leftarrow) \text{ Suppose } \sqrt{a} &\leq \sqrt{b} \Rightarrow \sqrt{b} - \sqrt{a} \geq 0 \text{ and } \sqrt{b} + \sqrt{a} \geq 0 \Rightarrow b - a = (\sqrt{b} - \sqrt{a})(\sqrt{b} + \sqrt{a}) \geq 0 \\ (ii)0 &\leq (\sqrt{a} - \sqrt{b})^2 = a - 2\sqrt{ab} + b \Rightarrow 2\sqrt{ab} \leq a + b \Rightarrow \sqrt{ab} \leq \frac{a + b}{2}. \end{aligned}$$

1.3 Absolute Value

Definition 1.4: The absolute value of a real number a, denoted by |a|, is defined by $|a| = \begin{cases} a, & \text{if } a \ge 0; \\ -a, & \text{if } a < 0. \end{cases}$

Theorem 1.8: [Absolute Value Properties]

- |ab| = |a||b| for all a ∈ ℝ.
 |a|² = a² for all a ∈ ℝ.
 If c ≥ 0, then |a| ≤ c ⇔ -c ≤ a ≤ c.
- 4. $-|a| \le a \le |a|$ for all $a \in \mathbb{R}$.

Proof:

- 1. We prove this with cases
 - Case I: If a = 0 or b = 0, then ab = 0 and hence |ab| = 0 = |a||b|.

- Case II: If a > 0 and b > 0, then ab > 0. Thus |ab| = ab, |a| = a, |b| = b. Therefore |ab| = ab = |a||b|.
- Case III: If a > 0 and b < 0, then ab < 0. Thus |ab| = -ab, |a| = a, |b| = -b. Therefore |ab| = -ab = a(-b) = |a||b|.
- Case IV: If a < 0 and b > 0, then ab < 0. Thus |ab| = -ab, |a| = -a, |b| = b. Therefore |ab| = -ab = (-a)b = |a||b|.
- Case V: If a < 0 and b < 0, then ab > 0. Thus |ab| = ab, |a| = -a, |b| = -b. Therefore |ab| = ab = (-a)(-b) = |a||b|.
- 2. Since $a^2 \ge 0$, then $a^2 = |a^2| = |aa| = |a||a| = |a|^2$.
- 3. (\Rightarrow) Suppose $|a| \le c$. If a = 0, then $-c \le 0 \le c$. If a > 0, then $a = |a| \le c$ and $-a < 0 < a = |a| \le c$. So $-c \le a$. Thus $-c \le a \le c$. If a < 0, then $-a = |a| \le c$. So, $-c \le a$ and $a < 0 < -a = |a| \le c$. So $a \le c$. Thus $-c \le a \le c$. (\Leftarrow) Suppose $-c \le a \le c$. Then $a \le c$ and $-c \le a \Rightarrow -a \le c$. Thus $a \le c$ and $-a \le c$. Hence $|a| \le c$.
- 4. Using (iii) with c = |a|, we have $-|a| \le a \le |a|$.

Theorem 1.9: [Triangle Inequality]

If $a, b \in \mathbb{R}$, then $|a + b| \le |a| + |b|$.

Proof: We have $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$. By adding the two inequalities we get $-(|a|+|b|) \le a+b \le (|a|+|b|)$. Hence by the brevious theorem $|a+b| \le |a|+|b|$.

Theorem 1.10: []

If $a, b \in \mathbb{R}$, then $||a| - |b|| \le |a - b|$.

Proof: Since a = a - b + b, then $|a| = |a - b + b| \le |a - b| + |b|$, and hence $|a| - |b| \le |a - b|$. Also, since b = b - a + a, then $|b| = |b - a + a| \le |b - a| + |a|$, and hence $|b| - |a| \le |b - a| = |a - b|$. Now, $|b| - |a| \le |a - b| \Leftrightarrow -|a - b| \le -|b| + |a|$ and hence $-|a - b| \le |a| - |b|$. Also we have $|a| - |b| \le |a - b|$. Thus $-|a - b| \le |a| - |b| \le |a - b|$. Therefore $||a| - |b|| \le |a - b|$.