Subsequences and Bolzano-Weierstrass Theorem

Dr.Hamed Al-Sulami

December 1, 2012

4.1 Subsequences and Bolzano-Weierstrass Theorem

Definition 4.1: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be sequence of a real numbers and let $n_{1}<n_{2}<\cdots<n_{k}<n_{k+1}<\cdots$ be a strictly increasing sequence of natural numbers. Then the sequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ is called a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$.

Example 4.1:

(a) If $\left\{x_{n}\right\}=\left\{\frac{1}{n}\right\}$ and if $n_{k}=2 k$ then $\left\{x_{n_{k}}\right\}=\left\{\frac{1}{2 k}\right\}$ is a subsequence of $\left\{\frac{1}{n}\right\}$.
(b) $\left\{1-\frac{1}{(2 k-1)^{2}}\right\}$ is a subsequence of $\left\{1-\frac{1}{n^{2}}\right\}$
(c) $\{1,1,1, \ldots\}$ is a subsequence of $\left\{(-1)^{n}\right\}$

Note 4.1: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be sequence of a real numbers and let $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ be a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$. Then $\lim _{k \rightarrow \infty} x_{n_{k}}=x$. If for every $\epsilon>0$ there exists $K \in \mathbb{N}$ such that if $k>K \Rightarrow\left|x_{n_{k}}-x\right|<\varepsilon$. Also note that $n_{k} \geq k \quad \forall k \in \mathbb{N}$.

Theorem 4.1: []

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be sequence of a real numbers and suppose $\lim _{n \rightarrow \infty} x_{n}=x \in \mathbb{R}$. Then any subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to x.

Proof: Let $\epsilon>0$ be given. Since $\lim _{n \rightarrow \infty} x_{n}=x$, then there exist $N \in \mathbb{N}$ such that if $n>N \Rightarrow\left|x_{n}-x\right|<\epsilon$. Now, if $k>N \Rightarrow n_{k} \geq k>N \Rightarrow\left|x_{n_{k}}-x\right|<\epsilon$. Hence $\lim _{k \rightarrow \infty} x_{n_{k}}=x$.

Note 4.2: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be sequence of a real numbers. If $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ is a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that it is divergent, then $\left\{x_{n}\right\}_{n=1}^{\infty}$ diverges.

Definition 4.2: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be sequence of an real numbers. We say that the term x_{m} is dominant "peak" if it is greater than every term which proceeds it: $x_{k} \leq x_{m} \quad \forall k \leq m$. Another way to say this is $x_{m}=\max \left\{x_{k} \mid k \leq m\right\}$.

Example 4.2:

(a) The sequence $\{1,2,3, \ldots, n, \ldots\}$ every term is a dominant.
(b) In the sequence $\left\{\frac{1}{n^{2}}\right\}$ has no dominant terms.
(c) In sequence $\left\{(-1)^{n}\right\}$ every even term is a peak.
(d) In sequence $\left\{1-\frac{(-1)^{n}}{n}\right\}$ every odd term is a peak.

Theorem 4.2: [Monotone Subsequence Theorem (MST):]

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be sequence of a real numbers, then $\left\{x_{n}\right\}_{n=1}^{\infty}$ has a monotone subsequence.
Proof: We will consider two cases.

Case1:

$\left\{x_{n}\right\}$ has infinitely many peaks terms. In this case we list the peaks by increasing indexes:
$x_{n_{1}} \leq x_{n_{2}} \leq \cdots \leq x_{n_{k}} \leq \cdots$. Therefore the subsequence $\left\{x_{n_{k}}\right\}$ of peaks is a increasing subsequence of $\left\{x_{n}\right\}$.

Case2:

$\left\{x_{n}\right\}$ has a finite number of peaks terms. In this case we list the peaks by increasing indexes:
$x_{m_{1}} \leq x_{m_{2}} \leq \cdots \leq x_{m_{r}}$. Let $n_{1}=m_{r}$. Since $x_{n_{1}}$ is the last peak then there exist $x_{n_{2}}$ such that $x_{n_{1}}>x_{n_{2}}$. Since $x_{n_{2}}$ is not a peak then there exists $x_{n_{3}}$ such that $x_{n_{2}}>x_{n_{3}}$. Continuing in this way, we obtain an decreasing subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$.

Theorem 4.3: [The Bolzano-Weierstrass Theorem (BWT):]

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be bounded sequence of a real numbers, then $\left\{x_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence.
Proof: By MST $\left\{x_{n}\right\}_{n=1}^{\infty}$ has a monotone subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$. Now, $\left\{x_{n_{k}}\right\}$ is monotone and bounded, then by $\operatorname{MCT}\left\{x_{n_{k}}\right\}$ is convergent. Thus $\left\{x_{n_{k}}\right\}$ is a convergent subsequence of $\left\{x_{n}\right\}$.

