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Definition 7.1: Let A be a nonempty set of real numbers. Let fn : A → R be a sequence of functions n ≥ 1,

and set sn =

n∑
k=1

fk(x) for x ∈ A and n ≥ 1.

(i) We say that the series

∞∑
n=1

fn(x) converges pointwise on A if {sn(x)} converges pointwise on A. [i.e. lim
n→∞ sn(x)

exists for every x ∈ A.]

(ii) We say that the series

∞∑
n=1

fn(x) converges uniformly on A if {sn(x)} converges uniformly on A.

(iii) We say that the series

∞∑
n=1

fn(x) converges absolutely on A if

∞∑
n=1

|fn(x)| converges on A.

Example 7.1: Determine whether the given series of functions on the given interval converges or diverges

(a)
∞∑
n=0

xn x ∈ (−1, 1)

(b)
∞∑

n=0

xn x ∈ [0,
1

2
]

Solution:

(a)

The sequence of partial sum is sn =

n∑
k=0

xk =
1− xn+1

1− x
for ∀ x ∈ (−1, 1).Now, lim

n→∞ sn =
1

1− x
.

Hence

∞∑
n=0

xn converges pointwise to
1

1− x
and the convergence is not uniform on (−1, 1),

since lim
n→∞ sup

x∈(−1,1)

∣∣∣∣sn(x)− 1

1− x

∣∣∣∣ = lim
n→∞ sup

x∈(−1,1)

|x|n+1

1− x
= ∞.

(b)

The sequence of partial sum is sn =

n∑
k=0

xk =
1− xn+1

1− x
for ∀ x ∈ [0,

1

2
].Now, lim

n→∞ sn =
1

1− x
.

Hence
∞∑
n=0

xn converges pointwise to
1

1− x
and the convergence is uniform on [0,

1

2
],

December 25, 2011 1 c© Dr.Hamed Al-Sulami



Series of Functions Dr.Hamed Al-Sulami

since lim
n→∞ sup

x∈[0, 12 ]

∣∣∣∣sn(x)− 1

1− x

∣∣∣∣ = lim
n→∞

(12 )
n+1

1− 1
2

= 0.

�

Theorem 7.1: [ The Cauchy Criterion For Uniform Convergence of a Series ]

Let A be a nonempty set of real numbers. Let fn : A → R be a sequence of functions n ≥ 1, defined on A.

The series
∞∑
n=1

fn converges uniformly on A if and only if for each ε > 0, there is a number N = N(ε) ∈ N such that

if

m > n > N =⇒
∣∣∣∣∣

m∑
k=n+1

fk(x)

∣∣∣∣∣ < ε.

Proof: The series
∞∑
n=1

fn converges uniformly on A if and only if the sequence of partial sum {sn(x)} is Cauchy

uniformly on A which is if and only if ε > 0, there is a number N = N(ε) ∈ N such that if

m > n > N =⇒
∣∣∣∣∣

m∑
k=n+1

fk(x)

∣∣∣∣∣ = |sm(x)− sn(x)| < ε.

�

Corollary 7.1:

If

∞∑
n=1

fn converges uniformly on a set A, then lim
n→∞ sup

x∈A
|fn(x)| = 0.

Proof:

Let ε > 0 be given. Since

∞∑
n=1

fn converges uniformly on a set A, there is N ∈ N such that if

m > n > N =⇒
∣∣∣∣∣

m∑
k=n+1

fk(x)

∣∣∣∣∣ <
ε

2
.

Now n+ 1 > n > N =⇒ |fn+1(x)| =
∣∣∣∣∣

n+1∑
k=n+1

fk(x)

∣∣∣∣∣ <
ε

2
.

Thus, if, n > N =⇒ |fn+1(x)| < ε

2
⇒ sup

x∈A
|fn+1(x)| ≤ ε

2
< ε.

Hence lim
n→∞ sup

x∈A
|fn(x)| = lim

n→∞ sup
x∈A

|fn+1(x)| = 0.

�

Remark 7.1: If lim
n→∞ sup

x∈A
|fn(x)| 
= 0, then the series

∞∑
n=1

fn does not converges uniformly on A.

Example 7.2: Show that the series

∞∑
n=1

xn

2n
does not converges uniformly on (−2, 2).

Solution:Let a ∈ (−2, 2). Now,

∞∑
n=1

an

2n
=

∞∑
n=1

(
a

2
)n which is a convergent geometric series because |r| = |a

2
| < 1. Hence
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the series

∞∑
n=1

xn

2n
converges pointwise on (−2, 2). Now,

sup
x∈(−2,2)

∣∣∣∣x
n

2n

∣∣∣∣ = 1 and hence lim
n→∞ sup

x∈(−2,2)

∣∣∣∣x
n

2n

∣∣∣∣ = 1 
= 0.

Therefore by the above corollary the series
∞∑
n=1

xn

2n
does not converges uniformly on (−2, 2).

�

Theorem 7.2: [ Weierstrass’s M-Test ]

The series

∞∑
n=1

fn converges uniformly on A if |fn(x)| ≤ Mn for all n ≥ 1 and for all x ∈ A and

the series of positive terms
∞∑

n=1

Mn converges.

Proof: The series

∞∑
n=1

Mn converges. Let ε > 0, there is a number N = N(ε) ∈ N such that if

m > n > N =⇒
m∑

k=n+1

Mk <
ε

2
.

Now,

if m > n > N =⇒
∣∣∣∣∣

m∑
k=n+1

fk(x)

∣∣∣∣∣ ≤
m∑

k=n+1

|fk(x)| ≤
m∑

k=n+1

Mk <
ε

2
< ε.

Hence the series

∞∑
n=1

fn converges uniformly on A.

�

Example 7.3: Determine whether the given series of functions on the given interval converges pointwise , converges

uniformly or, diverges

1. ∞∑
n=0

n2e−nx x ∈ [1,∞)

2. ∞∑
n=0

1

x2 + 2n
x ∈ R

3. ∞∑
n=0

sin (nx)

n2
x ∈ R

4. ∞∑
n=0

(
1

n

)−x

x ∈ [1,∞)

Solution:
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1.

Since |n2e−nx| ≤ n2e−n (show that) ∀x ∈ [1,∞), and ∀n ≥ 1, and since

∞∑
n=0

n2e−n converges by

Ratio test (show that), then
∞∑
n=0

n2e−nx converges uniformly on [1,∞) by Weierstrass’s M-Test.

2.

Since x2 + 2n ≥ 2n ⇒ 1

x2 + 2n
≤ 1

2n
∀x ∈ R, and ∀n ≥ 1, and since

∞∑
n=0

1

2n
converges by

Geometric series test (show that), then

∞∑
n=0

1

x2 + 2n
converges uniformly on R by Weierstrass’s M-Test.

3.

Since

∣∣∣∣ sin (nx)n2

∣∣∣∣ ≤ 1

n2
∀x ∈ R, and ∀n ≥ 1, and since

∞∑
n=0

1

n2
converges by

p− series test (show that), then

∞∑
n=0

sin (nx)

n2
converges uniformly on R by Weierstrass’s M-Test.

4.

Since

(
1

n

)−x

= nx ≥ n ∀x ∈ [1,∞), and ∀n ≥ 1 and since lim
n→∞n = ∞, then

lim
n→∞

(
1

n

)−x

= ∞. Hence by Divergence test the series
∞∑

n=0

(
1

n

)−x

x ∈ [1,∞) diverges .

�

Theorem 7.3: []

If the series

∞∑
n=1

fn(x) converges uniformly on A and if each fn(x) is continuous on A, then

∞∑
n=1

fn(x) is continuous on

A.

If the series

∞∑
n=1

fn(x) converges uniformly on [a, b] and if each fn(x) is integrable on [a, b], then

∞∑
n=1

fn(x) is integrable

on [a, b] and ∫ b

a

∞∑
n=1

fn(x) dx =

∞∑
n=1

∫ b

a

fn(x) dx.

Proof: The proof is left as an exercises for you!!!

�

Example 7.4:

Let f(x) =

∞∑
n=0

(
1

1 + x

)n

x ∈ [1,∞). Show that f is continuous on [1,∞).

Solution:

Since x+ 1 ≥ 2 ⇒ 1

x+ 1
≤ 1

2
⇒

(
1

x+ 1

)n

≤
(
1

2

)n

∀x ∈ [1,∞),
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and ∀n ≥ 1, and since

∞∑
n=0

1

2n
converges by Geometric series test (show that), then

∞∑
n=0

(
1

1 + x

)n

converges uniformly on [1,∞) by Weierstrass’s M-Test.

Now, since each

(
x

1 + x

)n

is continuous , then f(x) =
∞∑

n=0

(
1

1 + x

)n

is continuous on [1,∞).

�

Example 7.5:

Prove that

∫ 2

1

∞∑
n=1

ne−nx dx =
e

e2 − 1
.

Solution:

Since |n2e−nx| ≤ n2e−n (show that) ∀x ∈ [1,∞), and ∀n ≥ 1, and since

∞∑
n=0

n2e−n converges by

Ratio test (show that), then

∞∑
n=0

n2e−nx converges uniformly on [1,∞) by Weierstrass’s M-Test.

Hence

∫ 2

1

∞∑
n=1

ne−nx dx =

∞∑
n=1

∫ 2

1

ne−nx dx =

∞∑
n=1

[−e−nx
]2
1
=

∞∑
n=1

[−e−2n + e−n
]
= −

∞∑
n=1

(
1

e2

)n

+

∞∑
n=1

(
1

e

)n

Thus

∫ 2

1

∞∑
n=1

ne−nx dx = −
∞∑
n=1

(
1

e2

)n

+

∞∑
n=1

(
1

e

)n

=
− 1

e2

1− 1
e2

+
1
e

1− 1
e

=
−1

e2 − 1
+

1

e− 1
=

−1

e2 − 1
+

e+ 1

e2 − 1
=

e

e2 − 1

�
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