

Series of Functions

Dr.Hamed al-Sulami

December 25, 2011

Definition 7.1: Let A be a nonempty set of real numbers. Let $f_n : A \to \mathbb{R}$ be a sequence of functions $n \ge 1$, and set $s_n = \sum_{k=1}^n f_k(x)$ for $x \in A$ and $n \ge 1$.

- (i) We say that the series $\sum_{n=1}^{\infty} f_n(x)$ converges pointwise on A if $\{s_n(x)\}$ converges pointwise on A. [i.e. $\lim_{n \to \infty} s_n(x)$ exists for every $x \in A$.]
- (ii) We say that the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on A if $\{s_n(x)\}$ converges uniformly on A.
- (iii) We say that the series $\sum_{n=1}^{\infty} f_n(x)$ converges absolutely on A if $\sum_{n=1}^{\infty} |f_n(x)|$ converges on A.

Example 7.1: Determine whether the given series of functions on the given interval converges or diverges
(a) $\sum_{n=0}^{\infty} x^n \quad x \in (-1,1)$

(b)
$$\sum_{n=0}^{\infty} x^n \quad x \in [0, \frac{1}{2}]$$

Solution:

(a)

The sequence of partial sum is
$$s_n = \sum_{k=0}^n x^k = \frac{1-x^{n+1}}{1-x}$$
 for $\forall x \in (-1,1)$. Now, $\lim_{n \to \infty} s_n = \frac{1}{1-x}$.

Hence
$$\sum_{n=0}^{\infty} x^n$$
 converges pointwise to $\frac{1}{1-x}$ and the convergence is not uniform on $(-1,1)$,

since
$$\lim_{n \to \infty} \sup_{x \in (-1,1)} \left| s_n(x) - \frac{1}{1-x} \right| = \lim_{n \to \infty} \sup_{x \in (-1,1)} \frac{|x|^{n+1}}{1-x} = \infty.$$

(b)

The sequence of partial sum is
$$s_n = \sum_{k=0}^n x^k = \frac{1-x^{n+1}}{1-x}$$
 for $\forall x \in [0, \frac{1}{2}]$. Now, $\lim_{n \to \infty} s_n = \frac{1}{1-x}$.
Hence $\sum_{n=0}^{\infty} x^n$ converges pointwise to $\frac{1}{1-x}$ and the convergence is uniform on $[0, \frac{1}{2}]$,

since
$$\lim_{n \to \infty} \sup_{x \in [0, \frac{1}{2}]} \left| s_n(x) - \frac{1}{1 - x} \right| = \lim_{n \to \infty} \frac{(\frac{1}{2})^{n+1}}{1 - \frac{1}{2}} = 0.$$

Theorem 7.1: The Cauchy Criterion For Uniform Convergence of a Series

Let A be a nonempty set of real numbers. Let $f_n : A \to \mathbb{R}$ be a sequence of functions $n \ge 1$, defined on A. The series $\sum_{n=1}^{\infty} f_n$ converges uniformly on A if and only if for each $\epsilon > 0$, there is a number $N = N(\epsilon) \in \mathbb{N}$ such that if

$$m > n > N \Longrightarrow \left| \sum_{k=n+1}^{m} f_k(x) \right| < \epsilon.$$

Proof: The series $\sum_{n=1}^{\infty} f_n$ converges uniformly on A if and only if the sequence of partial sum $\{s_n(x)\}$ is Cauchy uniformly on A which is if and only if $\epsilon > 0$, there is a number $N = N(\epsilon) \in \mathbb{N}$ such that if

$$m > n > N \Longrightarrow \left| \sum_{k=n+1}^{m} f_k(x) \right| = |s_m(x) - s_n(x)| < \epsilon.$$

Corollary 7.1:

If
$$\sum_{n=1}^{\infty} f_n$$
 converges uniformly on a set A , then $\lim_{n \to \infty} \sup_{x \in A} |f_n(x)| = 0$

Proof:

Let $\epsilon > 0$ be given. Since $\sum_{n=1}^{\infty} f_n$ converges uniformly on a set A, there is $N \in \mathbb{N}$ such that if

$$m > n > N \Longrightarrow \left| \sum_{k=n+1}^{m} f_k(x) \right| < \frac{\epsilon}{2}.$$

Now $n+1 > n > N \Longrightarrow |f_{n+1}(x)| = \left| \sum_{k=n+1}^{n+1} f_k(x) \right| < \frac{\epsilon}{2}.$
Thus, if, $n > N \Longrightarrow |f_{n+1}(x)| < \frac{\epsilon}{2} \Rightarrow \sup_{x \in A} |f_{n+1}(x)| \le \frac{\epsilon}{2} < \epsilon$
Hence $\lim_{n \to \infty} \sup_{x \in A} |f_n(x)| = \lim_{n \to \infty} \sup_{x \in A} |f_{n+1}(x)| = 0.$

Remark 7.1: If $\lim_{n \to \infty} \sup_{x \in A} |f_n(x)| \neq 0$, then the series $\sum_{n=1}^{\infty} f_n$ does not converges uniformly on A. **Example 7.2:** Show that the series $\sum_{n=1}^{\infty} \frac{x^n}{2^n}$ does not converges uniformly on (-2, 2). **Solution:** Let $a \in (-2, 2)$. Now, $\sum_{n=1}^{\infty} \frac{a^n}{2^n} = \sum_{n=1}^{\infty} (\frac{a}{2})^n$ which is a convergent geometric series because $|r| = |\frac{a}{2}| < 1$. Hence the series $\sum_{n=1}^{\infty} \frac{x^n}{2^n}$ converges pointwise on (-2, 2). Now,

$$\sup_{x \in (-2,2)} \left| \frac{x^n}{2^n} \right| = 1 \text{ and hence } \lim_{n \to \infty} \sup_{x \in (-2,2)} \left| \frac{x^n}{2^n} \right| = 1 \neq 0.$$

Therefore by the above corollary the series $\sum_{n=1}^{\infty} \frac{x^n}{2^n}$ does not converges uniformly on (-2, 2).

 Theorem 7.2:
 Weierstrass's M-Test

The series $\sum_{n=1}^{\infty} f_n$ converges uniformly on A if $|f_n(x)| \le M_n$ for all $n \ge 1$ and for all $x \in A$ and

the series of positive terms $\sum_{n=1}^{\infty} M_n$ converges.

Proof: The series $\sum_{n=1}^{\infty} M_n$ converges. Let $\epsilon > 0$, there is a number $N = N(\epsilon) \in \mathbb{N}$ such that if

$$m > n > N \Longrightarrow \sum_{k=n+1}^{m} M_k < \frac{\epsilon}{2}.$$

Now,

$$\text{if } m > n > N \Longrightarrow \left| \sum_{k=n+1}^{m} f_k(x) \right| \le \sum_{k=n+1}^{m} |f_k(x)| \le \sum_{k=n+1}^{m} M_k < \frac{\epsilon}{2} < \epsilon$$

Hence the series $\sum_{n=1}^{\infty} f_n$ converges uniformly on A.

Example 7.3: Determine whether the given series of functions on the given interval converges pointwise , converges uniformly or, diverges

1.

$$\sum_{n=0}^{\infty} n^2 e^{-nx} \quad x \in [1,\infty)$$
2.

$$\sum_{n=0}^{\infty} \frac{1}{x^2 + 2^n} \quad x \in \mathbb{R}$$
3.

$$\sum_{n=0}^{\infty} \frac{\sin(nx)}{n^2} \quad x \in \mathbb{R}$$
4.

$$\sum_{n=0}^{\infty} \left(\frac{1}{n}\right)^{-x} \quad x \in [1,\infty)$$

Solution:

1.

Since
$$|n^2 e^{-nx}| \le n^2 e^{-n}$$
 (show that) $\forall x \in [1, \infty)$, and $\forall n \ge 1$, and since $\sum_{n=0}^{\infty} n^2 e^{-n}$ converges by

Ratio test (show that), then $\sum_{n=0}^{\infty} n^2 e^{-nx}$ converges uniformly on $[1,\infty)$ by Weierstrass's M-Test.

2.

Since
$$x^2 + 2^n \ge 2^n \Rightarrow \frac{1}{x^2 + 2^n} \le \frac{1}{2^n} \quad \forall x \in \mathbb{R}, \text{ and } \forall n \ge 1, \text{ and since } \sum_{n=0}^{\infty} \frac{1}{2^n} \text{ converges by}$$

Geometric series test (show that), then $\sum_{n=0}^{\infty} \frac{1}{x^2 + 2^n}$ converges uniformly on \mathbb{R} by Weierstrass's M-Test.

3.

Since
$$\left|\frac{\sin(nx)}{n^2}\right| \le \frac{1}{n^2} \quad \forall x \in \mathbb{R}, \text{ and } \forall n \ge 1, \text{ and since } \sum_{n=0}^{\infty} \frac{1}{n^2} \text{ converges by}$$

p- series test (show that), then $\sum_{n=0}^{\infty} \frac{\sin(nx)}{n^2}$ converges uniformly on \mathbb{R} by Weierstrass's M-Test.

4.

Since
$$\left(\frac{1}{n}\right)^{-x} = n^x \ge n \quad \forall x \in [1,\infty)$$
, and $\forall n \ge 1$ and since $\lim_{n \to \infty} n = \infty$, then
 $\lim_{n \to \infty} \left(\frac{1}{n}\right)^{-x} = \infty$. Hence by Divergence test the series $\sum_{n=0}^{\infty} \left(\frac{1}{n}\right)^{-x} \quad x \in [1,\infty)$ diverges.

Theorem 7.3: [] If the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on A and if each $f_n(x)$ is continuous on A, then $\sum_{n=1}^{\infty} f_n(x)$ is continuous on A. If the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on [a, b] and if each $f_n(x)$ is integrable on [a, b], then $\sum_{n=1}^{\infty} f_n(x)$ is integrable on [a, b] and $ab \propto \infty \propto ab$

$$\int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) \, dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) \, dx.$$

Proof: The proof is left as an exercises for you!!!

Example 7.4:

Let
$$f(x) = \sum_{n=0}^{\infty} \left(\frac{1}{1+x}\right)^n$$
 $x \in [1,\infty)$. Show that f is continuous on $[1,\infty)$.

Solution:

Since
$$x + 1 \ge 2 \Rightarrow \frac{1}{x+1} \le \frac{1}{2} \Rightarrow \left(\frac{1}{x+1}\right)^n \le \left(\frac{1}{2}\right)^n \quad \forall x \in [1,\infty),$$

and
$$\forall n \ge 1$$
, and since $\sum_{n=0}^{\infty} \frac{1}{2^n}$ converges by Geometric series test (show that), then
$$\sum_{n=0}^{\infty} \left(\frac{1}{1+x}\right)^n$$
 converges uniformly on $[1,\infty)$ by Weierstrass's M-Test.

Now, since each
$$\left(\frac{x}{1+x}\right)^n$$
 is continuous, then $f(x) = \sum_{n=0}^{\infty} \left(\frac{1}{1+x}\right)^n$ is continuous on $[1,\infty)$.

Example 7.5:

Prove that
$$\int_{1}^{2} \sum_{n=1}^{\infty} n e^{-nx} dx = \frac{e}{e^{2} - 1}$$

Solution:

Since $|n^2 e^{-nx}| \le n^2 e^{-n}$ (show that) $\forall x \in [1, \infty)$, and $\forall n \ge 1$, and since $\sum_{n=0}^{\infty} n^2 e^{-n}$ converges by

Ratio test (show that), then $\sum_{n=0}^{\infty} n^2 e^{-nx}$ converges uniformly on $[1,\infty)$ by Weierstrass's M-Test.

Hence
$$\int_{1}^{2} \sum_{n=1}^{\infty} ne^{-nx} dx = \sum_{n=1}^{\infty} \int_{1}^{2} ne^{-nx} dx = \sum_{n=1}^{\infty} \left[-e^{-nx} \right]_{1}^{2} = \sum_{n=1}^{\infty} \left[-e^{-2n} + e^{-n} \right] = -\sum_{n=1}^{\infty} \left(\frac{1}{e^{2}} \right)^{n} + \sum_{n=1}^{\infty} \left(\frac{1}{e} \right)^{n}$$
Thus
$$\int_{1}^{2} \sum_{n=1}^{\infty} ne^{-nx} dx = -\sum_{n=1}^{\infty} \left(\frac{1}{e^{2}} \right)^{n} + \sum_{n=1}^{\infty} \left(\frac{1}{e} \right)^{n} = \frac{-\frac{1}{e^{2}}}{1 - \frac{1}{e^{2}}} + \frac{\frac{1}{e}}{1 - \frac{1}{e}} = \frac{-1}{e^{2} - 1} + \frac{1}{e^{2} - 1} = \frac{-1}{e^{2} - 1} + \frac{e^{2} + 1}{e^{2} - 1} = \frac{e}{e^{2} - 1}$$