Series of Functions

Dr.Hamed al-Sulami

December 25, 2011

Definition 7.1: Let A be a nonempty set of real numbers. Let $f_{n}: A \rightarrow \mathbb{R}$ be a sequence of functions $n \geq 1$, and set $s_{n}=\sum_{k=1}^{n} f_{k}(x)$ for $x \in A$ and $n \geq 1$.
(i) We say that the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges pointwise on A if $\left\{s_{n}(x)\right\}$ converges pointwise on A. [i.e. $\lim _{n \rightarrow \infty} s_{n}(x)$ exists for every $x \in A$.]
(ii) We say that the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on A if $\left\{s_{n}(x)\right\}$ converges uniformly on A.
(iii) We say that the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges absolutely on A if $\sum_{n=1}^{\infty}\left|f_{n}(x)\right|$ converges on A.

Example 7.1: Determine whether the given series of functions on the given interval converges or diverges

(a)

$$
\sum_{n=0}^{\infty} x^{n} \quad x \in(-1,1)
$$

(b)

$$
\sum_{n=0}^{\infty} x^{n} \quad x \in\left[0, \frac{1}{2}\right]
$$

Solution:

(a)

The sequence of partial sum is $s_{n}=\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x}$ for $\forall x \in(-1,1)$.Now, $\lim _{n \rightarrow \infty} s_{n}=\frac{1}{1-x}$.
Hence $\sum_{n=0}^{\infty} x^{n}$ converges pointwise to $\frac{1}{1-x}$ and the convergence is not uniform on $(-1,1)$,

$$
\text { since } \lim _{n \rightarrow \infty} \sup _{x \in(-1,1)}\left|s_{n}(x)-\frac{1}{1-x}\right|=\lim _{n \rightarrow \infty} \sup _{x \in(-1,1)} \frac{|x|^{n+1}}{1-x}=\infty
$$

(b)

The sequence of partial sum is $s_{n}=\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x}$ for $\forall x \in\left[0, \frac{1}{2}\right]$.Now, $\lim _{n \rightarrow \infty} s_{n}=\frac{1}{1-x}$.
Hence $\sum_{n=0}^{\infty} x^{n}$ converges pointwise to $\frac{1}{1-x}$ and the convergence is uniform on $\left[0, \frac{1}{2}\right]$,

$$
\text { since } \lim _{n \rightarrow \infty} \sup _{x \in\left[0, \frac{1}{2}\right]}\left|s_{n}(x)-\frac{1}{1-x}\right|=\lim _{n \rightarrow \infty} \frac{\left(\frac{1}{2}\right)^{n+1}}{1-\frac{1}{2}}=0 .
$$

Theorem 7.1:
 The Cauchy Criterion For Uniform Convergence of a Series

Let A be a nonempty set of real numbers. Let $f_{n}: A \rightarrow \mathbb{R}$ be a sequence of functions $n \geq 1$, defined on A. The series $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on A if and only if for each $\epsilon>0$, there is a number $N=N(\epsilon) \in \mathbb{N}$ such that if

$$
m>n>N \Longrightarrow\left|\sum_{k=n+1}^{m} f_{k}(x)\right|<\epsilon
$$

Proof: The series $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on A if and only if the sequence of partial sum $\left\{s_{n}(x)\right\}$ is Cauchy uniformly on A which is if and only if $\epsilon>0$, there is a number $N=N(\epsilon) \in \mathbb{N}$ such that if

$$
m>n>N \Longrightarrow\left|\sum_{k=n+1}^{m} f_{k}(x)\right|=\left|s_{m}(x)-s_{n}(x)\right|<\epsilon
$$

Corollary 7.1:

$$
\text { If } \sum_{n=1}^{\infty} f_{n} \text { converges uniformly on a set } A \text {, then } \lim _{n \rightarrow \infty} \sup _{x \in A}\left|f_{n}(x)\right|=0 \text {. }
$$

Proof:

Let $\epsilon>0$ be given. Since $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on a set A, there is $N \in \mathbb{N}$ such that if

$$
\begin{gathered}
m>n>N \Longrightarrow\left|\sum_{k=n+1}^{m} f_{k}(x)\right|<\frac{\epsilon}{2} . \\
\text { Now } n+1>n>N \Longrightarrow\left|f_{n+1}(x)\right|=\left|\sum_{k=n+1}^{n+1} f_{k}(x)\right|<\frac{\epsilon}{2} . \\
\text { Thus, if, } n>N \Longrightarrow\left|f_{n+1}(x)\right|<\frac{\epsilon}{2} \Rightarrow \sup _{x \in A}\left|f_{n+1}(x)\right| \leq \frac{\epsilon}{2}<\epsilon . \\
\text { Hence } \lim _{n \rightarrow \infty} \sup _{x \in A}\left|f_{n}(x)\right|=\lim _{n \rightarrow \infty} \sup _{x \in A}\left|f_{n+1}(x)\right|=0 .
\end{gathered}
$$

Remark 7.1: If $\lim _{n \rightarrow \infty} \sup _{x \in A}\left|f_{n}(x)\right| \neq 0$, then the series $\sum_{n=1}^{\infty} f_{n}$ does not converges uniformly on A.
Example 7.2: Show that the series $\sum_{n=1}^{\infty} \frac{x^{n}}{2^{n}}$ does not converges uniformly on (-2,2).
Solution: Let $a \in(-2,2)$. Now, $\sum_{n=1}^{\infty} \frac{a^{n}}{2^{n}}=\sum_{n=1}^{\infty}\left(\frac{a}{2}\right)^{n}$ which is a convergent geometric series because $|r|=\left|\frac{a}{2}\right|<1$. Hence
the series $\sum_{n=1}^{\infty} \frac{x^{n}}{2^{n}}$ converges pointwise on $(-2,2)$. Now,

$$
\sup _{x \in(-2,2)}\left|\frac{x^{n}}{2^{n}}\right|=1 \text { and hence } \lim _{n \rightarrow \infty} \sup _{x \in(-2,2)}\left|\frac{x^{n}}{2^{n}}\right|=1 \neq 0 .
$$

Therefore by the above corollary the series $\sum_{n=1}^{\infty} \frac{x^{n}}{2^{n}}$ does not converges uniformly on $(-2,2)$.

Theorem 7.2: \quad Weierstrass's M-Test

The series $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on A if $\left|f_{n}(x)\right| \leq M_{n}$ for all $n \geq 1$ and for all $x \in A$ and

$$
\text { the series of positive terms } \sum_{n=1}^{\infty} M_{n} \text { converges. }
$$

Proof: The series $\sum_{n=1}^{\infty} M_{n}$ converges. Let $\epsilon>0$, there is a number $N=N(\epsilon) \in \mathbb{N}$ such that if

$$
m>n>N \Longrightarrow \sum_{k=n+1}^{m} M_{k}<\frac{\epsilon}{2}
$$

Now,

$$
\text { if } m>n>N \Longrightarrow\left|\sum_{k=n+1}^{m} f_{k}(x)\right| \leq \sum_{k=n+1}^{m}\left|f_{k}(x)\right| \leq \sum_{k=n+1}^{m} M_{k}<\frac{\epsilon}{2}<\epsilon
$$

Hence the series $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on A.

Example 7.3: Determine whether the given series of functions on the given interval converges pointwise , converges uniformly or, diverges
1.

$$
\sum_{n=0}^{\infty} n^{2} e^{-n x} \quad x \in[1, \infty)
$$

2.

$$
\sum_{n=0}^{\infty} \frac{1}{x^{2}+2^{n}} \quad x \in \mathbb{R}
$$

3.

$$
\sum_{n=0}^{\infty} \frac{\sin (n x)}{n^{2}} \quad x \in \mathbb{R}
$$

4.

$$
\sum_{n=0}^{\infty}\left(\frac{1}{n}\right)^{-x} \quad x \in[1, \infty)
$$

Solution:

1.

Since $\left|n^{2} e^{-n x}\right| \leq n^{2} e^{-n}$ (show that) $\quad \forall x \in[1, \infty)$, and $\forall n \geq 1$, and since $\sum_{n=0}^{\infty} n^{2} e^{-n}$ converges by Ratio test (show that), then $\sum_{n=0}^{\infty} n^{2} e^{-n x}$ converges uniformly on $[1, \infty)$ by Weierstrass's M-Test.
2.

$$
\text { Since } x^{2}+2^{n} \geq 2^{n} \Rightarrow \frac{1}{x^{2}+2^{n}} \leq \frac{1}{2^{n}} \quad \forall x \in \mathbb{R}, \text { and } \forall n \geq 1 \text {, and since } \sum_{n=0}^{\infty} \frac{1}{2^{n}} \text { converges by }
$$

Geometric series test (show that), then $\sum_{n=0}^{\infty} \frac{1}{x^{2}+2^{n}}$ converges uniformly on \mathbb{R} by Weierstrass's M-Test.
3.

Since $\left|\frac{\sin (n x)}{n^{2}}\right| \leq \frac{1}{n^{2}} \quad \forall x \in \mathbb{R}$, and $\forall n \geq 1$, and since $\sum_{n=0}^{\infty} \frac{1}{n^{2}}$ converges by $p-$ series test (show that), then $\sum_{n=0}^{\infty} \frac{\sin (n x)}{n^{2}}$ converges uniformly on \mathbb{R} by Weierstrass's M-Test.
4.

Since $\left(\frac{1}{n}\right)^{-x}=n^{x} \geq n \quad \forall x \in[1, \infty)$, and $\forall n \geq 1$ and since $\lim _{n \rightarrow \infty} n=\infty$, then $\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{-x}=\infty$. Hence by Divergence test the series $\sum_{n=0}^{\infty}\left(\frac{1}{n}\right)^{-x} x \in[1, \infty)$ diverges.

Theorem 7.3: []

If the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on A and if each $f_{n}(x)$ is continuous on A, then $\sum_{n=1}^{\infty} f_{n}(x)$ is continuous on A.

If the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on $[a, b]$ and if each $f_{n}(x)$ is integrable on $[a, b]$, then $\sum_{n=1}^{\infty} f_{n}(x)$ is integrable on $[a, b]$ and

$$
\int_{a}^{b} \sum_{n=1}^{\infty} f_{n}(x) d x=\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) d x
$$

Proof: The proof is left as an exercises for you!!!

Example 7.4:

$$
\text { Let } f(x)=\sum_{n=0}^{\infty}\left(\frac{1}{1+x}\right)^{n} \quad x \in[1, \infty) \text {. Show that } f \text { is continuous on }[1, \infty) \text {. }
$$

Solution:

$$
\text { Since } x+1 \geq 2 \Rightarrow \frac{1}{x+1} \leq \frac{1}{2} \Rightarrow\left(\frac{1}{x+1}\right)^{n} \leq\left(\frac{1}{2}\right)^{n} \quad \forall x \in[1, \infty)
$$

and $\forall n \geq 1$, and since $\sum_{n=0}^{\infty} \frac{1}{2^{n}}$ converges by Geometric series test (show that), then

$$
\sum_{n=0}^{\infty}\left(\frac{1}{1+x}\right)^{n} \text { converges uniformly on }[1, \infty) \text { by Weierstrass's M-Test. }
$$

Now, since each $\left(\frac{x}{1+x}\right)^{n}$ is continuous, then $f(x)=\sum_{n=0}^{\infty}\left(\frac{1}{1+x}\right)^{n}$ is continuous on $[1, \infty)$.

Example 7.5:

$$
\text { Prove that } \int_{1}^{2} \sum_{n=1}^{\infty} n e^{-n x} d x=\frac{e}{e^{2}-1}
$$

Solution:

Since $\left|n^{2} e^{-n x}\right| \leq n^{2} e^{-n}$ (show that) $\quad \forall x \in[1, \infty)$, and $\forall n \geq 1$, and since $\sum_{n=0}^{\infty} n^{2} e^{-n}$ converges by
Ratio test (show that), then $\sum_{n=0}^{\infty} n^{2} e^{-n x}$ converges uniformly on $[1, \infty)$ by Weierstrass's M-Test.
Hence $\int_{1}^{2} \sum_{n=1}^{\infty} n e^{-n x} d x=\sum_{n=1}^{\infty} \int_{1}^{2} n e^{-n x} d x=\sum_{n=1}^{\infty}\left[-e^{-n x}\right]_{1}^{2}=\sum_{n=1}^{\infty}\left[-e^{-2 n}+e^{-n}\right]=-\sum_{n=1}^{\infty}\left(\frac{1}{e^{2}}\right)^{n}+\sum_{n=1}^{\infty}\left(\frac{1}{e}\right)^{n}$
Thus $\int_{1}^{2} \sum_{n=1}^{\infty} n e^{-n x} d x=-\sum_{n=1}^{\infty}\left(\frac{1}{e^{2}}\right)^{n}+\sum_{n=1}^{\infty}\left(\frac{1}{e}\right)^{n}=\frac{-\frac{1}{e^{2}}}{1-\frac{1}{e^{2}}}+\frac{\frac{1}{e}}{1-\frac{1}{e}}=\frac{-1}{e^{2}-1}+\frac{1}{e-1}=\frac{-1}{e^{2}-1}+\frac{e+1}{e^{2}-1}=\frac{e}{e^{2}-1}$

