

# Sequence of Functions

Dr.Hamed Al-Sulami

December 4, 2011

**Definition 6.1:** Let A be a nonempty set of real numbers. Let  $f_n : A \to \mathbb{R}$  be a sequence of functions  $n \ge 1$ , and let  $f : A \to \mathbb{R}$  be a function. We say that  $\{f_n(x)\}_{n=1}^{\infty}$  converges pointwise to f(x) if for each  $x \in A$ 

$$\lim_{n \to \infty} f_n(x) = f(x)$$

and we write

$$f_n(x) \xrightarrow{p.w.} f(x)$$

**Example 6.1:** Let  $f_n : (-1,1] \to \mathbb{R}$  defined by  $f_n(x) = x^n$ . Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .

Solution:

For 
$$x = 1$$
,  $\Rightarrow f_n(1) = (1)^n = 1$  and  $\lim_{n \to \infty} f_n(1) = \lim_{n \to \infty} 1 = 1$   
For  $-1 < x < 1$ ,  $\Rightarrow \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = 0$ .  
Hence  $f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} 0, & \text{for } -1 < x < 1; \\ 1, & \text{for } x = 1. \end{cases}$ 

**Example 6.2:** Let  $f_n : \mathbb{R} \to \mathbb{R}$  defined by  $f_n(x) = \frac{x}{n}$ . Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .

**Solution:** For any  $x \in \mathbb{R}$ , we have  $f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x}{n} = x \lim_{n \to \infty} \frac{1}{n} = x \cdot 0 = 0.$ 

**Example 6.3:** Let 
$$f_n : \mathbb{R} \to \mathbb{R}$$
 defined by  $f_n(x) = \frac{x + nx^2}{n}$ . Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .

**Solution:** For any  $x \in \mathbb{R}$ , we have

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x + nx^2}{n} = \lim_{n \to \infty} \left[ \frac{x}{n} + \frac{nx^2}{n} \right] = x \lim_{n \to \infty} \frac{1}{n} + x^2 \lim_{n \to \infty} 1 = 0 + x^2 = x^2.$$

**Example 6.4:** Let  $f_n : \mathbb{R} \setminus \{-1\} \to \mathbb{R}$  defined by  $f_n(x) = \frac{x^n}{1+x^n}$ . Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .

**Solution:** For any -1 < x < 1, we have

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x^n}{1 + x^n} = \frac{\lim_{n \to \infty} x^n}{\lim_{n \to \infty} (1 + x^n)} = \frac{0}{1 + 0} = 0.$$
  
For  $x = 1$ , we have  $f_n(1) = \frac{1^n}{1 + 1^n} = \frac{1}{2}$ , hence  $f(1) = \lim_{n \to \infty} f_n(1) = \lim_{n \to \infty} \frac{1}{2} = \frac{1}{2}.$   
> 1, we have  $f_n(x) = \frac{x^n}{1 + x^n} = \frac{1}{(\frac{1}{x})^n + 1}$ , hence  $f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{1}{(\frac{1}{x})^n + 1} = \frac{1}{0 + 1} = 1.$ 

Hence

For |x|

$$f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} 0, & \text{if } -1 < x < 1; \\ \frac{1}{2}, & \text{if } x = \frac{1}{2}; \\ 1, & \text{if } |x| > 1. \end{cases}$$

**Remark 6.1:** Let A be a nonempty set of real numbers. Let  $f_n : A \to \mathbb{R}$  be a sequence of functions  $n \ge 1$ , and let  $f : A \to \mathbb{R}$  be a function. Then  $\{f_n(x)\}_{n=1}^{\infty}$  converges pointwise to f(x) if and only if for each  $x \in A$  and for each  $\epsilon > 0$  there exist  $N \in \mathbb{N}$   $(N = N(x, \epsilon)$  i.e. N depend on x and  $\epsilon$ ) such that

if 
$$n > N \Rightarrow |f_n(x) - f(x)| < \epsilon$$
.

**Example 6.5:** Let  $f_n : \mathbb{R} \to \mathbb{R}$  defined by  $f_n(x) = \frac{x^2 + nx}{n}$ .

- (a) Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .
- (b) Prove your answer in part (a) using the definition

**Solution:** (a) For any  $x \in \mathbb{R}$ , we have

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left[ \frac{x^2}{n} + \frac{nx}{n} \right] = \lim_{n \to \infty} \left[ \frac{x^2}{n} + x \right] = x.$$

(b)

Note that for  $x \neq 0$ , we have  $|f_n(x) - f(x)| = \left|\frac{x^2}{n} + x - x\right| = \frac{|x|^2}{n}$  and for x = 0, we have  $|f_n(0) - f(0)| = 0$ .

Hence if we let  $\frac{|x|^2}{n} < \epsilon \Rightarrow \frac{n}{|x|^2} > \frac{1}{\epsilon} \Rightarrow n > \frac{|x|^2}{\epsilon}.$ 

To prove that  $\lim_{n \to \infty} f_n(x) = f(x)$ . Let  $\epsilon > 0$  be given and let  $x \in \mathbb{R}$ . Choose  $N \in \mathbb{N}$  such that  $N \ge \frac{|x|^2}{\epsilon}$ .

If 
$$n > N \Rightarrow \frac{1}{n} < \frac{1}{N} \le \frac{\epsilon}{|x|^2}$$
.  
 $n > N \Rightarrow \frac{1}{n} < \frac{\epsilon}{|x|^2}$ .  
 $n > N \Rightarrow \frac{|x|^2}{n} < \epsilon$ .  
Now, if  $n > N \Rightarrow |f_n(x) - f(x)| = \left|\frac{x^2}{n} + x - x\right| = \frac{|x|^2}{n} < \epsilon$ .  
Now, if  $n > N \Rightarrow |f_n(x) - f(x)| < \epsilon$ .  
Therefore  $\lim_{n \to \infty} f_n(x) = f(x)$ .

**Definition 6.2:** Let A be a nonempty set of real numbers. Let  $f_n : A \to \mathbb{R}$  be a sequence of functions  $n \ge 1$ , and let  $f : A \to \mathbb{R}$  be a function. We say that  $\{f_n(x)\}_{n=1}^{\infty}$  converges uniformly to f(x), and we write  $f_n(x) \xrightarrow{U} f(x)$ if  $\epsilon > 0$  there exist  $N \in \mathbb{N}$   $(N = N(\epsilon)$  i.e. N depend on  $\epsilon$  only ) such that

if 
$$n > N \Rightarrow |f_n(x) - f(x)| < \epsilon$$
 for every  $x \in A$ .

**Example 6.6:** Let  $f_n : \mathbb{R} \to \mathbb{R}$  defined by  $f_n(x) = \frac{nx+1}{n}$ .

(a) Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .

(b) Does  $f_n(x) \xrightarrow{U} f(x)$ , prove your answer in part (a) using the definition.

**Solution:** (a) For any  $x \in \mathbb{R}$ , we have

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left[ \frac{nx}{n} + \frac{1}{n} \right] = \lim_{n \to \infty} \left[ x + \frac{1}{n} \right] = x.$$

(b)

Note that for any x, we have  $|f_n(x) - f(x)| = \left|x + \frac{1}{n} - x\right| = \frac{1}{n}$ 

Hence if we let  $\frac{1}{n} < \epsilon \Rightarrow n > \frac{1}{\epsilon}$ .

To prove that  $\lim_{n \to \infty} f_n(x) = f(x)$  uniformly. Let  $\epsilon > 0$  be given and choose  $N \in \mathbb{N}$  such that  $N \ge \frac{1}{\epsilon}$ .

If 
$$n > N \Rightarrow \frac{1}{n} < \frac{1}{N} \le \epsilon$$
.  
Now, if  $n > N \Rightarrow |f_n(x) - f(x)| = \left|\frac{1}{n} + x - x\right| = \frac{1}{n} < \epsilon$ .  
Now, if  $n > N \Rightarrow |f_n(x) - f(x)| < \epsilon$ .  
Therefore  $\lim_{n \to \infty} f_n(x) = f(x)$  uniformly.

**Lemma 6.1:** Let A be a nonempty set of real numbers. Let  $f_n : A \to \mathbb{R}$  be a sequence of functions  $n \ge 1$ , and for each  $x \in A$  let  $f(x) = \lim_{n \to \infty} f_n(x)$ . If  $x_0 \in A$  and  $\{x_n\} \subset A$  sequence such that  $\lim_{n \to \infty} x_n = x_0$  and  $\lim_{n \to \infty} f_n(x_n) \neq f(x_0)$ , then  $\{f_n(x)\}$  does not converge uniformly on A.

**Proof:** This is left as an exercise.

**Example 6.7:** Let 
$$f_n : [1, \infty) \to \mathbb{R}$$
 defined by  $f_n(x) = \frac{x^n}{x^n + 1}$ 

(a) Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .

(b) Does  $f_n(x) \xrightarrow{U_{\cdot}} f(x)$ , prove your answer in part (a).

Solution: (a)

For 
$$x = 1$$
, we have  $f(1) = \lim_{n \to \infty} f_n(1) = \lim_{n \to \infty} \frac{1^n}{1^n + 1} = \lim_{n \to \infty} \frac{1}{2} = \frac{1}{2}$ .  
For  $x > 1$ , we have  $f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x^n}{x^n + 1} = \lim_{n \to \infty} \frac{1}{1 + (\frac{1}{x})^n} = \frac{1}{1 + 0} = 1$ .

Thus

$$f(x) = \begin{cases} \frac{1}{2}, & \text{for } x = 1; \\ 1, & \text{for } x > 1. \end{cases}$$

(b) Now, let  $x_n = 1 + \frac{1}{n} \in [0, \infty)$  and  $\lim_{n \to \infty} (1 + \frac{1}{n}) = 1 \in [0, \infty)$ , but  $\lim_{n \to \infty} f_n(x_n) = \lim_{n \to \infty} f_n(\left(1 + \frac{1}{n}\right)) = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)^n}{1 + \left(1 + \frac{1}{n}\right)^n} = \frac{e}{1 + e} \neq \frac{1}{2} = f(1)$ . Hence  $\{f_n(x)\}$  does not converge uniformly on  $[1, \infty)$ .

#### *Theorem 6.1:* []

Let A be a nonempty set of real numbers. Let  $f_n : A \to \mathbb{R}$  be a sequence of functions  $n \ge 1$ , and for each  $x \in A$  let  $f(x) = \lim_{n \to \infty} f_n(x)$ .

Then 
$$\{f_n\}$$
 converges uniformly to  $f$  on  $A$  if and only if  $\lim_{n \to \infty} \left[ \sup_{x \in A} |f_n(x) - f(x)| \right] = 0.$ 

**Proof:** ( $\Rightarrow$ ) Suppose that  $\{f_n\}$  converges uniformly to f on A and let  $\epsilon > 0$  be given.

Since 
$$f_n(x) \xrightarrow{U} f(x)$$
, then there exist  $N \in \mathbb{N}$  such that  
if  $n > N \Rightarrow |f_n(x) - f(x)| < \frac{\epsilon}{2} \quad \forall x \in A$ .  
Hence if  $n > N \Rightarrow \sup_{x \in A} |f_n(x) - f(x)| \le \frac{\epsilon}{2} < \epsilon$ .  
Thus  $\lim_{n \to \infty} \left[ \sup_{x \in A} |f_n(x) - f(x)| \right] = 0$ .



( $\Leftarrow$ ) Suppose that  $\lim_{n \to \infty} \left[ \sup_{x \in A} |f_n(x) - f(x)| \right] = 0$  and let  $\epsilon > 0$  be given.

Since  $\lim_{n \to \infty} \left[ \sup_{x \in A} |f_n(x) - f(x)| \right] = 0$ , then there exist  $N \in \mathbb{N}$  such that if  $n > N \Rightarrow \sup_{x \in A} |f_n(x) - f(x)| < \epsilon \quad \forall x \in A$ . Hence if  $n > N \Rightarrow |f_n(x) - f(x)| \le \sup_{x \in A} |f_n(x) - f(x)| < \epsilon \quad \forall x \in A$ . Thus  $\lim_{n \to \infty} f_n(x) = f(x)$  uniformly on A.

**Example 6.8:** Let  $f_n : [0,1] \to \mathbb{R}$  defined by  $f_n(x) = x^n(1-x)$ .

- (a) Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .
- (b) Does  $f_n(x) \xrightarrow{U} f(x)$ , prove your answer.

## Solution:



Figure 1:

(a) For any  $x \in [0, 1)$ , we have

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} [x^n(1-x)] = (1-x) \lim_{n \to \infty} x^n = (1-x) \cdot 0 = 0 \text{ and } f(1) = \lim_{n \to \infty} f_n(1) = 0.$$

## Hence f(x) = 0 for every $x \in [0, 1]$ .

(b) To show that  $f_n(x) \xrightarrow{U} f(x)$  we need to prove that  $\lim_{n \to \infty} \left| \sup_{x \in [0,1]} |f_n(x) - f(x)| \right| = 0$ . We can use calculus to find the sup for each  $f_n(x) - f(x)$ .

For any 
$$x \in [0,1]$$
, let  $g_n(x) = f_n(x) - f(x) = x^n(1-x) - 0 = x^n(1-x)$ . Thus,  $g'_n(x) = nx^{n-1}(1-x) - x^n$ .

Hence 
$$g'_n(x) = [n(1-x) - x]x^{n-1} = [n - (n+1)x]x^{n-1}$$
. Therefore  $g'_n(x) = 0 \Rightarrow x = 0$  or  $x = \frac{n}{n+1} \in (0,1)$ .

Now, since  $g_n(0) = 0 = g_n(1)$ , then  $g_n(x)$  may have maximum at  $x = \frac{n}{n+1}$ . We use the first derivative test for that, and we get



Figure 2: The sign of  $g'_n(x)$ 

Hence  $g_n(x)$  has a maximum at  $x = \frac{n}{n+1}$  and its value is  $g_n\left(\frac{n}{n+1}\right) = \left(\frac{n}{n+1}\right)^n \left(1 - \frac{n}{n+1}\right)$ . Hence  $g_n\left(\frac{n}{n+1}\right) = \left(1 - \frac{1}{n+1}\right)^n \left(1 - \frac{n}{n+1}\right)$ . Now,  $\lim_{n \to \infty} \left[\sup_{x \in [0,1]} |f_n(x) - f(x)|\right] = \lim_{n \to \infty} g_n\left(\frac{n}{n+1}\right) = \lim_{n \to \infty} \left[\left(1 - \frac{1}{n+1}\right)^n \left(1 - \frac{n}{n+1}\right)\right] = e^{-1} \cdot 0 = 0.$ 

Hence  $f_n(x) \xrightarrow{U} 0$ .

**Example 6.9:** Let  $f_n: (-1,1] \to \mathbb{R}$  defined by  $f_n(x) = x^n$ .

(a) Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .

(b) Does  $f_n(x) \xrightarrow{U} f(x)$ , prove your answer.

#### Solution:

We have 
$$f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} 0, & \text{for } -1 < x < 1; \\ 1, & \text{for } x = 1. \end{cases}$$
  
Hence  
$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup \begin{cases} x^n, & \text{for } 0 \le x < 1; \\ 0, & \text{for } x = 1. \end{cases} = 1$$

Thus

$$\lim_{n \to \infty} \sup_{x \in [0,1]} |f_n(x) - f(x)| = \lim_{n \to \infty} 1 = 1 \neq 0.$$

Hence  $f_n(x) \xrightarrow{U} f(x)$ 

**Example 6.10:** Let  $f_n : [0,1] \to \mathbb{R}$  defined by  $f_n(x) = nx^n(1-x)$ .

- (a) Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .
- (b) Does  $f_n(x) \xrightarrow{U} f(x)$ , prove your answer.

#### Solution:

(a) For any  $x \in [0, 1)$ , we have

 $f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} [nx^n(1-x)] = (1-x) \lim_{n \to \infty} nx^n = (1-x) \cdot 0 = 0 \text{ and } f(1) = \lim_{n \to \infty} f_n(1) = 0.$ 



#### Figure 3:

Hence f(x) = 0 for every  $x \in [0, 1]$ .

(b)To show that  $f_n(x) \xrightarrow{U} f(x)$  we need to prove that  $\lim_{n \to \infty} \left| \sup_{x \in [0,1]} |f_n(x) - f(x)| \right| = 0$ . We can use calculus to find the sup for each  $f_n(x) - f(x)$ .

For any  $x \in [0,1]$ , let  $g_n(x) = f_n(x) - f(x) = nx^n(1-x) - 0 = nx^n(1-x)$ . Thus,  $g'_n(x) = n^2x^{n-1}(1-x) - nx^n$ .

Hence  $g'_n(x) = [n^2(1-x) - nx]x^{n-1} = [n^2 - (n^2 + n)x]x^{n-1}$ . Therefore  $g'_n(x) = 0 \Rightarrow x = 0$  or  $x = \frac{n}{n+1} \in (0,1)$ . Now, since  $g_n(0) = 0 = g_n(1)$ , then  $g_n(x)$  may have maximum at  $x = \frac{n}{n+1}$ . We use the first derivative test for that, and we get

The sign of 
$$g'_n(x)$$
  $0$   $\frac{n}{n+1}$  1  
+++---

Figure 4: The sign of  $g'_n(x)$ 

Hence  $g_n(x)$  has a maximum at  $x = \frac{n}{n+1}$  and its value is  $g_n\left(\frac{n}{n+1}\right) = n\left(\frac{n}{n+1}\right)^n \left(1 - \frac{n}{n+1}\right)$ . Hence  $g_n\left(\frac{n}{n+1}\right) = \left(1 - \frac{1}{n+1}\right)^n \left(n - \frac{n^2}{n+1}\right) = \left(1 - \frac{1}{n+1}\right)^n \left(\frac{n}{n+1}\right)$ .

Now, 
$$\lim_{n \to \infty} \left| \sup_{x \in [0,1]} \left| f_n(x) - f(x) \right| \right| = \lim_{n \to \infty} g_n\left(\frac{n}{n+1}\right) = \lim_{n \to \infty} \left[ \left(1 - \frac{1}{n+1}\right)^n \left(\frac{n}{n+1}\right) \right] = e^{-1} \cdot 1 = e^{-1} \neq 0.$$

Hence  $f_n(x) \not \longrightarrow 0$ .

## Theorem 6.2: []

Let A be a nonempty set of real numbers. Let  $f_n : A \to \mathbb{R}$  be a sequence of continuous functions  $n \ge 1$ , and for each  $x \in A$  let  $f(x) = \lim_{n \to \infty} f_n(x)$ . If  $\{f_n\}$  converges uniformly to f on A, then f(x) is continuous on A. **Proof:** We will show that f is continuous at any point  $x_0 \in A$ . Let  $\epsilon > 0$  be given, since  $f_n(x) \xrightarrow{U} f(x)$ , then there exist  $N \in \mathbb{N}$  such that if  $n > N \Longrightarrow |f_n(x) - f(x)| < \frac{\epsilon}{3} \qquad \forall x \in A$ . Now,  $N + 1 > N \Longrightarrow |f_{N+1}(x) - f(x)| < \frac{\epsilon}{3} \qquad \forall x \in A$ .



Since  $f_{N+1}$  is continuous on A, then  $f_{N+1}$  is continuous at  $x_0$ . Then there exist  $\delta > 0$  such that if  $|x - x_0| < \delta \Longrightarrow |f_{N+1}(x) - f_{N+1}(x_0)| < \frac{\epsilon}{3}$ .

Now, if 
$$|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| = |f(x) - f_{N+1}(x) + f_{N+1}(x) - f_{N+1}(x_0) + f_{N+1}(x_0) - f(x_0)|$$
  

$$\leq |f(x) - f_{N+1}(x)| + |f_{N+1}(x) - f_{N+1}(x_0)| + |f_{N+1}(x_0) - f(x_0)|$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

**Example 6.11:** Let  $f_n: (-1,1] \to \mathbb{R}$  defined by  $f_n(x) = x^n$ .

- (a) Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .
- (b) Does  $f_n(x) \xrightarrow{U} f(x)$ , on (-1, 1] prove your answer.

#### Solution:

We have  $f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} 0, & \text{for } -1 < x < 1; \\ 1, & \text{for } x = 1. \end{cases}$   $n \in \mathbb{N}$ , and  $f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} 0, & \text{for } -1 < x < 1; \\ 1, & \text{for } x = 1. \end{cases}$  $n \in \mathbb{N}$ , and  $f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} 0, & \text{for } -1 < x < 1; \\ 1, & \text{for } x = 1. \end{cases}$  is not continuous at x = 1, then by the above theorem  $f_n(x) \not \longrightarrow f(x)$  on [0, 1].

**Example 6.12:** Let  $f_n: (0,\infty) \to \mathbb{R}$  defined by  $f_n(x) = ne^{-nx}$ .

- (a) Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .
- (b) Does  $f_n(x) \xrightarrow{U} f(x)$ , on  $(0, \infty)$ ? prove your answer.
- (c) Does  $f_n(x) \xrightarrow{U} f(x)$ , on  $[a, \infty)$ ? a > 0, prove your answer.

#### Solution:

(a) We have

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} ne^{-nx} = \lim_{n \to \infty} \frac{n}{(e^x)^n} = 0.$$

(b) Now,

$$\lim_{n \to \infty} \left[ \sup_{x \in (0,\infty)} |f_n(x) - f(x)| \right] = \lim_{n \to \infty} \left[ \sup_{x \in (0,\infty)} \frac{n}{e^{nx}} \right] = \lim_{n \to \infty} n = \infty \neq 0,$$

then  $f_n(x) \xrightarrow{U} f(x)$  on  $(0, \infty)$ . (c) Since

$$\lim_{n \to \infty} \left[ \sup_{x \in [a,\infty)} |f_n(x) - f(x)| \right] = \lim_{n \to \infty} \left[ \sup_{x \in [a,\infty)} \frac{n}{e^{nx}} \right] = \lim_{n \to \infty} \frac{n}{e^{an}} = 0,$$

then  $f_n(x) \xrightarrow{U_{\cdot}} f(x)$  on  $[a, \infty)$ .

**Example 6.13:** Let  $f_n : \mathbb{R} \to \mathbb{R}$  defined by  $f_n(x) = \frac{x}{n}$ .

- (a) Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .
- (b) Does  $f_n(x) \xrightarrow{U} f(x)$ , on  $\mathbb{R}$ ? prove your answer.
- (c) Does  $f_n(x) \xrightarrow{U} f(x)$ , on [-a, a]? a > 0, prove your answer.

## Solution:

(a) We have  $f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x}{n} = x \lim_{n \to \infty} \frac{1}{n} = 0.$ (b) Now,  $\lim_{n \to \infty} \left[ \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| \right] = \lim_{n \to \infty} \left[ \sup_{x \in \mathbb{R}} \frac{|x|}{n} \right] = \infty \neq 0,$ 

then  $f_n(x) \not \longrightarrow f(x)$  on  $\mathbb{R}$ . (c) Since

$$\lim_{n \to \infty} \left[ \sup_{x \in [-a,a]} |f_n(x) - f(x)| \right] = \lim_{n \to \infty} \left[ \sup_{x \in [-a,a]} \frac{|x|}{n} \right] = \lim_{n \to \infty} \frac{a}{n} = 0,$$

then  $f_n(x) \xrightarrow{U_{\cdot}} f(x)$  on [-a, a].

**Definition 6.3:** Let A be a nonempty set of real numbers. Let  $f_n : A \to \mathbb{R}$  be a sequence of functions  $n \ge 1$ . We say that  $\{f_n(x)\}_{n=1}^{\infty}$  is uniformly Cauchy on A if for each  $\epsilon > 0$ , there is a number  $N = N(\epsilon) \in \mathbb{N}$  such that if  $n, m > N \Longrightarrow |f_n(x) - f_m(x)| < \epsilon$ .

## Theorem 6.3: The Cauchy Criterion For Uniform Convergence

Let A be a nonempty set of real numbers. Let  $f_n : A \to \mathbb{R}$  be a sequence of functions  $n \ge 1$ , and for each  $x \in A$  let  $f(x) = \lim_{n \to \infty} f_n(x)$ . Then  $\{f_n\}$  converges uniformly to f on A if and only if  $\{f_n\}$  uniformly Cauchy on A. **Proof:**  $(\Rightarrow)$  Suppose that  $\{f_n\}$  converges uniformly to f on A and let  $\epsilon > 0$  be given.

Since 
$$f_n(x) \xrightarrow{U} f(x)$$
, then there exist  $N \in \mathbb{N}$  such that  
if  $n > N \Rightarrow |f_n(x) - f(x)| < \frac{\epsilon}{2} \quad \forall x \in A$ .  
Hence if  $m > N \Rightarrow |f_m(x) - f(x)| < \frac{\epsilon}{2} \quad \forall x \in A$ .  
Thus if  $n, m > N \Rightarrow |f_n(x) - f_m(x)| = |f_n(x) - f(x) + f(x) - f_m(x)|$   
 $\leq |f_n(x) - f(x)| + |f_m(x) - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$   
Thus if  $n, m > N \Rightarrow |f_n(x) - f_m(x)| < \epsilon \quad \forall x \in A$ .

Therefore  $\{f_n\}$  is uniformly Cauchy on A.



(⇐) Suppose that  $\{f_n\}$  is uniformly Cauchy on A. and let  $\epsilon > 0$  be given.

Since  $\{f_n\}$  is uniformly Cauchy on A, then there exist  $N \in \mathbb{N}$  such that

$$f n, m > N \Rightarrow |f_n(x) - f_m(x)| < \frac{\epsilon}{2} \quad \forall x \in A. - - - - - - (1)$$

Hence for a fixed  $x \in A\{f_n(x)\}$  is Cauchy sequence  $\Rightarrow f(x) = \lim_{n \to \infty} f_n(x)$  exist.

i

Now, let 
$$m \to \infty$$
 in (1), we get, if  $n > N \Rightarrow |f_n(x) - f(x)| \le \frac{\epsilon}{2} < \epsilon \quad \forall x \in A.$ 

Then  $\{f_n\}$  converges uniformly to f on A.

## Theorem 6.4: []

Let  $f_n : [a, b] \to \mathbb{R}$  be a sequence of integrable functions  $n \ge 1$ , and for each  $x \in A$  let  $f(x) = \lim_{n \to \infty} f_n(x)$ . Suppose  $\{f_n\}$  converges uniformly to f on [a, b], then f(x) is integrable on [a, b] and

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} \lim_{n \to \infty} f_n(x) \, dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) \, dx$$

**Proof:** Let  $\epsilon > 0$  be given, since  $f_n(x) \xrightarrow{U} f(x)$ , then there exist  $N \in \mathbb{N}$  such that if  $n > N \Longrightarrow |f_n(x) - f(x)| < \frac{\epsilon}{3(b-a)} \quad \forall x \in [a,b].$ Now,  $N+1 > N \Longrightarrow |f_{N+1}(x) - f(x)| < \frac{\epsilon}{3(b-a)} \quad \forall x \in [a,b].$ Hence  $-\frac{\epsilon}{3(b-a)} < f_{N+1}(x) - f(x) < \frac{\epsilon}{3(b-a)} \quad \forall x \in [a,b].$ Since  $f_{N+1}$  is integrable on [a,b], then there exist a partition  $P = \{a = x_0 < x_1 < ... < x_{n-1} < x_n = b\}$  of [a,b] such that  $U(f_{N+1}, P) - L(f_{N+1}, P) < \frac{\epsilon}{3}.$ 

Note that

$$\sup_{x \in [x_{k-1}, x_k]} f(x) = \sup_{x \in [x_{k-1}, x_k]} [f(x) - f_{N+1}(x) + f_{N+1}(x)] \le \sup_{x \in [x_{k-1}, x_k]} [f(x) - f_{N+1}(x)] + \sup_{x \in [x_{k-1}, x_k]} f_{N+1}(x) \quad (*)$$

and

$$\inf_{x \in [x_{k-1}, x_k]} [f(x) - f_{N+1}(x)] + \inf_{x \in [x_{k-1}, x_k]} f_{N+1}(x) \le \inf_{x \in [x_{k-1}, x_k]} [f(x) - f_{N+1}(x) + f_{N+1}(x)] = \inf_{x \in [x_{k-1}, x_k]} f(x) \quad (**).$$

$$\begin{split} \operatorname{Now}, U(f,P) &= \sum_{k=1}^{n} M_{k}(f) \bigtriangleup x_{k} \\ &= \sum_{k=1}^{n} M_{k}(f - f_{N+1} + f_{N+1}) \bigtriangleup x_{k} \\ &\leq \sum_{k=1}^{n} M_{k}(f - f_{N+1}) \bigtriangleup x_{k} + \sum_{k=1}^{n} M_{k}(f_{N+1}) \bigtriangleup x_{k} \quad \text{using } (*) \\ &< \sum_{k=1}^{n} \frac{\epsilon}{3(b-a)} \bigtriangleup x_{k} + \sum_{k=1}^{n} M_{k}(f_{N+1}) \bigtriangleup x_{k} \\ &= \frac{\epsilon}{3(b-a)} \sum_{k=1}^{n} \bigtriangleup x_{k} + U(f_{N+1}, P) \\ &= \frac{\epsilon}{3(b-a)} (b-a) + U(f_{N+1}, P) \\ &\text{Thus } U(f,P) < \frac{\epsilon}{3} + U(f_{N+1}, P) \\ \text{Similarly, one can show } - L(f,P) < \frac{\epsilon}{3} - L(f_{N+1},P) \\ &\text{Hence } U(f,P) - L(f,P) < 2\frac{\epsilon}{3} + U(f_{N+1},P) - L(f_{N+1},P) < 2\frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{split}$$

Hence f is integrable on [a, b].

Since 
$$f_n(x) \xrightarrow{U} f(x)$$
, then there exist  $N \in \mathbb{N}$  such that if  $n > N \Rightarrow |f_n(x) - f(x)| < \frac{\epsilon}{3(b-a)} \quad \forall x \in [a,b]$ .  
Now, if  $n > N \Rightarrow \left| \int_a^b f_n(x) \, dx - \int_a^b f(x) \, dx \right| \le \int_a^b |f_n(x) - f(x)| \, dx < \int_a^b \frac{\epsilon}{3(b-a)} \, dx = \frac{\epsilon}{3(b-a)} (b-a) < \epsilon$ .  
Thus  $\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx$ .

**Example 6.14:** Let  $f_n : \mathbb{R} \to \mathbb{R}$  defined by  $f_n(x) = \frac{nx+1}{n+nx^2}$ .

- (a) Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .
- (b) Does  $f_n(x) \xrightarrow{U} f(x)$ , on  $\mathbb{R}$ ? prove your answer.
- (c) Evaluate  $\lim_{n \to \infty} \int_0^1 f_n(x) \, dx$ .

#### Solution:



Figure 5:

(a) Note that  $f_n(x) = \frac{nx+1}{n+nx^2} = \frac{x}{1+x^2} + \frac{1}{n(1+x^2)}$ . Hence

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left[ \frac{x}{1+x^2} + \frac{1}{n(1+x^2)} \right] = \frac{x}{1+x^2}.$$

(b) Now,

$$\lim_{n \to \infty} \left[ \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| \right] = \lim_{n \to \infty} \left[ \sup_{x \in \mathbb{R}} \frac{1}{n(1+x^2)} \right] = \lim_{n \to \infty} \frac{1}{n} = 0,$$

then  $f_n(x) \xrightarrow{U} f(x)$  on  $\mathbb{R}$ .

(c) Since  $f_n(x) \xrightarrow{U} f(x)$  on  $\mathbb{R}$ , then  $f_n(x) \xrightarrow{U} f(x)$  on [0,1]. Hence

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 \lim_{n \to \infty} f_n(x) \, dx = \int_0^1 f(x) \, dx = \int_0^1 \frac{x}{1+x^2} \, dx = \frac{1}{2} \left[ \ln\left(1+x^2\right) \right]_0^1 = \frac{1}{2} \ln 2 = \ln\sqrt{2}.$$

- **Example 6.15:** Let  $f_n : \mathbb{R} \to \mathbb{R}$  defined by  $f_n(x) = \frac{x+n}{n+nx^2}$ .
- (a) Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .
- (b) Does  $f_n(x) \xrightarrow{U} f(x)$ , on  $\mathbb{R}$ ? prove your answer.
- (c) Evaluate  $\lim_{n \to \infty} \int_0^1 f_n(x) \, dx$ .

## Solution:



Figure 6:

(a) Note that  $f_n(x) = \frac{x+n}{n+nx^2} = \frac{\frac{x}{n}}{1+x^2} + \frac{1}{1+x^2}$ . Hence

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left[ \frac{\frac{x}{n}}{1 + x^2} + \frac{1}{1 + x^2} \right] = \frac{1}{1 + x^2}.$$

(b) Now, let 
$$g_n(x) = f_n(x) - f(x) = \frac{\frac{x}{n}}{1+x^2} + \frac{1}{1+x^2} - \frac{1}{1+x^2} = \frac{x}{n(1+x^2)}.$$

$$g'_n(x) = \frac{n + nx^2 - x(2nx)}{n^2(1+x^2)^2} = \frac{n - nx^2}{n^2(1+x^2)^2} = \frac{1 - x^2}{n(1+x^2)}$$
$$g'_n(x) = 0 \iff 1 - x^2 = 0 \iff x = \pm 1.$$

The sign of  $g'_n(x)$ 

Figure 7:

Hence  $|g_n(x)|$  has a maximum at  $x = \pm 1$ .

$$\lim_{n \to \infty} \left[ \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| \right] = \lim_{n \to \infty} \left[ \sup_{x \in \mathbb{R}} \frac{|x|}{n(1+x^2)} \right] = \lim_{n \to \infty} \frac{1}{2n} = 0,$$

then  $f_n(x) \xrightarrow{U_{\cdot}} f(x)$  on  $\mathbb{R}$ .

(c) Since  $f_n(x) \xrightarrow{U} f(x)$  on  $\mathbb{R}$ , and each  $f_n(x)$  is continuous, then  $f_n(x) \xrightarrow{U} f(x)$  on [0, 1] and each  $f_n(x)$  is integrable. Hence

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 \lim_{n \to \infty} f_n(x) \, dx = \int_0^1 f(x) \, dx = \int_0^1 \frac{1}{1+x^2} \, dx = \left[\tan^{-1} x\right]_0^1 = \tan^{-1} 1 - \tan^{-1} 0 = \frac{\pi}{4} - 0 = \frac{\pi}{4}$$

- **Example 6.16:** Let  $f_n : \mathbb{R} \to \mathbb{R}$  defined by  $f_n(x) = \frac{n + \sin x}{2n + \cos^2 x}$ .
- (a) Find  $f(x) = \lim_{n \to \infty} f_n(x)$ .
- (b) Does  $f_n(x) \xrightarrow{U} f(x)$ , on  $\mathbb{R}$ ? prove your answer.
- (c) Evaluate  $\lim_{n \to \infty} \int_{1}^{5} f_n(x) dx$ .
- (d) Evaluate  $\lim_{n \to \infty} \lim_{x \to (2+\frac{\pi}{3})} f_n(x)$ .

Solution:



Figure 8:

(a)

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left[ \frac{n + \sin x}{2n + \cos^2 x} \right] = \lim_{n \to \infty} \left[ \frac{1 + \frac{\sin x}{n}}{2 + \frac{\cos^2 x}{n}} \right] = \frac{1}{2}.$$

Sequence of Functions

(b) Now, let 
$$f_n(x) - f(x) = \frac{n + \sin x}{2n + \cos^2 x} - \frac{1}{2} = \frac{2n + \sin x - 2n - \cos^2 x}{2(2n + \cos^2 x)} = \frac{\sin x - \cos^2 x}{2(2n + \cos^2 x)}$$
.  
Hence  $|f_n(x) - f(x)| = \left|\frac{\sin x - \cos^2 x}{2(2n + \cos^2 x)}\right| \le \frac{|\sin x| + |\cos^2 x|}{2(2n + \cos^2 x)} \le \frac{2}{4n} = \frac{1}{2n} \quad \forall x \in \mathbb{R}.$   
Thus  $|f_n(x) - f(x)| \le \frac{1}{2n} \quad \forall x \in \mathbb{R}, \text{ and hence } 0 \le \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| \le \frac{1}{2n}.$ 

Since 
$$0 \le \lim_{n \to \infty} \left[ \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| \right] \le \lim_{n \to \infty} \frac{1}{2n} = 0$$
, then  $\lim_{n \to \infty} \left[ \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| \right] = 0$ .

Therefore  $f_n(x) \xrightarrow{U_{\cdot}} f(x)$  on  $\mathbb{R}$ .

(c) Since  $f_n(x) \xrightarrow{U} f(x)$  on  $\mathbb{R}$ , and each  $f_n(x)$  is continuous, then  $f_n(x) \xrightarrow{U} f(x)$  on [0,1] and each  $f_n(x)$  is integrable. Hence

$$\lim_{n \to \infty} \int_{1}^{5} f_n(x) \, dx = \int_{1}^{5} \lim_{n \to \infty} f_n(x) \, dx = \int_{1}^{5} f(x) \, dx = \int_{1}^{5} \frac{1}{2} \, dx = \frac{1}{2}(5-1) = 2.$$

(d) Since  $f_n(x) \xrightarrow{U} f(x)$  on  $\mathbb{R}$ , and each  $f_n(x)$  is continuous, then f(x) is continuous and

$$\lim_{n \to \infty} \lim_{x \to (2+\frac{\pi}{3})} f_n(x) = \lim_{x \to (2+\frac{\pi}{3})} \lim_{n \to \infty} f_n(x) = \lim_{x \to (2+\frac{\pi}{3})} \frac{1}{2} = \frac{1}{2}$$