Sequence of Functions

Dr.Hamed Al-Sulami

December 4, 2011

Definition 6.1: Let A be a nonempty set of real numbers. Let $f_{n}: A \rightarrow \mathbb{R}$ be a sequence of functions $n \geq 1$, and let $f: A \rightarrow \mathbb{R}$ be a function. We say that $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ converges pointwise to $f(x)$ if for each $x \in A$

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x)
$$

and we write

$$
f_{n}(x) \xrightarrow{p . w .} f(x)
$$

Example 6.1: Let $f_{n}:(-1,1] \rightarrow \mathbb{R}$ defined by $f_{n}(x)=x^{n}$. Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.

Solution:

$$
\begin{aligned}
& \qquad \text { For } x=1, \Rightarrow f_{n}(1)=(1)^{n}=1 \text { and } \lim _{n \rightarrow \infty} f_{n}(1)=\lim _{n \rightarrow \infty} 1=1 . \\
& \text { For }-1<x<1, \Rightarrow \lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} x^{n}=0 . \\
& \text { Hence } f(x)=\lim _{n \rightarrow \infty} f_{n}(x)= \begin{cases}0, & \text { for }-1<x<1 ; \\
1, & \text { for } x=1 .\end{cases}
\end{aligned}
$$

Example 6.2: Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{n}(x)=\frac{x}{n}$. Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
Solution: For any $x \in \mathbb{R}$, we have $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{x}{n}=x \lim _{n \rightarrow \infty} \frac{1}{n}=x \cdot 0=0$.

Example 6.3: Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{n}(x)=\frac{x+n x^{2}}{n}$. Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.

Solution: For any $x \in \mathbb{R}$, we have

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{x+n x^{2}}{n}=\lim _{n \rightarrow \infty}\left[\frac{x}{n}+\frac{n x^{2}}{n}\right]=x \lim _{n \rightarrow \infty} \frac{1}{n}+x^{2} \lim _{n \rightarrow \infty} 1=0+x^{2}=x^{2}
$$

Example 6.4: Let $f_{n}: \mathbb{R} \backslash\{-1\} \rightarrow \mathbb{R}$ defined by $f_{n}(x)=\frac{x^{n}}{1+x^{n}}$. Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.

Solution: For any $-1<x<1$, we have

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{x^{n}}{1+x^{n}}=\frac{\lim _{n \rightarrow \infty} x^{n}}{\lim _{n \rightarrow \infty}\left(1+x^{n}\right)}=\frac{0}{1+0}=0
$$

For $x=1$, we have $f_{n}(1)=\frac{1^{n}}{1+1^{n}}=\frac{1}{2}$, hence $f(1)=\lim _{n \rightarrow \infty} f_{n}(1)=\lim _{n \rightarrow \infty} \frac{1}{2}=\frac{1}{2}$.
For $|x|>1$, we have $f_{n}(x)=\frac{x^{n}}{1+x^{n}}=\frac{1}{\left(\frac{1}{x}\right)^{n}+1}$, hence $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{1}{x}\right)^{n}+1}=\frac{1}{0+1}=1$.
Hence

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)= \begin{cases}0, & \text { if }-1<x<1 \\ \frac{1}{2}, & \text { if } x=\frac{1}{2} \\ 1, & \text { if }|x|>1\end{cases}
$$

Remark 6.1: Let A be a nonempty set of real numbers. Let $f_{n}: A \rightarrow \mathbb{R}$ be a sequence of functions $n \geq 1$, and let $f: A \rightarrow \mathbb{R}$ be a function. Then $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ converges pointwise to $f(x)$ if and only if for each $x \in A$ and for each $\epsilon>0$ there exist $N \in \mathbb{N}(N=N(x, \epsilon)$ i.e. N depend on x and $\epsilon)$ such that

$$
\text { if } n>N \Rightarrow\left|f_{n}(x)-f(x)\right|<\epsilon
$$

Example 6.5: Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{n}(x)=\frac{x^{2}+n x}{n}$.
(a) Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Prove your answer in part (a) using the definition

Solution: (a) For any $x \in \mathbb{R}$, we have

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty}\left[\frac{x^{2}}{n}+\frac{n x}{n}\right]=\lim _{n \rightarrow \infty}\left[\frac{x^{2}}{n}+x\right]=x .
$$

(b)

Note that for $x \neq 0$, we have $\left|f_{n}(x)-f(x)\right|=\left|\frac{x^{2}}{n}+x-x\right|=\frac{|x|^{2}}{n}$ and for $x=0$, we have $\left|f_{n}(0)-f(0)\right|=0$.

Hence if we let $\frac{|x|^{2}}{n}<\epsilon \Rightarrow \frac{n}{|x|^{2}}>\frac{1}{\epsilon} \Rightarrow n>\frac{|x|^{2}}{\epsilon}$.

To prove that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$. Let $\epsilon>0$ be given and let $x \in \mathbb{R}$. Choose $N \in \mathbb{N}$ such that $N \geq \frac{|x|^{2}}{\epsilon}$.

$$
\text { If } \begin{aligned}
n>N & \Rightarrow \frac{1}{n}<\frac{1}{N} \leq \frac{\epsilon}{|x|^{2}} . \\
n>N & \Rightarrow \frac{1}{n}<\frac{\epsilon}{|x|^{2}} . \\
n>N & \Rightarrow \frac{|x|^{2}}{n}<\epsilon .
\end{aligned}
$$

Now, if $n>N \Rightarrow\left|f_{n}(x)-f(x)\right|=\left|\frac{x^{2}}{n}+x-x\right|=\frac{|x|^{2}}{n}<\epsilon$.
Now, if $n>N \Rightarrow\left|f_{n}(x)-f(x)\right|<\epsilon$.
Therefore $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$.

Definition 6.2: Let A be a nonempty set of real numbers. Let $f_{n}: A \rightarrow \mathbb{R}$ be a sequence of functions $n \geq 1$, and let $f: A \rightarrow \mathbb{R}$ be a function. We say that $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ converges uniformly to $f(x)$, and we write $f_{n}(x) \xrightarrow{U .} f(x)$ if $\epsilon>0$ there exist $N \in \mathbb{N}(N=N(\epsilon)$ i.e. N depend on ϵ only $)$ such that

$$
\text { if } n>N \Rightarrow\left|f_{n}(x)-f(x)\right|<\epsilon \text { for every } x \in A
$$

Example 6.6: Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{n}(x)=\frac{n x+1}{n}$.
(a) Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Does $f_{n}(x) \xrightarrow{U .} f(x)$, prove your answer in part (a) using the definition.

Solution: (a) For any $x \in \mathbb{R}$, we have

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty}\left[\frac{n x}{n}+\frac{1}{n}\right]=\lim _{n \rightarrow \infty}\left[x+\frac{1}{n}\right]=x
$$

(b)

$$
\text { Note that for any } x \text {, we have }\left|f_{n}(x)-f(x)\right|=\left|x+\frac{1}{n}-x\right|=\frac{1}{n}
$$

Hence if we let $\frac{1}{n}<\epsilon \Rightarrow n>\frac{1}{\epsilon}$.
To prove that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ uniformly. Let $\epsilon>0$ be given and choose $N \in \mathbb{N}$ such that $N \geq \frac{1}{\epsilon}$.

$$
\begin{aligned}
& \qquad \text { If } n>N \Rightarrow \frac{1}{n}<\frac{1}{N} \leq \epsilon \\
& \text { Now, if } n>N \Rightarrow\left|f_{n}(x)-f(x)\right|=\left|\frac{1}{n}+x-x\right|=\frac{1}{n}<\epsilon . \\
& \text { Now, if } n>N \Rightarrow\left|f_{n}(x)-f(x)\right|<\epsilon \text {. }
\end{aligned}
$$

Therefore $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ uniformly.

Lemma 6.1: Let A be a nonempty set of real numbers. Let $f_{n}: A \rightarrow \mathbb{R}$ be a sequence of functions $n \geq 1$, and for each $x \in A$ let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. If $x_{0} \in A$ and $\left\{x_{n}\right\} \subset A$ sequence such that $\lim _{n \rightarrow \infty} x_{n}=x_{0}$ and $\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right) \neq f\left(x_{0}\right)$, then $\left\{f_{n}(x)\right\}$ does not converge uniformly on A.
Proof: This is left as an exercise.

Example 6.7: Let $f_{n}:[1, \infty) \rightarrow \mathbb{R}$ defined by $f_{n}(x)=\frac{x^{n}}{x^{n}+1}$.
(a) Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Does $f_{n}(x) \xrightarrow{U .} f(x)$, prove your answer in part (a).

Solution: (a)

$$
\text { For } x=1 \text {, we have } f(1)=\lim _{n \rightarrow \infty} f_{n}(1)=\lim _{n \rightarrow \infty} \frac{1^{n}}{1^{n}+1}=\lim _{n \rightarrow \infty} \frac{1}{2}=\frac{1}{2}
$$

For $x>1$, we have $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{x^{n}}{x^{n}+1}=\lim _{n \rightarrow \infty} \frac{1}{1+\left(\frac{1}{x}\right)^{n}}=\frac{1}{1+0}=1$.
Thus

$$
f(x)= \begin{cases}\frac{1}{2}, & \text { for } x=1 \\ 1, & \text { for } x>1\end{cases}
$$

(b) Now, let $x_{n}=1+\frac{1}{n} \in[0, \infty)$ and $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)=1 \in[0, \infty)$,
but $\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=\lim _{n \rightarrow \infty} f_{n}\left(\left(1+\frac{1}{n}\right)\right)=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)^{n}}{1+\left(1+\frac{1}{n}\right)^{n}}=\frac{e}{1+e} \neq \frac{1}{2}=f(1)$. Hence $\left\{f_{n}(x)\right\}$ does not converge uniformly on $[1, \infty)$.

Theorem 6.1: []

Let A be a nonempty set of real numbers. Let $f_{n}: A \rightarrow \mathbb{R}$ be a sequence of functions $n \geq 1$, and for each $x \in A$ let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.

Then $\left\{f_{n}\right\}$ converges uniformly to f on A if and only if $\lim _{n \rightarrow \infty}\left[\sup _{x \in A}\left|f_{n}(x)-f(x)\right|\right]=0$.
Proof: (\Rightarrow) Suppose that $\left\{f_{n}\right\}$ converges uniformly to f on A and let $\epsilon>0$ be given.

Since $f_{n}(x) \xrightarrow{U .} f(x)$, then there exist $N \in \mathbb{N}$ such that

$$
\text { if } n>N \Rightarrow\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{2} \quad \forall x \in A \text {. }
$$

Hence if $n>N \Rightarrow \sup _{x \in A}\left|f_{n}(x)-f(x)\right| \leq \frac{\epsilon}{2}<\epsilon$.
Thus $\lim _{n \rightarrow \infty}\left[\sup _{x \in A}\left|f_{n}(x)-f(x)\right|\right]=0$.
(\Leftarrow) Suppose that $\lim _{n \rightarrow \infty}\left[\sup _{x \in A}\left|f_{n}(x)-f(x)\right|\right]=0$ and let $\epsilon>0$ be given.
Since $\lim _{n \rightarrow \infty}\left[\sup _{x \in A}\left|f_{n}(x)-f(x)\right|\right]=0$, then there exist $N \in \mathbb{N}$ such that

$$
\text { if } n>N \Rightarrow \sup _{x \in A}\left|f_{n}(x)-f(x)\right|<\epsilon \quad \forall x \in A
$$

Hence if $n>N \Rightarrow\left|f_{n}(x)-f(x)\right| \leq \sup _{x \in A}\left|f_{n}(x)-f(x)\right|<\epsilon \quad \forall x \in A$.
Thus $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ uniformly on A.

Example 6.8: Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ defined by $f_{n}(x)=x^{n}(1-x)$.
(a) Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Does $f_{n}(x) \xrightarrow{U .} f(x)$, prove your answer.

Solution:

Figure 1:
(a) For any $x \in[0,1)$, we have

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty}\left[x^{n}(1-x)\right]=(1-x) \lim _{n \rightarrow \infty} x^{n}=(1-x) \cdot 0=0 \text { and } f(1)=\lim _{n \rightarrow \infty} f_{n}(1)=0
$$

Hence $f(x)=0 \quad$ for every $x \in[0,1]$.
(b)To show that $f_{n}(x) \xrightarrow{U .} f(x)$ we need to prove that $\lim _{n \rightarrow \infty}\left[\sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right|\right]=0$. We can use calculus to find the sup for each $f_{n}(x)-f(x)$.

For any $x \in[0,1]$, let $g_{n}(x)=f_{n}(x)-f(x)=x^{n}(1-x)-0=x^{n}(1-x)$. Thus, $g_{n}^{\prime}(x)=n x^{n-1}(1-x)-x^{n}$.

Hence $g_{n}^{\prime}(x)=[n(1-x)-x] x^{n-1}=[n-(n+1) x] x^{n-1}$. Therefore $g_{n}^{\prime}(x)=0 \Rightarrow x=0$ or $x=\frac{n}{n+1} \in(0,1)$.

Now, since $g_{n}(0)=0=g_{n}(1)$, then $g_{n}(x)$ may have maximum at $x=\frac{n}{n+1}$. We use the first derivative test for that, and we get

The sign of $g_{n}^{\prime}(x)$

Figure 2: The sign of $g_{n}^{\prime}(x)$
Hence $g_{n}(x)$ has a maximum at $x=\frac{n}{n+1}$ and its value is $g_{n}\left(\frac{n}{n+1}\right)=\left(\frac{n}{n+1}\right)^{n}\left(1-\frac{n}{n+1}\right)$.
Hence $g_{n}\left(\frac{n}{n+1}\right)=\left(1-\frac{1}{n+1}\right)^{n}\left(1-\frac{n}{n+1}\right)$.
Now, $\lim _{n \rightarrow \infty}\left[\sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right|\right]=\lim _{n \rightarrow \infty} g_{n}\left(\frac{n}{n+1}\right)=\lim _{n \rightarrow \infty}\left[\left(1-\frac{1}{n+1}\right)^{n}\left(1-\frac{n}{n+1}\right)\right]=e^{-1} \cdot 0=0$.
Hence $f_{n}(x) \xrightarrow{U .} 0$.

Example 6.9: Let $f_{n}:(-1,1] \rightarrow \mathbb{R}$ defined by $f_{n}(x)=x^{n}$.
(a) Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Does $f_{n}(x) \xrightarrow{U .} f(x)$, prove your answer.

Solution:

We have $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)= \begin{cases}0, & \text { for }-1<x<1 ; \\ 1, & \text { for } x=1 .\end{cases}$
Hence

$$
\sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right|=\sup \begin{cases}x^{n}, & \text { for } 0 \leq x<1 ; \\ 0, & \text { for } x=1\end{cases}
$$

Thus

$$
\lim _{n \rightarrow \infty} \sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right|=\lim _{n \rightarrow \infty} 1=1 \neq 0 .
$$

Hence $f_{n}(x) \stackrel{\text { U/ }}{\hookrightarrow} f(x)$

Example 6.10: Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ defined by $f_{n}(x)=n x^{n}(1-x)$.
(a) Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Does $f_{n}(x) \xrightarrow{U .} f(x)$, prove your answer.

Solution:

(a) For any $x \in[0,1)$, we have

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty}\left[n x^{n}(1-x)\right]=(1-x) \lim _{n \rightarrow \infty} n x^{n}=(1-x) \cdot 0=0 \text { and } f(1)=\lim _{n \rightarrow \infty} f_{n}(1)=0
$$

Figure 3:

Hence $f(x)=0 \quad$ for every $x \in[0,1]$.
(b)To show that $f_{n}(x) \xrightarrow{U .} f(x)$ we need to prove that $\lim _{n \rightarrow \infty}\left[\sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right|\right]=0$. We can use calculus to find the sup for each $f_{n}(x)-f(x)$.

For any $x \in[0,1]$, let $g_{n}(x)=f_{n}(x)-f(x)=n x^{n}(1-x)-0=n x^{n}(1-x)$. Thus, $g_{n}^{\prime}(x)=n^{2} x^{n-1}(1-x)-n x^{n}$.

Hence $g_{n}^{\prime}(x)=\left[n^{2}(1-x)-n x\right] x^{n-1}=\left[n^{2}-\left(n^{2}+n\right) x\right] x^{n-1}$. Therefore $g_{n}^{\prime}(x)=0 \Rightarrow x=0$ or $x=\frac{n}{n+1} \in(0,1)$. Now, since $g_{n}(0)=0=g_{n}(1)$, then $g_{n}(x)$ may have maximum at $x=\frac{n}{n+1}$. We use the first derivative test for that, and we get

The sign of $g_{n}^{\prime}(x)$

Figure 4: The sign of $g_{n}^{\prime}(x)$
Hence $g_{n}(x)$ has a maximum at $x=\frac{n}{n+1}$ and its value is $g_{n}\left(\frac{n}{n+1}\right)=n\left(\frac{n}{n+1}\right)^{n}\left(1-\frac{n}{n+1}\right)$.
Hence $g_{n}\left(\frac{n}{n+1}\right)=\left(1-\frac{1}{n+1}\right)^{n}\left(n-\frac{n^{2}}{n+1}\right)=\left(1-\frac{1}{n+1}\right)^{n}\left(\frac{n}{n+1}\right)$.

$$
\text { Now, } \lim _{n \rightarrow \infty}\left[\sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right|\right]=\lim _{n \rightarrow \infty} g_{n}\left(\frac{n}{n+1}\right)=\lim _{n \rightarrow \infty}\left[\left(1-\frac{1}{n+1}\right)^{n}\left(\frac{n}{n+1}\right)\right]=e^{-1} \cdot 1=e^{-1} \neq 0
$$

Hence $f_{n}(x) \stackrel{U /}{\sim} 0$.

Theorem 6.2: []

Let A be a nonempty set of real numbers. Let $f_{n}: A \rightarrow \mathbb{R}$ be a sequence of continuous functions $n \geq 1$, and for each $x \in A$ let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. If $\left\{f_{n}\right\}$ converges uniformly to f on A, then $f(x)$ is continuous on A.
Proof: We will show that f is continuous at any point $x_{0} \in A$. Let $\epsilon>0$ be given, since $f_{n}(x) \xrightarrow{U .} f(x)$, then there exist $N \in \mathbb{N}$ such that if $n>N \Longrightarrow\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{3} \quad \forall x \in A$.
Now, $N+1>N \Longrightarrow\left|f_{N+1}(x)-f(x)\right|<\frac{\epsilon}{3} \quad \forall x \in A$.

Since f_{N+1} is continuous on A, then f_{N+1} is continuous at x_{0}. Then there exist $\delta>0$ such that if $\left|x-x_{0}\right|<\delta \Longrightarrow\left|f_{N+1}(x)-f_{N+1}\left(x_{0}\right)\right|<\frac{\epsilon}{3}$.

$$
\text { Now, if }\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|=\left|f(x)-f_{N+1}(x)+f_{N+1}(x)-f_{N+1}\left(x_{0}\right)+f_{N+1}\left(x_{0}\right)-f\left(x_{0}\right)\right|, ~ \begin{aligned}
& \leq\left|f(x)-f_{N+1}(x)\right|+\left|f_{N+1}(x)-f_{N+1}\left(x_{0}\right)\right|+\left|f_{N+1}\left(x_{0}\right)-f\left(x_{0}\right)\right| \\
& <\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon .
\end{aligned}
$$

Example 6.11: Let $f_{n}:(-1,1] \rightarrow \mathbb{R}$ defined by $f_{n}(x)=x^{n}$.
(a) Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Does $f_{n}(x) \xrightarrow{U .} f(x)$, on $(-1,1]$ prove your answer.

Solution:

We have $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\left\{\begin{array}{ll}0, & \text { for }-1<x<1 ; \\ 1, & \text { for } x=1 .\end{array}\right.$ Now, since $f_{n}(x)=x^{n}$ is continuous on $[0,1]$ for each $n \in \mathbb{N}$, and $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\left\{\begin{array}{ll}0, & \text { for }-1<x<1 ; \\ 1, & \text { for } x=1 .\end{array}\right.$ is not continuous at $x=1$, then by the above theorem $f_{n}(x) \stackrel{H}{\rightarrow} f(x)$ on $[0,1]$.

Example 6.12: Let $f_{n}:(0, \infty) \rightarrow \mathbb{R}$ defined by $f_{n}(x)=n e^{-n x}$.
(a) Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Does $f_{n}(x) \xrightarrow{U .} f(x)$, on $(0, \infty)$? prove your answer.
(c) Does $f_{n}(x) \xrightarrow{U .} f(x)$, on $[a, \infty)$? $\quad a>0$, prove your answer.

Solution:

(a) We have

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} n e^{-n x}=\lim _{n \rightarrow \infty} \frac{n}{\left(e^{x}\right)^{n}}=0 .
$$

(b) Now,

$$
\lim _{n \rightarrow \infty}\left[\sup _{x \in(0, \infty)}\left|f_{n}(x)-f(x)\right|\right]=\lim _{n \rightarrow \infty}\left[\sup _{x \in(0, \infty)} \frac{n}{e^{n x}}\right]=\lim _{n \rightarrow \infty} n=\infty \neq 0
$$

then $f_{n}(x) \stackrel{U /}{\hookrightarrow} f(x)$ on $(0, \infty)$.
(c) Since

$$
\lim _{n \rightarrow \infty}\left[\sup _{x \in[a, \infty)}\left|f_{n}(x)-f(x)\right|\right]=\lim _{n \rightarrow \infty}\left[\sup _{x \in[a, \infty)} \frac{n}{e^{n x}}\right]=\lim _{n \rightarrow \infty} \frac{n}{e^{a n}}=0
$$

then $f_{n}(x) \xrightarrow{U .} f(x)$ on $[a, \infty)$.

Example 6.13: Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{n}(x)=\frac{x}{n}$.
(a) Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Does $f_{n}(x) \xrightarrow{U .} f(x)$, on \mathbb{R} ? prove your answer.
(c) Does $f_{n}(x) \xrightarrow{U .} f(x)$, on $[-a, a]$? $\quad a>0$, prove your answer.

Solution:

(a) We have $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{x}{n}=x \lim _{n \rightarrow \infty} \frac{1}{n}=0$.
(b) Now,

$$
\lim _{n \rightarrow \infty}\left[\sup _{x \in \mathbb{R}}\left|f_{n}(x)-f(x)\right|\right]=\lim _{n \rightarrow \infty}\left[\sup _{x \in \mathbb{R}} \frac{|x|}{n}\right]=\infty \neq 0
$$

then $f_{n}(x) \stackrel{U /}{\rightarrow} f(x)$ on \mathbb{R}.
(c) Since

$$
\lim _{n \rightarrow \infty}\left[\sup _{x \in[-a, a]}\left|f_{n}(x)-f(x)\right|\right]=\lim _{n \rightarrow \infty}\left[\sup _{x \in[-a, a]} \frac{|x|}{n}\right]=\lim _{n \rightarrow \infty} \frac{a}{n}=0
$$

then $f_{n}(x) \xrightarrow{U .} f(x)$ on $[-a, a]$.

Definition 6.3: Let A be a nonempty set of real numbers. Let $f_{n}: A \rightarrow \mathbb{R}$ be a sequence of functions $n \geq 1$.
We say that $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ is uniformly Cauchy on A if for each $\epsilon>0$, there ia a number $N=N(\epsilon) \in \mathbb{N}$ such that if $n, m>N \Longrightarrow\left|f_{n}(x)-f_{m}(x)\right|<\epsilon$.

Theorem 6.3: The Cauchy Criterion For Uniform Convergence

Let A be a nonempty set of real numbers. Let $f_{n}: A \rightarrow \mathbb{R}$ be a sequence of functions $n \geq 1$, and for each $x \in A$ let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. Then $\left\{f_{n}\right\}$ converges uniformly to f on A if and only if $\left\{f_{n}\right\}$ uniformly Cauchy on A. Proof: (\Rightarrow) Suppose that $\left\{f_{n}\right\}$ converges uniformly to f on A and let $\epsilon>0$ be given.

Since $f_{n}(x) \xrightarrow{U .} f(x)$, then there exist $N \in \mathbb{N}$ such that

$$
\begin{array}{r}
\text { if } n>N \Rightarrow\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{2} \quad \forall x \in A . \\
\text { Hence if } m>N \Rightarrow\left|f_{m}(x)-f(x)\right|<\frac{\epsilon}{2} \quad \forall x \in A .
\end{array}
$$

$$
\text { Thus if } n, m>N \Rightarrow\left|f_{n}(x)-f_{m}(x)\right|=\left|f_{n}(x)-f(x)+f(x)-f_{m}(x)\right|
$$

$$
\leq\left|f_{n}(x)-f(x)\right|+\left|f_{m}(x)-f(x)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Thus if $n, m>N \Rightarrow\left|f_{n}(x)-f_{m}(x)\right|<\epsilon \quad \forall x \in A$.
Therefore $\left\{f_{n}\right\}$ is uniformly Cauchy on A.
(\Leftarrow) Suppose that $\left\{f_{n}\right\}$ is uniformly Cauchy on A. and let $\epsilon>0$ be given.

Since $\left\{f_{n}\right\}$ is uniformly Cauchy on A, then there exist $N \in \mathbb{N}$ such that

$$
\text { if } n, m>N \Rightarrow\left|f_{n}(x)-f_{m}(x)\right|<\frac{\epsilon}{2} \quad \forall x \in A .------(1)
$$

Hence for a fixed $x \in A\left\{f_{n}(x)\right\}$ is Cauchy sequence $\Rightarrow f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ exist.
Now, let $m \rightarrow \infty$ in (1), we get, if $n>N \Rightarrow\left|f_{n}(x)-f(x)\right| \leq \frac{\epsilon}{2}<\epsilon \quad \forall x \in A$.
Then $\left\{f_{n}\right\}$ converges uniformly to f on A.

Theorem 6.4: []

Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ be a sequence of integrable functions $n \geq 1$, and for each $x \in A$ let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. Suppose $\left\{f_{n}\right\}$ converges uniformly to f on $[a, b]$, then $f(x)$ is integrable on $[a, b]$ and

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} \lim _{n \rightarrow \infty} f_{n}(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x
$$

Proof: Let $\epsilon>0$ be given, since $f_{n}(x) \xrightarrow{U .} f(x)$, then there exist $N \in \mathbb{N}$ such that if $n>N \Longrightarrow\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{3(b-a)} \quad \forall x \in[a, b]$.
Now, $N+1>N \Longrightarrow\left|f_{N+1}(x)-f(x)\right|<\frac{\epsilon}{3(b-a)} \quad \forall x \in[a, b]$.
Hence $-\frac{\epsilon}{3(b-a)}<f_{N+1}(x)-f(x)<\frac{\epsilon}{3(b-a)} \quad \forall x \in[a, b]$.
Since f_{N+1} is integrable on $[a, b]$, then there exist a partition $P=\left\{a=x_{0}<x_{1}<\ldots<x_{n-1}<x_{n}=b\right\}$ of $[a, b]$ such that $U\left(f_{N+1}, P\right)-L\left(f_{N+1}, P\right)<\frac{\epsilon}{3}$.

Note that

$$
\begin{equation*}
\sup _{x \in\left[x_{k-1}, x_{k}\right]} f(x)=\sup _{x \in\left[x_{k-1}, x_{k}\right]}\left[f(x)-f_{N+1}(x)+f_{N+1}(x)\right] \leq \sup _{x \in\left[x_{k-1}, x_{k}\right]}\left[f(x)-f_{N+1}(x)\right]+\sup _{x \in\left[x_{k-1}, x_{k}\right]} f_{N+1}(x) \tag{*}
\end{equation*}
$$

and

$$
\inf _{x \in\left[x_{k-1}, x_{k}\right]}\left[f(x)-f_{N+1}(x)\right]+\inf _{x \in\left[x_{k-1}, x_{k}\right]} f_{N+1}(x) \leq \inf _{x \in\left[x_{k-1}, x_{k}\right]}\left[f(x)-f_{N+1}(x)+f_{N+1}(x)\right]=\inf _{x \in\left[x_{k-1}, x_{k}\right]} f(x) \quad(* *) .
$$

$$
\begin{aligned}
& \text { Now, } U(f, P)=\sum_{k=1}^{n} M_{k}(f) \triangle x_{k} \\
&=\sum_{k=1}^{n} M_{k}\left(f-f_{N+1}+f_{N+1}\right) \triangle x_{k} \\
& \leq \sum_{k=1}^{n} M_{k}\left(f-f_{N+1}\right) \triangle x_{k}+\sum_{k=1}^{n} M_{k}\left(f_{N+1}\right) \triangle x_{k} \quad \text { using }(*) \\
&<\sum_{k=1}^{n} \frac{\epsilon}{3(b-a)} \triangle x_{k}+\sum_{k=1}^{n} M_{k}\left(f_{N+1}\right) \triangle x_{k} \\
&=\frac{\epsilon}{3(b-a)} \sum_{k=1}^{n} \triangle x_{k}+U\left(f_{N+1}, P\right) \\
&=\frac{\epsilon}{3(b-a)}(b-a)+U\left(f_{N+1}, P\right) \\
& \text { Thus } U(f, P)<\frac{\epsilon}{3}+U\left(f_{N+1}, P\right) \\
& \text { Similarly, one can show }-L(f, P)<\frac{\epsilon}{3}-L\left(f_{N+1}, P\right) \\
& \text { Hence } U(f, P)-L(f, P)<2 \frac{\epsilon}{3}+U\left(f_{N+1}, P\right)-L\left(f_{N+1}, P\right)<2 \frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon . \\
& \text { Hence } f \text { is integrable on }[a, b] .
\end{aligned}
$$

Since $f_{n}(x) \xrightarrow{U .} f(x)$, then there exist $N \in \mathbb{N}$ such that if $n>N \Rightarrow\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{3(b-a)} \quad \forall x \in[a, b]$. Now, if $n>N \Rightarrow\left|\int_{a}^{b} f_{n}(x) d x-\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}\left|f_{n}(x)-f(x)\right| d x<\int_{a}^{b} \frac{\epsilon}{3(b-a)} d x=\frac{\epsilon}{3(b-a)}(b-a)<\epsilon$. Thus $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x$.

Example 6.14: Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{n}(x)=\frac{n x+1}{n+n x^{2}}$.
(a) Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Does $f_{n}(x) \xrightarrow{U .} f(x)$, on \mathbb{R} ? prove your answer.
(c) Evaluate $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$.

Solution:

Figure 5:
(a) Note that $f_{n}(x)=\frac{n x+1}{n+n x^{2}}=\frac{x}{1+x^{2}}+\frac{1}{n\left(1+x^{2}\right)}$. Hence

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty}\left[\frac{x}{1+x^{2}}+\frac{1}{n\left(1+x^{2}\right)}\right]=\frac{x}{1+x^{2}}
$$

(b) Now,

$$
\lim _{n \rightarrow \infty}\left[\sup _{x \in \mathbb{R}}\left|f_{n}(x)-f(x)\right|\right]=\lim _{n \rightarrow \infty}\left[\sup _{x \in \mathbb{R}} \frac{1}{n\left(1+x^{2}\right)}\right]=\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

then $f_{n}(x) \xrightarrow{U .} f(x)$ on \mathbb{R}.
(c) Since $f_{n}(x) \xrightarrow{U .} f(x)$ on \mathbb{R}, then $f_{n}(x) \xrightarrow{U .} f(x)$ on $[0,1]$. Hence

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(x) d x=\int_{0}^{1} f(x) d x=\int_{0}^{1} \frac{x}{1+x^{2}} d x=\frac{1}{2}\left[\ln \left(1+x^{2}\right)\right]_{0}^{1}=\frac{1}{2} \ln 2=\ln \sqrt{2} .
$$

Example 6.15: Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{n}(x)=\frac{x+n}{n+n x^{2}}$.
(a) Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Does $f_{n}(x) \xrightarrow{U .} f(x)$, on \mathbb{R} ? prove your answer.
(c) Evaluate $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$.

Solution:

Figure 6:
(a) Note that $f_{n}(x)=\frac{x+n}{n+n x^{2}}=\frac{\frac{x}{n}}{1+x^{2}}+\frac{1}{1+x^{2}}$. Hence

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty}\left[\frac{\frac{x}{n}}{1+x^{2}}+\frac{1}{1+x^{2}}\right]=\frac{1}{1+x^{2}}
$$

(b) Now, let $g_{n}(x)=f_{n}(x)-f(x)=\frac{\frac{x}{n}}{1+x^{2}}+\frac{1}{1+x^{2}}-\frac{1}{1+x^{2}}=\frac{x}{n\left(1+x^{2}\right)}$.
$g_{n}^{\prime}(x)=\frac{n+n x^{2}-x(2 n x)}{n^{2}\left(1+x^{2}\right)^{2}}=\frac{n-n x^{2}}{n^{2}\left(1+x^{2}\right)^{2}}=\frac{1-x^{2}}{n\left(1+x^{2}\right)}$.
$g_{n}^{\prime}(x)=0 \Longleftrightarrow 1-x^{2}=0 \Longleftrightarrow x= \pm 1$.

The sign of $g_{n}^{\prime}(x)$

Figure 7:

Hence $\left|g_{n}(x)\right|$ has a maximum at $x= \pm 1$.

$$
\lim _{n \rightarrow \infty}\left[\sup _{x \in \mathbb{R}}\left|f_{n}(x)-f(x)\right|\right]=\lim _{n \rightarrow \infty}\left[\sup _{x \in \mathbb{R}} \frac{|x|}{n\left(1+x^{2}\right)}\right]=\lim _{n \rightarrow \infty} \frac{1}{2 n}=0
$$

then $f_{n}(x) \xrightarrow{U .} f(x)$ on \mathbb{R}.
(c) Since $f_{n}(x) \xrightarrow{U .} f(x)$ on \mathbb{R}, and each $f_{n}(x)$ is continuous, then $f_{n}(x) \xrightarrow{U .} f(x)$ on $[0,1]$ and each $f_{n}(x)$ is integrable.

Hence
$\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(x) d x=\int_{0}^{1} f(x) d x=\int_{0}^{1} \frac{1}{1+x^{2}} d x=\left[\tan ^{-1} x\right]_{0}^{1}=\tan ^{-1} 1-\tan ^{-1} 0=\frac{\pi}{4}-0=\frac{\pi}{4}$.

Example 6.16: Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{n}(x)=\frac{n+\sin x}{2 n+\cos ^{2} x}$.
(a) Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Does $f_{n}(x) \xrightarrow{U .} f(x)$, on \mathbb{R} ? prove your answer.
(c) Evaluate $\lim _{n \rightarrow \infty} \int_{1}^{5} f_{n}(x) d x$.
(d) Evaluate $\lim _{n \rightarrow \infty} \lim _{x \rightarrow\left(2+\frac{\pi}{3}\right)} f_{n}(x)$.

Solution:

Figure 8:
(a)

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty}\left[\frac{n+\sin x}{2 n+\cos ^{2} x}\right]=\lim _{n \rightarrow \infty}\left[\frac{1+\frac{\sin x}{n}}{2+\frac{\cos ^{2} x}{n}}\right]=\frac{1}{2} .
$$

(b) Now, let $f_{n}(x)-f(x)=\frac{n+\sin x}{2 n+\cos ^{2} x}-\frac{1}{2}=\frac{2 n+\sin x-2 n-\cos ^{2} x}{2\left(2 n+\cos ^{2} x\right)}=\frac{\sin x-\cos ^{2} x}{2\left(2 n+\cos ^{2} x\right)}$.

Hence $\left|f_{n}(x)-f(x)\right|=\left|\frac{\sin x-\cos ^{2} x}{2\left(2 n+\cos ^{2} x\right)}\right| \leq \frac{|\sin x|+\left|\cos ^{2} x\right|}{2\left(2 n+\cos ^{2} x\right)} \leq \frac{2}{4 n}=\frac{1}{2 n} \quad \forall x \in \mathbb{R}$.
Thus $\left|f_{n}(x)-f(x)\right| \leq \frac{1}{2 n} \quad \forall x \in \mathbb{R}$, and hence $0 \leq \sup _{x \in \mathbb{R}}\left|f_{n}(x)-f(x)\right| \leq \frac{1}{2 n}$.

$$
\text { Since } 0 \leq \lim _{n \rightarrow \infty}\left[\sup _{x \in \mathbb{R}}\left|f_{n}(x)-f(x)\right|\right] \leq \lim _{n \rightarrow \infty} \frac{1}{2 n}=0 \text {, then } \lim _{n \rightarrow \infty}\left[\sup _{x \in \mathbb{R}}\left|f_{n}(x)-f(x)\right|\right]=0 .
$$

Therefore $f_{n}(x) \xrightarrow{U .} f(x)$ on \mathbb{R}.
(c) Since $f_{n}(x) \xrightarrow{U .} f(x)$ on \mathbb{R}, and each $f_{n}(x)$ is continuous, then $f_{n}(x) \xrightarrow{U .} f(x)$ on $[0,1]$ and each $f_{n}(x)$ is integrable.

Hence

$$
\lim _{n \rightarrow \infty} \int_{1}^{5} f_{n}(x) d x=\int_{1}^{5} \lim _{n \rightarrow \infty} f_{n}(x) d x=\int_{1}^{5} f(x) d x=\int_{1}^{5} \frac{1}{2} d x=\frac{1}{2}(5-1)=2 .
$$

(d) Since $f_{n}(x) \xrightarrow{U .} f(x)$ on \mathbb{R}, and each $f_{n}(x)$ is continuous, then $f(x)$ is continuous and

$$
\lim _{n \rightarrow \infty} \lim _{x \rightarrow\left(2+\frac{\pi}{3}\right)} f_{n}(x)=\lim _{x \rightarrow\left(2+\frac{\pi}{3}\right)} \lim _{n \rightarrow \infty} f_{n}(x)=\lim _{x \rightarrow\left(2+\frac{\pi}{3}\right)} \frac{1}{2}=\frac{1}{2} .
$$

