

Sequences and Their Limits

Dr.Hamed Al-Sulami

October 7, 2012

1.1 Sequence

Definition 1.1: A sequence of a real numbers is a real-valued function whose domain is the set of natural numbers N, or a subset of it.

Note 1.1: We use a symbol x_n to represent the range of the function and $\{x_n\}_{n=1}^{\infty}$, or $\{x_n\}$ to represent the sequence itself. The following notation to indicate a sequence:

$$\{x_1, x_2, x_3, x_4, \dots, x_n, \dots\}$$
, or $\{x_n\}_{n=1}^{\infty}$
 \uparrow \uparrow
First term n^{th} term

Example 1.1:

(a) The sequence
$$\{\frac{1}{n}\}=\{1,\frac{1}{2},\frac{1}{3},\cdots\}.$$

(b)
$$\left\{\frac{1+2n^2}{n^2}\right\} = \left\{3, \frac{9}{4}, \frac{19}{9}, \frac{33}{16}, \dots\right\}.$$

(c)
$$\{(-1)^n\} = \{-1, 1, -1, 1, \ldots\}.$$

(d)
$$\left\{\frac{1}{2^n}\right\} = \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right\}.$$

1.2 Graphs of Sequences

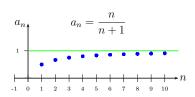
If we look at a sequence as a function, then we may consider its graph in the xy-plane. Since the domain of a sequence is the set of positive integers, the only points on the graph are

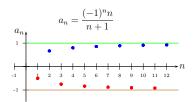
$$(1, x_1), (2, x_2), \cdots, (n, x_n), \cdots$$

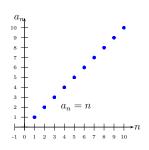
where x_n is the *n*th term of the sequence. We use the graph of a sequence to illustrate the behavior of the *n*th term as *n* increases without bound. The graphs of the following examples of sequences are shown below. Each of these sequences behaves differently as *n* gets larger.

- a) The sequence $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots\right\}$ increase toward the number 1.
- **b)** The sequence $\left\{\frac{-1}{2}, \frac{2}{3}, \frac{-3}{4}, \dots, \frac{(-1)^n n}{n+1}, \dots\right\}$ oscillate between 1 and -1.

c) The sequence $\{1, 2, 3, \dots, n, \dots\}$ grows without a bound.



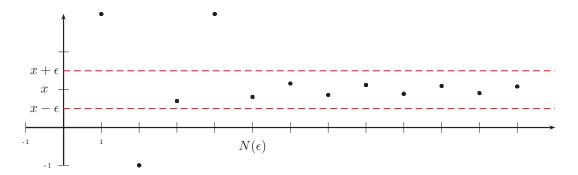




1.3 Limit of a Sequence

Definition 1.2: A sequence $\{x_n\}$ of real numbers is said to be **converge** to $x \in \mathbb{R}$ if for every $\epsilon > 0$ there exists a natural number $N = N(\epsilon) \in \mathbb{N}$ such that if $n > N \Rightarrow |x_n - x| < \epsilon$, and we write $\lim_{n \to \infty} x_n = x$. If a sequence has a limit, we say that the sequence is **convergent**; if it has no limit we say the sequence is **divergent**.

Note 1.2: The definition says that all terms of the sequence beyond (after) the term $x_{N(\epsilon)}$ are within ϵ from x. The graph below demonstrates the definition. Notice that some of the terms that precede the $N(\epsilon)$ term may lie within ϵ of x. Every terms exceeds $N(\epsilon)$ must lie between $x - \epsilon$ and $x + \epsilon$.



Lemma 1.1: Let $\{x_n\}$ be sequence of real numbers such that $\lim_{n\to\infty} x_n = x$, and $\lim_{n\to\infty} x_n = y$. Then x = y.

Proof: Let $\epsilon > 0$ be given. Since $\lim_{n \to \infty} x_n = x$, then there exist $N_1 \in \mathbb{N}$ such that if $n > N_1 \Rightarrow |x_n - x| < \frac{\epsilon}{2}$. Since $\lim_{n \to \infty} x_n = y$, then there exist $N_2 \in \mathbb{N} \ni$ if $n > N_2 \Rightarrow |x_n - x| < \frac{\epsilon}{2}$. Now, Let $N = \max\{N_1, N_2\}$. If n > N, then $n > N_1, \Rightarrow |x_n - x| < \frac{\epsilon}{2}$ and if n > N, then $n > N_2, \Rightarrow |x_n - y| < \frac{\epsilon}{2}$. Then $|x - y| = |x - x_n + x_n - y| \le |x - x_n| + |x_n - y| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. Hence $0 \le |x - y| \le \epsilon$. Thus |x - y| = 0. Therefore x = y.

Example 1.2: Let $a \in \mathbb{R}$ and for each $n \in \mathbb{N}$ let $x_n = a$ Prove that $\lim_{n \to \infty} x_n = \lim_{n \to \infty} a = a$.

Discussion: We start with $\epsilon > 0$ and want to find $N = N(\epsilon) \in \mathbb{N}$ such that if $n > n \Rightarrow |x_n - a| < \epsilon$. Now, $|x_n - a| = |a - a| = 0 < \epsilon$.

Proof: Let $\epsilon > 0$ be given. Choose $N \in \mathbb{N}$.

if
$$n > N \Rightarrow |x_n - a| = |a - a| = 0 < \epsilon$$
.

Thus $\lim_{n\to\infty} a = a$.

Example 1.3: Let $a \in \mathbb{R}$ and $p \in \mathbb{R}$ with p > 0. Prove that $\lim_{n \to \infty} \frac{a}{n^p} = 0$.

Discussion: We start with $\epsilon > 0$ and want to find $N = N(\epsilon) \in \mathbb{N}$ such that if $n > n \Rightarrow \left| \frac{a}{n^p} - 0 \right| < \epsilon$. Now, $\left| \frac{a}{n^p} - 0 \right| = \frac{|a|}{n^p}$. If a = 0 = |a|, then $\frac{|a|}{n^p} = 0 < \epsilon$ for all $n \in \mathbb{N}$ and hence we can choose N to be 1 for example. If $|a| \neq 0$, then

$$\begin{split} \frac{|a|}{n^p} < \epsilon &\Leftrightarrow \frac{n^p}{|a|} > \frac{1}{\epsilon} \quad \text{multiply both sides by } |a|. \\ &\Leftrightarrow n^p > \frac{|a|}{\epsilon} \quad \text{take the } p\text{-th root} \\ &\Leftrightarrow n > \sqrt[p]{\frac{|a|}{\epsilon}} \end{split}$$

Now, since $\sqrt[p]{\frac{|a|}{\epsilon}}$ may not by an natural number, we let $N = N(\epsilon) > \sqrt[p]{\frac{|a|}{\epsilon}}$.

Proof: Let $\epsilon > 0$ be given. Choose $N \in \mathbb{N}$ such that $N > \sqrt[p]{\frac{|a|}{\epsilon}}$.

$$\begin{split} &\text{if } n>N \Rightarrow n>N>\sqrt[p]{\frac{|a|}{\epsilon}} &\text{take power } p \text{ for both sides} \\ &\Rightarrow n^p>\frac{|a|}{\epsilon} &\text{reverse the inequality} \\ &\Rightarrow \frac{1}{n^p}<\frac{\epsilon}{|a|} &\text{multiply both sides by } |a|. \\ &\Rightarrow \frac{|a|}{n^p}<\epsilon \end{split}$$
 if $n>N\Rightarrow \left|\frac{a}{n^p}-0\right|=\frac{|a|}{n^p}<\epsilon.$

Thus $\lim_{n\to\infty} \frac{a}{n^p} = 0$.

Example 1.4: Prove that $\lim_{n \to \infty} \frac{2n^2 + 3}{3n^2 - n} = \frac{2}{3}$.

Discussion: We start with $\epsilon > 0$ and want to find $N = N(\epsilon) \in \mathbb{N}$ such that if $n > n \Rightarrow \left| \frac{2n^2 + 3}{3n^2 - n} - \frac{2}{3} \right| < \epsilon$.

$$\begin{split} \left| \frac{2n^2 + 3}{3n^2 - n} - \frac{2}{3} \right| &= \left| \frac{6n^2 + 9 - 6n^2 + 2n}{9n^2 - 3n} \right| \\ &= \frac{2n + 9}{9n^2 - 3n} \qquad \qquad \text{Note that: } 2n + 9 \leq 2n + 9n = 11n \\ &\leq \frac{11n}{9n^2 - 3n} \qquad \qquad \text{Note that: } 9n^2 - 3n \geq 9n^2 - 3n^2 \Leftrightarrow \frac{1}{9n^2 - 3n} \leq \frac{1}{9n^2 - 3n^2} \\ &\leq \frac{11n}{6n^2} = \frac{11}{6n}. \\ &\text{Now, let } \frac{11}{6n} < \epsilon \qquad \Leftrightarrow n > \frac{11}{6\epsilon}. \end{split}$$

Now, since $\frac{11}{6\epsilon}$ may not by an natural number, we let $N = N(\epsilon) > \frac{11}{6\epsilon}$.

Proof: Let $\epsilon > 0$ be given. Let $N \in \mathbb{N}$ such that $N > \frac{11}{6\epsilon}$.

October 7, 2012 3 © Dr.Hamed Al-Sulami

Now, if
$$n > N \Rightarrow \frac{1}{n} < \frac{1}{N} < \frac{6\epsilon}{11}$$

$$\Rightarrow \frac{11}{6n} < \epsilon$$

$$\Rightarrow \left| \frac{2n^2 + 3}{3n^2 - n} - \frac{2}{3} \right| < \frac{11}{6n} < \epsilon$$
Now, if $n > N \Rightarrow \left| \frac{2n^2 + 3}{3n^2 - n} - \frac{2}{3} \right| < \epsilon$.
Therefore $\lim_{n \to \infty} \frac{2n^2 + 3}{3n^2 - n} = \frac{2}{3}$.

Example 1.5: Prove that $\lim_{n\to\infty} \frac{n+3}{5n-1} = \frac{1}{5}$.

Discussion: We start with $\epsilon > 0$ and want to find $N = N(\epsilon) \in \mathbb{N}$ such that if $n > n \Rightarrow \left| \frac{n+3}{5n-1} - \frac{1}{5} \right| < \epsilon$.

$$\left|\frac{n+3}{5n-1} - \frac{1}{5}\right| = \left|\frac{5n+15-5n+1}{25n-5}\right|$$

$$= \frac{16}{25n-5}$$
Note that: $-5 \ge -5n \Leftrightarrow 25n-5 \ge 25n-5n \Leftrightarrow \frac{1}{25n-5} \le \frac{1}{20n}$

$$\leq \frac{16}{20n}$$

$$= \frac{4}{5n}.$$
Now, let $\frac{4}{5n} < \epsilon$

$$\Leftrightarrow n > \frac{4}{5\epsilon}.$$

Now, since $\frac{4}{5\epsilon}$ may not by an natural number, we let $N=N(\epsilon)>\frac{11}{6\epsilon}$.

Proof: Let $\epsilon > 0$ be given. Let $N \in \mathbb{N}$ such that $N > \frac{4}{5\epsilon}$.

Now, if
$$n > N \Rightarrow \frac{1}{n} < \frac{1}{N} < \frac{5\epsilon}{4}$$

$$\Rightarrow \frac{4}{5n} < \epsilon$$

$$\Rightarrow \left| \frac{n+3}{5n-1} - \frac{1}{5} \right| < \frac{4}{5n} < \epsilon$$
Now, if $n > N \Rightarrow \left| \frac{n+3}{5n-1} - \frac{1}{5} \right| < \epsilon$.
Therefore $\lim_{n \to \infty} \frac{n+3}{5n-1} = \frac{1}{5}$.

Theorem 1.1: []

1. If $a \in \mathbb{R}$ and |a| < 1, then $\lim_{n \to \infty} a^n = 0$.

2. If $a \in \mathbb{R}$ and a > 0, then $\lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} a^{\frac{1}{n}} = 0$.

3.
$$\lim_{n \to \infty} n^{\frac{1}{n}} = \lim_{n \to \infty} \sqrt[n]{n} = 1.$$

Proof:

1. Discussion: If a=0, then $\lim_{n\to\infty}a^n=\lim_{n\to\infty}0=0$. Assume that $a\neq 0$. Since |a|<1, then $|a|=\frac{1}{1+b}$ where b>0. By binomial theorem $(1+b)^n=\sum_{k=0}^n\binom{n}{k}b^k=1+nb+\cdots+b^n\geq 1+nb>nb$. Hence $|a|^n=\left(\frac{1}{1+b}\right)^n=\frac{1}{(1+b)^n}<\frac{1}{nb}$.

$$|a^{n} - 0| = |a|^{n}$$

$$< \frac{1}{nb}$$
Now, let $\frac{1}{bn} < \epsilon$

$$\Leftrightarrow n > \frac{1}{b\epsilon}$$

Let $N = N(\epsilon) > \frac{1}{b\epsilon}$. Let $\epsilon > 0$ be given. Let $N \in \mathbb{N}$ such that $N > \frac{1}{b\epsilon}$.

Now, if
$$n > N \Rightarrow \frac{1}{n} < \frac{1}{N} < b\epsilon$$

$$\Rightarrow \frac{1}{bn} < \epsilon$$

$$\Rightarrow |a^n - 0| < \frac{1}{bn} < \epsilon$$

Now, if $n > N \Rightarrow |a^n - 0| < \epsilon$.

Therefore $\lim_{n\to\infty} a^n = 0$.

2. Case I: a > 1 Discussion: If a > 1, then $\sqrt[n]{a} > 1$ and hence $\sqrt[n]{a} = 1 + b_n$ for some $b_n > 0$. Hence $a = (1 + b_n)^n \ge 1 + nb_n$. Thus $a - 1 \ge nb_n$ and hence $b_n \le \frac{a-1}{n}$. Now, $0 < \sqrt[n]{a} - 1 = b_n$.

$$\left|\sqrt[n]{a} - 1\right| = b_n$$
 $< \frac{a-1}{n}$
Now, let $\frac{a-1}{n} < \epsilon$
 $\Leftrightarrow n > \frac{a-1}{\epsilon}$.

Let $N = N(\epsilon) > \frac{a-1}{\epsilon}$. Let $\epsilon > 0$ be given. Let $N \in \mathbb{N}$ such that $N > \frac{a-1}{\epsilon}$.

Now, if
$$n > N \Rightarrow \frac{1}{n} < \frac{1}{N} < \frac{\epsilon}{a-1}$$

$$\Rightarrow \frac{1-a}{n} < \epsilon$$

$$\Rightarrow \left|\sqrt[n]{a} - 1\right| < \frac{a-1}{n} < \epsilon$$
Now, if $n > N \Rightarrow \left|\sqrt[n]{a} - 1\right| < \epsilon$.
Therefore $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

Case II: a < 1 Discussion: If a < 1, then $\sqrt[n]{a} < 1$ and hence $\sqrt[n]{a} = \frac{1}{1+b_n}$ for some $b_n > 0$. Hence $a = \frac{1}{(1+b_n)^n} \le \frac{1}{1+nb_n} \le \frac{1}{nb_n}$ and hence $0 < b_n \le \frac{1}{na}$. Also, we have $1+b_n > 1$ and hence $\frac{1}{1+b_n} < 1$. Thus if we multiply the last inequality by $b_n > 0$, we get $\frac{b_n}{1+b_n} < b_n$. Now, $0 < 1 - \sqrt[n]{a} = 1 - \frac{1}{1+b_n} = \frac{b_n}{1+b_n} < b_n < \frac{1}{na}$.

$$\left|1 - \sqrt[n]{a}\right| < b_n$$

$$< \frac{1}{an}$$
Now, let $\frac{1}{an} < \epsilon$
 $\Leftrightarrow n > \frac{1}{a\epsilon}$.

Let $N = N(\epsilon) > \frac{1}{a\epsilon}$. Let $\epsilon > 0$ be given. Let $N \in \mathbb{N}$ such that $N > \frac{1}{a\epsilon}$.

Now, if
$$n > N \Rightarrow \frac{1}{n} < \frac{1}{N} < a\epsilon$$

$$\Rightarrow \frac{a}{n} < \epsilon$$

$$\Rightarrow \left|\sqrt[n]{a} - 1\right| < \frac{a}{n} < \epsilon$$
Now, if $n > N \Rightarrow \left|\sqrt[n]{a} - 1\right| < \epsilon$.
Therefore $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

Case II: a = 1 If a = 1, then $\sqrt[n]{a} = 1$ and hence $\lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} 1 = 1$.

3. Discussion: If n > 1, then $\sqrt[n]{n} > 1$ and hence $\sqrt[n]{n} = 1 + b_n$ for some $b_n > 0$. Hence $n = (1 + b_n)^n = 1 + nb_n + \frac{1}{2}n(n-1)b_n^2 + \ldots \ge 1 + \frac{1}{2}n(n-1)b_n^2$. Thus $n-1 \ge \frac{n(n-1)}{2}b_n^2$ and hence $b_n^2 \le \frac{2}{n}$. Now, $0 < \sqrt[n]{n} - 1 = b_n$.

$$\left|\sqrt[n]{n}-1\right|=b_n$$

$$<\sqrt{\frac{2}{n}}$$
 Now, let $\sqrt{\frac{2}{n}}<\epsilon\Leftrightarrow n>\frac{2}{\epsilon^2}.$

Let $N = N(\epsilon) > \frac{2}{\epsilon^2}$. Let $\epsilon > 0$ be given. Let $N \in \mathbb{N}$ such that $N > \frac{2}{\epsilon^2}$.

Now, if
$$n > N \Rightarrow \frac{1}{n} < \frac{1}{N} < \frac{\epsilon^2}{2}$$

$$\Rightarrow \frac{2}{n} < \epsilon^2$$

$$\Rightarrow \sqrt{\frac{2}{n}} < \epsilon$$

$$\Rightarrow \left| \sqrt[n]{n} - 1 \right| < \sqrt{\frac{2}{n}} < \epsilon$$
Now, if $n > N \Rightarrow \left| \sqrt[n]{n} - 1 \right| < \epsilon$. Therefore $\lim_{n \to \infty} \sqrt[n]{n} = 1$.

October 7, 2012 6 © Dr.Hamed Al-Sulami

Example 1.6: Let $a, b \in \mathbb{R}$ with $a \neq b$ and let $x_n = \begin{cases} a, & \text{if } n \text{ is odd;} \\ b, & \text{if } n \text{ is even.} \end{cases}$ Prove that $\{x_n\}$ is divergent. **Proof:** Suppose that $\{x_n\}$ is convergent, then there exist $l \in \mathbb{R}$ such that $\lim_{n \to \infty} x_n = l$. Then for any $\epsilon > 0$ there

Proof: Suppose that $\{x_n\}$ is convergent, then there exist $l \in \mathbb{R}$ such that $\lim_{n \to \infty} x_n = l$. Then for any $\epsilon > 0$ there exist $N \in \mathbb{N}$ such that if $n > N \Rightarrow |x_n - l| < \epsilon$. Now, since $a \neq b$, then |a - b| > 0 and hence if $\epsilon_0 = \frac{|a - b|}{4} > 0$ then there exist $N \in \mathbb{N}$ such that if $n > N \Rightarrow |x_n - l| < \frac{|a - b|}{4}$ If n > N and n is even the $|b - l| = |x_n - l| < \frac{|a - b|}{4}$ also, if n > N and n is odd the $|a - l| = |x_n - l| < \frac{|a - b|}{4}$ Now, if n > N $|a - b| = |a - l - b + l| = |(a - l) - (b - l)| \le |a - l| + |b - l| < \frac{|a - b|}{4} + \frac{|a - b|}{4} = \frac{|a - b|}{2}$. Hence $|a - b| < \frac{|a - b|}{2}$ contradiction.

October 7, 2012 7 © Dr.Hamed Al-Sulami