

Sequences Limit Theorems

Dr. Hamed Al-Sulami

November 3, 2012

2.1 Bounded Sequence

Definition 2.1: A sequence $\{x_n\}_{n=1}^{\infty}$, of a real numbers is said to be **bounded** if there exists a real number M > 0 such that $|x_n| \le M$ for all $n \in \mathbb{N}$.

Example 2.1:

- (a) $\left\{\frac{1}{n}\right\}$ is bounded since $\left|\frac{1}{n}\right| \le 1$.
- (b) $\left\{\frac{1+2n^2}{n^2}\right\}$ is bounded since $\left|\frac{1+2n^2}{n^2}\right| \leq 3$.
- (c) $\{(-1)^n\}$ is bounded since $|(-1)^n| \le 1$.
- (d) $\{2^n\}$ is unbounded since for any real number $M > 0 \exists n \in \mathbb{N} \ni n > M$ and $2^n > n > M$.

Theorem 2.1: [Convergent Sequence is Bounded]

A converge sequence of real numbers is bounded.

Proof: Let $\{x_n\}$ be sequence of real numbers such that $\lim_{n\to\infty} x_n = x \in \mathbb{R}$. Since $\lim_{n\to\infty} x_n = x$, then there exists $N \in \mathbb{N}$ such that if $n > N, \Rightarrow |x_n - x| < 3$. Thus, if $n > N, \Rightarrow |x_n| = |x_n - x + x| \le |x_n - x| + |x| < 3 + |x|$. Let $M = \max\{|x_1|, |x_2|, ... |x_N|, 3 + |x|\} > 0$. Now, if $n > N, \Rightarrow |x_n| < 3 + |x| \le M$, and if $n \le N, \Rightarrow |x_n| \le M$. Thus $|x_n| \le M$ for all $n \in \mathbb{N}$.

Note 2.1: Remember that the negation of theorem is also true. Hence unbounded sequence is divergent. Also note the the converse of this theorem is false. There is a divergent bounded sequence. for example $\{(-1)^n\}$.

2.2 Arithmetic Operations On Sequences

Theorem 2.2: [Addition, difference, and Multiplication]

Let $\{x_n\}$ and $\{y_n\}$ be sequences of real numbers such that $\lim_{n\to\infty}x_n=x\in\mathbb{R}$ and $\lim_{n\to\infty}y_n=y\in\mathbb{R}$. Let $c\in\mathbb{R}$. Then

- (a) $\lim_{n \to \infty} (cx_n) = cx$.
- (b) $\lim_{n \to \infty} (x_n + y_n) = x + y.$
- (c) $\lim_{n \to \infty} (x_n y_n) = x y.$
- (d) $\lim_{n \to \infty} (x_n y_n) = xy$.

Proof:

- (a) If c=0, there is nothing to prove. Assume $c\neq 0$. Let $\epsilon>0$ be given. Since $\lim_{n\to\infty}x_n=x$, then there exists $N\in\mathbb{N}$ such that if n>N $\Rightarrow |x_n-x|<\frac{\epsilon}{|c|}$. Thus if n>N, $\Rightarrow |cx_n-cx|=|c(x_n-x)|=|c||x_n-x|<|c|\frac{\epsilon}{|c|}=\epsilon$. Therefore $\lim_{n\to\infty}(cx_n)=cx$.
- (b) Let $\epsilon > 0$ be given. Since $\lim_{n \to \infty} x_n = x$, then there exists $N_1 \in \mathbb{N}$ such that if $n > N_1 \Rightarrow |x_n x| < \frac{\epsilon}{2}$. Also, since $\lim_{n \to \infty} y_n = y$, therefore there exists $N_2 \in \mathbb{N} \ni$ if $n > N_2 \Rightarrow |y_n y| < \frac{\epsilon}{2}$. Let $N = \max\{N_1, N_2\} \in \mathbb{N}$. Now, if $n > N \Rightarrow |x_n x| < \frac{\epsilon}{2}$, and $|y_n y| < \frac{\epsilon}{2}$.

Thus if
$$n > N$$
, $\Rightarrow |(x_n + y_n) - (x + y)| = |(x_n - x) + (y_n - y)| \le |x_n - x| + |y_n - y|$
 $< \frac{\epsilon}{2} + \frac{\epsilon}{2}$
 $= \epsilon$.

Therefore $\lim_{n\to\infty} (x_n + y_n) = x + y$.

(c) Let $\epsilon > 0$ be given. Since $\lim_{n \to \infty} x_n = x$, then there exist $N_1 \in \mathbb{N}$ such that if $n > N_1 \Rightarrow |x_n - x| < \frac{\epsilon}{2}$. Also, since $\lim_{n \to \infty} y_n = y$, then there exists $N_2 \in \mathbb{N}$ such that if $n > N_2 \Rightarrow |y_n - y| < \frac{\epsilon}{2}$. Let $N = \max\{N_1, N_2\} \in \mathbb{N}$. Now, if $n > N \Rightarrow |x_n - x| < \frac{\epsilon}{2}$, and $|y_n - y| < \frac{\epsilon}{2}$.

Thus if
$$n > N$$
, $\Rightarrow |(x_n - y_n) - (x - y)| = |(x_n - x) - (y_n - y)| \le |x_n - x| + |y_n - y|$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

Therefore $\lim_{n\to\infty} (x_n - y_n) = x - y$.

(d) Let $\epsilon > 0$ be given. Now, since $\{x_n\}$ converges, then it is bounded. Then there exists $M \in \mathbb{R}^+$ such that $|x_n| \leq M$, for all $n \in \mathbb{N}$. Since $\lim_{n \to \infty} x_n = x$, then there exists $N_1 \in \mathbb{N}$ such that if $n > N_1 \Rightarrow |x_n - x| < \frac{\epsilon}{2(|y| + 1)}$. Also, since $\lim_{n \to \infty} y_n = y$, then there exists $N_2 \in \mathbb{N}$ such that if $n > N_2 \Rightarrow |y_n - y| < \frac{\epsilon}{2M}$. Let $N = \max\{N_1, N_2\} \in \mathbb{N}$. Now, if $n > N \Rightarrow |x_n - x| < \frac{\epsilon}{2(|y| + 1)}$, and $|y_n - y| < \frac{\epsilon}{2M}$.

Thus if
$$n > N \Rightarrow |(x_n y_n) - (xy)| = |x_n y_n - x_n y + x_n y - xy| \le |x_n (y_n - y)| + |y(x_n - x)|$$

$$= |x_n||y_n - y| + |y||x_n - x|$$

$$< M \frac{\epsilon}{2M} + |y| \frac{\epsilon}{2(|y| + 1)}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

Therefore $\lim_{n\to\infty} (x_n y_n) = xy$.

November 3, 2012 2 © Dr.Hamed Al-Sulami

Theorem 2.3:

Let $\{x_n\}$ be sequence of real numbers such that $\lim_{n\to\infty} x_n = x \in \mathbb{R}$, and $x \neq 0$. Then

- (a) If $1 < \beta$ there exists $N \in \mathbb{N}$ such that if $n > N \Rightarrow |x_n| \ge \frac{|x|}{\beta}$.
- (b) If $x_n \neq 0$, for all $n \in \mathbb{N}$, then $\inf\{|x_n| : n \in \mathbb{N}\} > 0$.
- (c) If $x_n \neq 0$, for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{x}$.

Proof:

- (a) Let $\epsilon = \frac{(\beta 1)|x|}{\beta} > 0$. Since $\lim_{n \to \infty} x_n = x$, then there exists $N \in \mathbb{N}$ such that if $n > N \Rightarrow |x_n x| < \frac{(\beta 1)|x|}{\beta}$. Now, if $n > N \Rightarrow |x| - |x_n| \le |x_n - x| < \frac{(\beta - 1)|x|}{\beta}$. Hence, if $n > N \Rightarrow |x| - |x_n| < \frac{(\beta - 1)|x|}{\beta}$. Thus, if $n > N \Rightarrow |x| - \frac{(\beta - 1)|x|}{\beta} < |x_n|$. Therefore, if $n > N \Rightarrow \frac{|x|}{\beta} < |x_n|$.
- (b) Let $\epsilon > 0$ be given. By part (a), for $\beta = 2$, then there exists $N \in \mathbb{N} \ni \text{if } n > N \Rightarrow |x_n| > \frac{|x|}{2}$. Now, since $x_n \neq 0$, for all $n \in \mathbb{N}$, then $|x_n| > 0$, for all $n \in \mathbb{N}$. Hence $m = \min\{|x_1|, |x_2|, \cdots, |x_N|, \frac{|x|}{2}\} > 0$. Thus $|x_n| \ge m$ for all $n \in \mathbb{N}$. Hence $\inf\{|x_n| : n \in \mathbb{N}\} \ge m > 0$.
- (c) Let $\epsilon > 0$ be given. Since $x_n \neq 0$, for all $n \in \mathbb{N}$, then by **part** (b) $m = \inf\{|x_n| : n \in \mathbb{N}\} > 0$ and hence $|x_n| \geq m$. Thus $\frac{1}{|x_n|} \leq \frac{1}{m}$. Also, Since $\lim_{n \to \infty} x_n = x$, then there exists $N \in \mathbb{N}$ such that if $n > N \implies |x_n - x| < m|x| \epsilon$.

Thus if
$$n > N \Rightarrow \left| \frac{1}{x_n} - \frac{1}{x} \right| = \left| \frac{x - x_n}{xx_n} \right| = \frac{|x_n - x|}{|x||x_n|}$$

$$< \frac{|x_n - x|}{m|x|}$$

$$< \frac{m|x|\epsilon}{m|x|}$$

$$= \epsilon$$

Therefore $\lim_{n\to\infty}\frac{1}{x}=\frac{1}{x}$.

Corollary 2.1: Let $\{x_n\}$ and $\{y_n\}$ be sequences of real numbers such that $\lim_{n\to\infty} x_n = x \in \mathbb{R}$ and $\lim_{n\to\infty} y_n = y \in \mathbb{R}$. Let $c \in \mathbb{R}$. If $y_n \neq 0$ for all $n \in \mathbb{N}$, and $y \neq 0$, then $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{x}{y}$.

Proof: Since $y_n \neq 0$ for all $n \in \mathbb{N}$, and $y \neq 0$, then $\lim_{n \to \infty} \frac{1}{y_n} = \frac{1}{y}$. Now,

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \left[x_n \frac{1}{y_n} \right] = \lim_{n \to \infty} x_n \lim_{n \to \infty} \frac{1}{y_n} = x \frac{1}{y} = \frac{x}{y_n}$$

Theorem 2.4: [Squeeze Theorem]

Suppose that $\{x_n\}$, $\{y_n\}$, and $\{z_n\}$ are sequences of real numbers such that $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$ and that $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = L \in \mathbb{R}. \text{ Then } \lim_{n \to \infty} y_n = L.$

3 © Dr.Hamed Al-Sulami November 3, 2012

Proof: Let $\epsilon > 0$ be given. Since $\lim_{n \to \infty} x_n = L$, then there exists $N_1 \in \mathbb{N}$ such that if $n > N_1 \Rightarrow |x_n - L| < \epsilon$. Also, since $\lim_{n \to \infty} z_n = L$, then there exists $N_2 \in \mathbb{N}$ such that if $n > N_2 \Rightarrow |z_n - L| < \epsilon$. Let $N = \max\{N_1, N_2\} \in \mathbb{N}$. Now, if $n > N \Rightarrow |x_n - L| < \epsilon$, and $|z_n - L| < \epsilon$.

If
$$n > N \implies |x_n - L| < \epsilon$$
.

If
$$n > N \implies -\epsilon < x_n - L < \epsilon$$
.

If
$$n > N \implies L - \epsilon < x_n < L + \epsilon$$
.

Also, if
$$n > N \implies |z_n - L| < \epsilon$$
.

If
$$n > N \implies -\epsilon < z_n - L < \epsilon$$
.

If
$$n > N \implies L - \epsilon < z_n < L + \epsilon$$
.

Hence, if
$$n > N \implies L - \epsilon < x_n \le y_n \le z_n < L + \epsilon$$
.

Thus, if
$$n > N \implies -\epsilon < y_n - L < \epsilon$$
.

Therefore, if $n > N \Rightarrow |y_n - L| < \varepsilon$. Thus $\lim_{n \to \infty} y_n = L$.

Example 2.2: Prove the following

- (a) $\lim_{n \to \infty} \left(\frac{\sin n}{n} \right) = 0.$
- (b) $\lim_{n \to \infty} \left(\frac{n!}{n^n} \right) = 0.$

Solution:

- (a) Since $-1 \le \sin n \le 1$, then $\frac{-1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$. Since $\lim_{n \to \infty} (\frac{-1}{n}) = 0 = \lim_{n \to \infty} (\frac{1}{n})$, then by the Squeeze Theorem $\lim_{n \to \infty} (\frac{\sin n}{n}) = 0$.
- (b) Since

$$0 < \frac{n!}{n^n} = \underbrace{\frac{n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1}{\underbrace{n \cdot n \cdot \dots \cdot n}}}_{n} = \frac{n}{n} \frac{n-1}{n} \cdot \dots \cdot \frac{2}{n} \frac{1}{n} \le 1 \cdot 1 \cdot \dots \cdot \frac{1}{n} = \frac{1}{n},$$

and $\lim_{n\to\infty}(0)=0=\lim_{n\to\infty}(\frac{1}{n})$, then by the Squeeze Theorem $\lim_{n\to\infty}(\frac{n!}{n^n})=0$.

Lemma 2.1: Let $\{x_n\}$ be sequence of real numbers such that $\lim_{n\to\infty} x_n = x \in \mathbb{R}$, then $\lim_{n\to\infty} |x_n| = |x|$.

Proof: We have shown in class that $||a| - |b|| \le |a - b|, \ \forall a, b \in \mathbb{R}$.

Let $\epsilon > 0$ be given. Since $\lim_{n \to \infty} x_n = x$, therefore there exists $N \in \mathbb{N} \ni |x_n - x| < \epsilon$. Now, if $n > N \Rightarrow ||x_n| - |x|| \le |x_n - x| < \epsilon$. Thus $\lim_{n \to \infty} |x_n| = |x|$.

Note 2.2: The converse of the lemma is not true there is a divergent sequence such that the sequence of the absolute value is convergent. For example, let $x_n = (-1)^n$, then $x_n = (-1)^n$ is divergent. Now, $|x_n| = |(-1)^n| = 1$ and hence $\lim_{n \to \infty} |x_n| = \lim_{n \to \infty} 1 = 1$.

Lemma 2.2: Let $\{x_n\}$ be sequence of real numbers such that $\lim_{n\to\infty} x_n = x \in \mathbb{R}$, and $x_n \geq 0$. Then

- (a) $x \ge 0$, and
- (b) $\lim_{n \to \infty} \sqrt{x_n} = \sqrt{x}$.

Proof:

(a) Suppose that x < 0, then let $\epsilon = -x > 0$, since $\lim_{n \to \infty} x_n = x$, then there exists $N \in \mathbb{N}$ such that if $n > N \Rightarrow |x_n - x| < \epsilon$.

If
$$n > N \implies -\varepsilon < x_n - x < \epsilon$$
.

If
$$n > N \implies x - (-x) < x_n < x + (-x)$$
.

If $n > N \implies 2x < x_n < 0$, contradiction. Thus $x \ge 0$.

- (b) Using the fact $|\sqrt{a} \sqrt{b}| \le \sqrt{|a b|}, \ \forall a, b \in \mathbb{R}^+$.
 - Let $\epsilon > 0$ be given. Since $\lim_{n \to \infty} x_n = x$, then there exists $N \in \mathbb{N}$ such that $|x_n x| < \epsilon^2$. Now, if $n > N \Rightarrow |\sqrt{x_n} \sqrt{x}| \le \sqrt{|x_n x|} < \sqrt{\epsilon^2} = \epsilon$. Thus $\lim_{n \to \infty} \sqrt{x_n} = \sqrt{x}$.

November 3, 2012 5 © Dr.Hamed Al-Sulami