Chapter Six

Discrete Probability

6-1Introduction

- Many decisions in business, insurance, and other real-life situations are made by assigning probabilities to all possible outcomes pertaining to the situation and then evaluating the results.
- This chapter explains the concepts and applications of probability distributions. In addition, a special probability distribution, binomial distribution, is explained.

6-2 Discrete Probability Distribution

- A random variable is a variable whose values are determined by chance.
- A discrete probability distribution consists of the values a random variable can assume and the corresponding probabilities of the values. The probabilities are determined theoretically or by observation.

6-2 Discrete Probability Distribution

- Example:
- Construct a probability distribution for rolling a single die.

Since the sample space is $\boldsymbol{S}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\}$ and each outcome has a probability $1 / 6$, the distribution will be

Outcome x	$\mathbf{1}$	2	3	4	5	6
Probability $P(x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

6-2 Discrete Probability Distribution

- Example:
- Construct a probability distribution for the sample space for tossing three coins.

Number of heads x	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Probability $\boldsymbol{P}(x)$	$\overline{\mathbf{1}}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$
$\mathbf{8}$	$\overline{\mathbf{8}}$	$\overline{\mathbf{8}}$		

6-2 Discrete Probability Distribution

- Example:
- During the summer months, a rental agency keeps track of the number of chain saws it rents each day during a period of 90 days. The number of saws rented per day is represented by the variable X. The results are shown here. Construct a probability distribution.

x	0	1	2	Total
\# of days	45	30	15	90

x	0	1	2
$P(x)$	$\frac{45}{90}=0.5$	$\frac{30}{90}=0.333$	$\frac{15}{90}=0.167$

6-3 Requirements for a Probability Distribution

- The sum of the probabilities of all the events in the sample space must equal 1 ;

$$
\sum P(x)=1
$$

- The probability of each event in the sample space must be between or equal to 0 and 1;

$$
\mathbf{0} \leq P(x) \leq \mathbf{1}
$$

6-3 Requirements for a Probability Distribution

- Example:
- Determine whether each distribution is a probability distribution.
- a-

\boldsymbol{x}	0	5	10	15	20
$\boldsymbol{P}(\boldsymbol{x})$	$1 / 5$	$1 / 5$	$1 / 5$	$1 / 5$	$1 / 5$

Yes, it is a probability distribution.

- b-

\boldsymbol{x}	0	2	4	6
$\boldsymbol{P}(\boldsymbol{x})$	-1.0	1.5	0.3	0.2

No, it is not a probability distribution, since $\boldsymbol{P}(X)$ cannot be $\mathbf{1 . 5}$ or $\mathbf{- 1 . 0}$

6-3 Requirements for a Probability Distribution

- c-

\boldsymbol{x}	1	2	3	4
$\boldsymbol{P}(\boldsymbol{x})$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{9}{16}$

Yes, it is a probability distribution.

- d-

\boldsymbol{x}	2	3	7
$\boldsymbol{P}(\boldsymbol{x})$	0.5	0.3	0.4

No, it is not, since $P(x)=1.2$

6-4 Mean of a Probability Distribution

- In order to find the mean for a probability distribution, one must multiply each possible outcome by its corresponding probability and find the sum of the products.

$$
\mu=x_{1} p\left(x_{1}\right)+x_{2} p\left(x_{2}\right)+\cdots+x_{n} p\left(x_{n}\right)=\sum x p(x)
$$

- Example:
- In a family with two children, find the mean of the number of children who will be girls.

The probability distribution is

\# of girls \boldsymbol{x}	0	1	2	\sum
$\boldsymbol{P}(\boldsymbol{x})$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	1
$\boldsymbol{x P}(\boldsymbol{x})$	0	$\frac{1}{2}$	$\frac{2}{4}$	1

6-4 Mean of a Probability Distribution

- Example:
- If three coins are tossed, find the mean of the number of heads that occur.

The probability distribution is

\# of heads \boldsymbol{x}	0	1	2	3	\sum
$\boldsymbol{P}(\boldsymbol{x})$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	1
$\boldsymbol{x P}(\boldsymbol{x})$	0	$\frac{3}{8}$	$\frac{6}{8}$	$\frac{3}{8}$	$\frac{12}{8}=\frac{3}{2}$

6-4 Mean of a Probability Distribution

- Example:
- The probability distribution shown represents the number of trips of five nights or more that American adults take per year.

\# of trips \boldsymbol{x}	0	1	2	3	4
$\boldsymbol{P}(\boldsymbol{x})$	0.06	0.70	0.20	0.03	0.01

Find the mean.

\# of trips \boldsymbol{x}	0	1	2	3	4	\sum
$\boldsymbol{P}(\boldsymbol{x})$	0.06	0.70	0.20	0.03	0.01	1
$\boldsymbol{x P}(\boldsymbol{x})$	0	0.70	0.40	0.09	0.04	1.23

6-5 Variance of a Probability Distribution

- The variance of a probability distribution is found by multiplying the square of each outcome by its corresponding probability, summing those products, and subtracting the square of the mean.
- The formula for calculating the variance is:

$$
\sigma^{2}=\sum x^{2} p(x)-\mu^{2}
$$

- The formula for the standard deviation is:

$$
\sigma=\sqrt{\sigma^{2}}
$$

6-5 Variance of a Probability Distribution

- Example:
- The probability distribution for the number of spots that appear when a die is tossed

Outcome x	1	2	3	4	5	6
Probability $\boldsymbol{P}(\boldsymbol{x})$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Find the variance and standard deviation of the number of spots.

6-5 Variance of a Probability Distribution

$\left.\begin{array}{rl}\hline \text { Outcome } x & 1 \\ 2 & 3 \\ \hline\end{array}\right)$

6-5 Variance of a Probability Distribution

- Example:
- Five balls numbered $0,2,4,6$ and 8 are placed in a bag. After the balls are mixed, one is selected, its number is noted and then it is replaced. If this experiment is repeated many times, and the probability distribution is

\# on ball x	0	2	4	6	8
Probability $\boldsymbol{P}(\boldsymbol{x})$	k	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

find the missing value (k) , mean, variance and standard deviation of the numbers on the balls.

6-5 Variance of a Probability Distribution

$$
k+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=1 \rightarrow k+\frac{4}{5}=1 \rightarrow k=1-\frac{4}{5} \rightarrow k=\frac{1}{5}
$$

\# on ball x	0	2	4	6	8	\sum
Probability $\boldsymbol{P}(\boldsymbol{x})$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	1
$x P(x)$	0	$\frac{2}{5}$	$\frac{4}{5}$	$\frac{6}{5}$	$\frac{8}{5}$	$\frac{20}{5}=4$
$\boldsymbol{x}^{2} \boldsymbol{P}(\boldsymbol{x})$	0	$\frac{4}{5}$	$\frac{16}{5}$	$\frac{36}{5}$	$\frac{64}{5}$	$\frac{120}{5}=24$

$$
\begin{aligned}
\mu & =\sum x P(x)=4 \\
\sigma^{2} & =\sum x^{2} P(x)-\mu^{2}=24-(4)^{2}=24-16=8 \\
\sigma & =\sqrt{\sigma^{2}}=\sqrt{8}=2.83
\end{aligned}
$$

6-6 The Binomial Distribution

- Many types of probability problems have only two possible outcomes or they can be reduced to two outcomes.
- Examples:
- When a coin is tossed it can land on heads or tails.
- When a baby is born it is either a boy or girl.
- A multiple-choice question can be classified as correct or incorrect.

6-7 The Binomial Experiment

- The binomial experiment is a probability experiment that satisfies these requirements:
- Each trial can have only two possible outcomes - success or failure.
- There must be a fixed number of trials.
- The outcomes of each trial must be independent of each other.
- The probability of a success must remain the same for each trial.

6-7 The Binomial Experiment

- The outcomes of a binomial experiment and the corresponding probabilities of these outcomes are called a binomial distribution which is the probability of exactly X successes in n trials

$$
P(x)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}
$$

where

- \boldsymbol{p} The numerical probability of success
- \boldsymbol{q} The numerical probability of failure

$$
p+q=1
$$

- n The number of trials
- \boldsymbol{x} The number of successes $\boldsymbol{x}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{n}$

6-7 The Binomial Experiment

- Example:
- A coin is tossed 3 times. Find the probability of getting exactly two heads.

This can solved using the sample space
ННН,ННТ,НТН,ТНН, НТТ,ТНТ,ТТН,ТTT

There are three ways of getting 2 heads.

$$
P(\text { getting } 2 \text { heads })=\frac{n(\text { getting } 2 \text { heads })}{n(S)}=\frac{3}{8}=0.375
$$

6-7 The Binomial Experiment

- Or using the binomial distribution as following
- we have fixed number of trials (three), so $\boldsymbol{n = 3}$
- there are two outcomes for each trial, \boldsymbol{H} or \boldsymbol{T}
- the outcomes are independent of one another
- the probability of success (heads) is $\frac{1}{2}$, so $\boldsymbol{p}=\frac{1}{2} \Rightarrow \boldsymbol{q}=\mathbf{1}-\frac{1}{2}=\frac{1}{2}$ here $\boldsymbol{x}=\mathbf{2}$ since we need to find the probability of getting $\mathbf{2}$ heads,

$$
\begin{aligned}
P(x=2) & =\frac{n!}{x!(n-x)!} p^{x} q^{n-x}=\frac{3!}{(2!)(1!)}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{1} \\
& =\frac{(3)(2)(1)}{(2)(1)(1)}\left(\frac{1}{4}\right)\left(\frac{1}{2}\right)=\frac{6}{16}=\frac{3}{8}=0.375
\end{aligned}
$$

6-7 The Binomial Experiment

- Example:
- A survey found that one out of five Americans says he or she has visited a doctor in any given month. If 10 people are selected at random, find the probability that exactly 3 would have visited a doctor last month.

$$
\begin{aligned}
& \text { In this case } n=10, X=3, p=\frac{1}{5} \Rightarrow q=1-\frac{1}{5}=\frac{4}{5} \\
& \begin{aligned}
P(x=3) & =\frac{n!}{x!(n-x)!} p^{x} q^{n-x}=\frac{10!}{(3!)(7!)}\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{7} \\
& =\frac{(10)(9)(8)(7!)}{(3)(2)(1)(7!)}\left(\frac{1}{125}\right)\left(\frac{16384}{78125}\right)=\frac{11796480}{58593750}=0.201
\end{aligned}
\end{aligned}
$$

6-7 The Binomial Experiment

- Example:
- A survey from Teenage Research Unlimited (Northbrook, Illinois) found that 30% of teenage consumers receive their spending money from part-time jobs. If 5 teenagers are selected at random, find the probability that at least 3 of them will have parttime jobs.

In this case $\boldsymbol{n}=\mathbf{5}, \boldsymbol{p}=\mathbf{0 . 3} \Rightarrow \boldsymbol{q}=\mathbf{1}-\mathbf{0 . 3}=\mathbf{0} .7$
$P($ at least 3 have part - time job $)=P(x \geq 3)$
$=P(x=3) \quad+P(x=4) \quad+P(x=5)$
$=\frac{5!}{(3!)(2!)}(0.3)^{3}(0.7)^{2}+\frac{5!}{(4!)(1!)}(0.3)^{4}(0.7)^{1}+\frac{5!}{(5!)(0!)}(0.3)^{5}(0.7)^{0}$
$=0.132+0.028+0.002$
$=0.162$

6-8 Binomial Distribution Properties

- The mean, variance, and standard deviation of a variable that has the binomial distribution can be found by using the following formulas.
- Mean

$$
\boldsymbol{\mu}=\boldsymbol{n} \boldsymbol{p}
$$

- Variance

$$
\boldsymbol{\sigma}^{2}=\boldsymbol{n} \boldsymbol{p q}
$$

- Standard deviation

$$
\sigma=\sqrt{\sigma^{2}}
$$

6-8 Binomial Distribution Properties

- Example:
- A coin is tossed 4 times. Find the mean, variance and standard deviation of the number of heads that will be obtained.

In this case $n=4, p=\frac{1}{2} \Rightarrow q=1-\frac{1}{2}=\frac{1}{2}$

$$
\begin{aligned}
\mu & =n p=(4)\left(\frac{1}{2}\right)=2 \\
\sigma^{2} & =n p q=(4)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=1 \\
\sigma & =\sqrt{\sigma^{2}}=\sqrt{1}=1
\end{aligned}
$$

6-8 Binomial Distribution Properties

- Example:
- A die is rolled 480 times. Find the mean, variance and standard deviation of the number of 2 s that will be obtained.

In this case $n=480, p=\frac{1}{6} \Rightarrow q=1-\frac{1}{6}=\frac{5}{6}$

$$
\begin{aligned}
\mu & =n p=(480)\left(\frac{1}{6}\right)=80 \\
\sigma^{2} & =n p q=(480)\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)=66.7 \\
\sigma & =\sqrt{\sigma^{2}}=\sqrt{66.7}=8.2
\end{aligned}
$$

