Chapter Five

Probability

5-1 Introduction

- Probability as a general concept can be defined as the chance of an event occurring.
- Probability are used in games of chance, insurance, investments, and weather forecasting, and in various areas.

5-2 Basic Concepts

- A probability experiment is a chance process that leads to well-defined results called outcomes.
- An outcome is the result of a single trial of a probability experiment.
- A sample space is the set of all possible outcomes of a probability experiment.
- An event consists of a set of outcomes of a probability experiment.
- An event with one outcome is called a simple event and with more than one outcome is called compound event.

5-2 Basic Concepts

- Example:
- Find the sample space for the gender of the children if a family has three children and give an example for simple event and another one for a compound event. Use \boldsymbol{B} for boy and \boldsymbol{G} for girl.

There are two gender and three children, so there are 23=8 possibilities as shown here,

BBB BBG BGB GBB GGG GGB GBG BGG

So, the sample space is

$S=\{B B B, B B G, B G B, G B B, G G G, G G B, G B G, B G G\}$

Simple event as $E=\{B B B\}$
Compound event as $E=\{B B G, B G B, G B B\}$

5-2 Basic Concepts

- A tree diagram is a device used to list all possibilities of a sequence of events in a systematic way.

5-2 Basic Concepts

- Example:
- Find the sample space for the gender of the children if a family has three children. Use B for boy and G for girl. Use a tree diagram to find the sample space for the gender of the three children.

5-2 Basic Concepts

- Equally likely events are events that have the same probability of occurring.
- Venn diagrams are used to represent probabilities pictorially.

5-3 Classical Probability

- Classical probability uses sample spaces to determine the numerical probability that an event will happen. It assumes that all outcomes in the sample space are equally likely to occur.
- The probability of an event E can be defined as

$$
P(E)=\frac{n(E)}{n(S)}=\frac{\text { Number of outcomes in } E}{\text { Total number of outcomes in the sample space }}
$$

5-3 Classical Probability

- Example:
- If a family has three children, find the probability that two of the children are girls.

The sample space is
$S=\{B B B, B B G, B G B, G B B, G G G, G G B, G B G, B G G\}$

$$
n(S)=8
$$

The event of two girls is
$E=\{G G B, G B G, B G G\}$
$n(E)=3$
The probability that two of the children are girls is

$$
P(E)=\frac{n(E)}{n(S)}=\frac{3}{8}
$$

5-3 Classical Probability

Rounding Rule for Probabilities

- Note:
- Probabilities should be expressed as reduced fractions or rounded to three decimal places.
- When the probability of an event is an extremely small decimal, it should be rounded to the first nonzero digit after the decimal point. A number 0.00003467 can be rounded as 0.00003 or 0.000006589 can be rounded as 0.000007 .

5-3 Classical Probability

Probability Rules

- The probability of an event \boldsymbol{E} is a number (either a fraction or decimal) between and including 0 and $1,0 \leq P(E) \leq 1$.
- If an event \boldsymbol{E} cannot occur (i.e., the event \boldsymbol{E} contains no members in the sample space), the probability is zero.
- If an event \boldsymbol{E} is certain, then the probability of E is one.
- The sum of the probabilities of the outcomes in the sample space is one.

5-3 Classical Probability

- Example:
- When a single die is rolled, find the probability of getting a 9.

Since the sample space is $\boldsymbol{S}=\{1,2,3,4,5,6\}$, it is impossible to get a
9,

$$
P(9)=\frac{n(9)}{n(S)}=\frac{0}{6}=0
$$

- Example:
- When a single die is rolled, what is the probability of getting a number less than 7 ?
$P($ number less than 7$)=\frac{\text { number léssthan } 7)}{n(S)}=\frac{6}{6}=1$

5-4 Complementary Events

- The complement of an event E is the set of outcomes in the sample space that are not included in the outcomes of event \boldsymbol{E}. The complement of \boldsymbol{E} is denoted by $\overline{\boldsymbol{E}}$
- Rule for Complementary Events $\boldsymbol{P}(\boldsymbol{E})+\boldsymbol{P}(\overline{\boldsymbol{E}})=\mathbf{1}$
- $P(\bar{E})=1-P(E)$ or $P(E)=1-P(\bar{E})$
- Complementary events are mutually exclusive.

5-4 Complementary Events

- Example:

- Find the complement of each event.
- a- Rolling a die and getting a 4 .

Getting a $1,2,3,5$ or 6

- b- Selecting a month and getting a month that begins with a J. Getting February, March, April, May, August, September, October, November or December
- c- Selecting a day of the week and getting a weekday. Getting Thursday or Friday

5-4 Complementary Events

- Example:
- If the probability that a person lives in an industrialized country of the world is $1 / 5$, find the probability that a person does not live in an industrialized country.
$P($ living in an industrialized country) $=1 / 5$
P (not living in an industrialized country)

$$
\begin{aligned}
& =1-P(\text { living in an industrialized country) } \\
& =1-(1 / 5)=4 / 5
\end{aligned}
$$

5-5 Empirical Probability

- Empirical probability relies on actual experience to determine the likelihood of outcomes.
- Given a frequency distribution, the probability of an event being in a given class is:

$$
P(E)=\frac{\text { frequency of the class }}{\text { total frequecies in the distribution }}=\frac{f}{n}
$$

5-5 Empirical Probability

- Example:
- The frequency distribution of blood types for sample of 50 people as follow:

Blood Type	Frequency
A	22
B	5
O	21
AB	2

find the following probabilities.

5-5 Empirical Probability

- A person has type O blood.

$$
P(O)=\frac{f_{o}}{n}=\frac{21}{50}
$$

- b- A person has type A or type B blood.
$P(A$ or $B)=\frac{f_{A}}{n}+\frac{f_{B}}{n}=\frac{\mathbf{2 2}}{\mathbf{5 0}}+\frac{\mathbf{5}}{\mathbf{5 0}}=\frac{\mathbf{2 7}}{\mathbf{5 0}}$
- c- A person has neither type A nor type O blood. $P($ neither A nor $O)=P(B$ or $A B)=\frac{f_{B}}{n}+\frac{f_{A B}}{n}=\frac{5}{50}+\frac{2}{50}=\frac{7}{50}$ Or

$$
\begin{aligned}
P(\text { neither A nor } O) & =1-P(A \text { or } O)=1-\left(\frac{f_{A}}{n}+\frac{f_{o}}{n}\right) \\
& =1-\left(\frac{22}{50}+\frac{21}{50}\right)=1-\frac{43}{50}=\frac{7}{50}
\end{aligned}
$$

- d- A person does not have type AB blood.
$P($ not $A B)=1-P(A B)=1-\frac{f_{A B}}{n}=1-\frac{2}{50}=\frac{48}{50}=\frac{24}{25}$

5-6 Mutually Exclusive Events

- Two events are mutually exclusive if they cannot occur at the same time (they have no intersection, which means there are no outcomes in common).
- Two events are not mutually exclusive if they can occur at the same time (they have intersection, which means there are outcomes in common).
- The probability of two or more events can be determined by the addition rules.

5-6 Mutually Exclusive Events

- Example:
- Determine which events are mutually exclusive and which are not, when a single die is rolled.
- a- Getting an odd number and getting an even number.

The events are mutually exclusive; since the first event can be 1, 3 or 5 and the second event can be 2,4 or 6 .

- b- Getting a 3 and getting an odd number.

The events are not mutually exclusive, since the first event is a 3 and then second event can be 1,3 or 5 . Hence, 3 is contained in both events.

5-6 Mutually Exclusive Events

- c- Getting an odd number and getting a number less than 4.

The events are not mutually exclusive, since the first event can be 1 , 3 or 5 and the second event can be 1, 2 or 3 . Hence, 1 and 3 are contained in both events.

- d- Getting a number greater than 4 and getting a number less than 4.

The events are mutually exclusive, since the first event can be 5 or 6 and the second event can be 1,2 or 3 .

5-6 Mutually Exclusive Events

- When two events \boldsymbol{A} and \boldsymbol{B} are mutually exclusive, the probability that \boldsymbol{A} or \boldsymbol{B} will occur is:

$$
P(A \text { or } B)=P(A)+P(B)
$$

- When two events \boldsymbol{A} and \boldsymbol{B} are not mutually exclusive, the probability that \boldsymbol{A} or \boldsymbol{B} will occur is:

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

5-6 Mutually Exclusive Events

- Example:
- A box contains 3 glazed doughnuts, 4 jelly doughnuts and 5 chocolate doughnuts. If a person selects a doughnut at random, find the probability that it is either a glazed doughnut or a chocolate doughnut.

The total number of doughnuts in the box is 12 and the event are mutually exclusive, so
$P($ Glazed or Chocolate $)=P($ Galzed $)+P($ Chocolate $)$

$$
=\frac{3}{12}+\frac{5}{12}=\frac{8}{12}=\frac{2}{3}
$$

5-6 Mutually Exclusive Events

- Example:
- A day of the week is selected at random. Find the probability that it is a weekend day (Thursday or Friday)

The total number of days in week is 7 and the event are mutually exclusive, so
$P($ Thursday or Friday $)=P($ Thursday $)+P($ Friday $)$

$$
=\frac{1}{7}+\frac{1}{7}=\frac{2}{7}
$$

5-6 Mutually Exclusive Events

- Example:
- In a hospital unit there are 8 nurses and 5 physicians shown in the following table

Staff	Female	Male	Total
Nurses	7	1	8
Physicians	3	2	5
Total	10	3	13

If a staff is selected, find the probability that the subject is a nurse or a male.

The events are not mutually exclusive and the sample space is

$$
\begin{aligned}
& P(\text { Nurse or Male })=P(\text { Nurse })+P(\text { Male }) \\
& \qquad-P(\text { Nurse and Male })=\frac{8}{13}+\frac{3}{13}-\frac{1}{13}=\frac{10}{13}
\end{aligned}
$$

5-7 Independent Events

- Two events \boldsymbol{A} and \boldsymbol{B} are independent if the fact that \boldsymbol{A} occurs does not affect the probability of \boldsymbol{B} occurring.
- Multiplication Rules
- The multiplication rules can be used to find the probability of two or more events that occur in sequence.
- When two events are independent, the probability of both occurring is:

$$
P(A \text { and } B)=P(A) P(B)
$$

5-7 Independent Events

- Example:
- A box contains 3 red balls, 2 blue balls and 5 white balls. A ball is selected and its color noted. Then it is replaced. A second ball is selected and its color noted. Find the probability of each of these.
- a. Selecting 2 blue balls

$$
P(\text { Blue and Blue })=P(\text { Blue }) P(\text { Blue })=\left(\frac{2}{10}\right)\left(\frac{2}{10}\right)=\frac{4}{100}=\frac{1}{25}
$$

- b. Selecting 1 blue ball and then 1 white ball

$$
P(\text { Blue and White })=P(\text { Blue }) P(\text { White })=\left(\frac{2}{10}\right)\left(\frac{5}{10}\right)=\frac{10}{100}=\frac{1}{10}
$$

- c. Selecting 1 red ball and then 1 blue ball

$$
P(\text { Red and Blue })=P(\text { Red }) P(\text { Blue })=\left(\frac{3}{10}\right)\left(\frac{2}{10}\right)=\frac{6}{100}=\frac{3}{50}
$$

5-7 Independent Events

- Example:
- Approximately 9% of men have a type of color blindness that prevents them from distinguishing between red and green. If 3 men are selected at random, find the probability that all of them will have this type of red-green color blindness.

Let C denote red-green color blindness. Then
$P(C$ and C and $C)=P(C) P(C) P(C)=(0.09)(0.09)(0.09)=0.000729$
Hence, the rounded probability is 0.0007

