## Chapter Three

## Data Description

## 3-1 Introduction

- Measures of average are also called measures of central tendency, which is used to summarize data, and include mean, median, mode, midrange, and weighted mean.
- Measures that determine the spread of data values are called measures of variation and include range, variance, and standard deviation.
- Measures of position tell where a specific data value falls within a data set or its relative position in comparison with other data values and include standard scores and quartiles.


## 3-1 Introduction

- The measures of central tendency, variation, and position are part of what is called traditional statistics.
- Another type of statistics is called exploratory data analysis, which includes the box plot and five-number summary.
- A statistic is a measure calculated using the data values of a sample.
- A parameter is a measure calculated using all the data values of a specific population.


## 3-2 Measures of Central Tendency

- The mean is the sum of the values divided by the total number of values.
- The Greek letter $\boldsymbol{\mu}(\mathrm{mu})$ is used to represent the population mean.

$$
\mu=\frac{\sum X}{N}=\frac{X_{1}+X_{2}+\cdots+X_{N}}{N}
$$

- The symbol $x$ (x-bar) represents the sample mean.

$$
\bar{x}=\frac{\sum x}{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

## 3-2 Measures of Central Tendency

- Example:
- Suppose that the number of burglaries reported in a specific year for nine cities are $61,11,1,3,2,30,18,3,7$ Find the mean.

$$
\bar{x}=\frac{\sum x}{n}=\frac{61+11+1+3+2+30+18+3+7}{9}=\frac{136}{9}=15.1
$$

## 3-2 Measures of Central Tendency

- The median (MD) is the halfway point in a data set.
- The median is found by arranging the data in order and selecting the middle point.
- Example if $\boldsymbol{n}$ is odd:
- Suppose that the number of burglaries reported in a specific year for nine cities are $61,11,1,3,2,30,18,3,7$ Find the median.

$$
\begin{gathered}
1,2,3,3, \mid 7,11,18,30,61 \\
\boldsymbol{M D}=7
\end{gathered}
$$

## 3-2 Measures of Central Tendency

- Example $\boldsymbol{n}$ is even:
- Suppose that the number of burglaries reported in a specific year for eight cities are $11,1,3,2,30,18,3,7 \quad$ Find the median.

$$
\begin{gathered}
1,2,3, \frac{3,7}{\downarrow}, 11,18,30 \\
\boldsymbol{M D}=\frac{\mathbf{3 + 7}}{\mathbf{2}}=\mathbf{5}
\end{gathered}
$$

## 3-2 Measures of Central Tendency

- The mode is the value that occurs most often in a data set.
- A data set with one value that occurs with greatest frequency is said to be unimodal. e.g., $3,4,2,6,4,1,5 \rightarrow$ mode $=4$
- A data set with two values that occur with greatest frequency is said to be bimodal. e.g., 3, 4, 2, 6, 4, 1, $2 \rightarrow$ mode $=\mathbf{2}, 4$
- A data set with more than two values that occur with greatest frequency is said to be multimodal.

$$
\text { e.g., } 6,3,4,2,6,4,1,2,5,6,4,2 \rightarrow \text { mode }=2,4,6
$$

- When all the values in a data set occur with the same frequency is said to have no mode.

$$
\text { e.g., } 3,4,2,3,6,4,1,2,1,6 \rightarrow \text { no mode }
$$

$$
3,4,2,6,5,1,7,8 \rightarrow \text { no mode }
$$

## 3-2 Measures of Central Tendency

- Example:
- Suppose that the number of burglaries reported in a specific year for nine cities are $61,11,1,3,2,30,18,3,7$ Find the mode.

$$
61,11,1,|3|, 2,30,18,|3|, 7
$$

$$
\text { mode }=3
$$

## 3-2 Measures of Central Tendency

- The midrange (MR) is a rough estimate of the middle and defined as the sum of the lowest and highest values in a data set divided by 2 .

$$
M R=\frac{M a x-M i n}{2}
$$

- Example:
- Suppose that the number of burglaries reported in a specific year for nine cities are $61,11,1,3,2,30,18,3,7$ Find the midrange.

โ61, 11, 1|, 3, 2, 30, 18, 3, 7

$$
M R=\frac{M i n+M a x}{2}=\frac{1+61}{2}=\frac{62}{2}=31
$$

## 3-2 Measures of Central Tendency

- The weighted mean is used when the values in a data set are not all equally represented.
- The weighted mean of a variable $X$ is found by multiplying each value by its corresponding weight and dividing the sum of the products by the sum of the weights.

$$
\bar{x}_{w}=\frac{x_{1} w_{1}+x_{2} w_{2}+\cdots+x_{n} w_{n}}{w_{1}+w_{2}+\cdots+w_{n}}=\frac{\sum x w}{\sum w}
$$

Where $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{\boldsymbol{n}}$ are the weights for $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$

## 3-2 Measures of Central Tendency

- Example:
- A student received 90 in English (3 credits), 70 in Statistics (3 credits), 80 in Biology ( 4 credits) and 60 in physical education (2 credits), find the student's average grade.

$$
\begin{aligned}
& \bar{x}_{w}=\frac{(90)(3)+(70)(3)+(80)(4)+(60)(2)}{3+3+4+2} \\
&=\frac{270+210+320+120}{12}=\frac{920}{12}=76.67
\end{aligned}
$$

## 3-3 Properties of Central Tendency Measures

- The mean is affected by extremely high or low values and may not be the appropriate average.
- The median is affected less than the mean by extremely high or extremely low values.
- The mode can be used for categorical data, such as religious preference or gender.
- The midrange is affected by extremely high or low values in a data set.


## 3-4 Distribution Shapes

- In a positively skewed or right skewed distribution, the majority of the data values falls to the left of the mean and cluster at the lower end of the distribution.
mode $<$ median $<$ mean



## 3-4 Distribution Shapes

- In a symmetrical distribution, the data values are evenly distributed on both sides of the mean.

$$
\text { mean }=\text { median }=\text { mode }
$$



## 3-4 Distribution Shapes

- In a negatively skewed or left skewed distribution, the majority of the data values falls to the right of the mean and cluster at the upper end of the distribution.
mean $<$ median $<$ mode



## 3-5 Measures of Variation

- The range is the highest value minus the lowest value in a data set.

$$
R=M a x-M i n
$$

- Example:
- Suppose that the number of burglaries reported in a specific year for nine cities are $61,11,1,3,2,30,18,3,7$ Find the range.

$$
\begin{gathered}
|61|, 11,|1|, 3,2,30,18,3,7 \\
\boldsymbol{R}=\boldsymbol{M a x}-\operatorname{Min}=\mathbf{6 1}-\mathbf{1}=\mathbf{6 0}
\end{gathered}
$$

## 3-5 Measures of Variation

- The variance is the average of the squares of the distance each value is from the mean.
- The symbol for the population variance is $\boldsymbol{\sigma}^{2}$

$$
\sigma^{2}=\frac{\sum(x-\mu)^{2}}{N}
$$

- The symbol for the sample variance is $\boldsymbol{S}^{2}$

$$
S^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}=\frac{\sum x^{2}-\left[\frac{\left(\sum x\right)^{2}}{n}\right]}{n-1}
$$

## 3-5 Measures of Variation

- The standard deviation is the square root of the variance.
- The symbol for the population standard deviation is $\boldsymbol{\sigma}$

$$
\sigma=\sqrt{\sigma^{2}}
$$

- The symbol for the sample standard deviation is $S$

$$
S=\sqrt{S^{2}}
$$

## 3-5 Measures of Variation

- Example:
- Suppose that the number of burglaries reported in a specific year for nine cities are $61,11,1,3,2,30,18,3,7$ Find the variance and the standard deviation.



## 3-5 Measures of Variation

- Variance and Standard Deviation
- Variances and standard deviations can be used to determine the spread of the data. If the variance or standard deviation is large, the data are more dispersed.
- The measures of variance and standard deviation are used to determine the consistency of a variable, to determine the number of data values that fall within a specified interval in a distribution and in comparing two or more data sets to determine which is more variable.


## 3-5 Measures of Variation

- The coefficient of variation is the standard deviation divided by the mean expressed as a percentage.
- For populations

$$
\boldsymbol{C V a r}=\frac{\boldsymbol{\sigma}}{\boldsymbol{\mu}} * 100 \%
$$

- For Samples

$$
\operatorname{CVar}=\frac{\boldsymbol{S}}{\overline{\boldsymbol{x}}} * 100 \%
$$

- The coefficient of variation is used to compare standard deviations of two variables or more when the units or the values of the means are different.
- Large coefficient of variation means large variability.


## 3-5 Measures of Variation

- Example:
- The average age of the employees at certain company is 30 years with a standard deviation of 5 years; the average salary of the employees is $\$ 40,000$ with a standard deviation of $\$ 5000$. Which one has more variation age or income?
$\boldsymbol{C V a r}($ age $)=\frac{S}{\overline{\boldsymbol{x}}} * 100=\frac{\mathbf{5}}{\mathbf{3 0}} * 100=16.67 \%$
$\operatorname{CVar}($ income $)=\frac{S}{\overline{\boldsymbol{x}}} * 100=\frac{\mathbf{5 0 0 0}}{\mathbf{4 0 0 0 0}} * \mathbf{1 0 0}=12.5 \%$
Age is more variable than income.


## 3-6 Measure of Position

- A standard score or $\mathbf{z}$ score is used when direct comparison of raw scores is impossible.
- The $\boldsymbol{z}$ score represents the number of standard deviations a data value falls above or below the mean.

$$
Z=\frac{x-\bar{x}}{S}
$$

## 3-6 Measure of Position

- Example:
- A student scored 65 on a statistics exam that had a mean of 50 and a standard deviation of 10 . Compute the $z$-score.

$$
Z=\frac{x-\bar{x}}{S}=\frac{65-50}{10}=1.5
$$

That is, the score of 65 is 1.5 standard deviations above the mean. Above - since the $z$-score is positive.

## 3-6 Measure of Position

- Example:
- Which of the following exam scores has a better relative position?
a. A score of 42 on an exam with $\overline{\boldsymbol{x}}=\mathbf{3 9}$ and $\boldsymbol{S}=\mathbf{4}$

$$
Z=\frac{x-\bar{x}}{S}=\frac{42-39}{4}=\frac{3}{4}=0.75
$$

b. A score of 76 on an exam with $\overline{\boldsymbol{x}}=\mathbf{7 1}$ and $\boldsymbol{S}=\mathbf{3}$

$$
Z=\frac{x-\bar{x}}{S}=\frac{76-71}{3}=\frac{5}{3}=1.67
$$

So, a score of 76 has a better relative position.

## 3-6 Measure of Position

- Quartiles divide the distribution into four groups, denoted by $\boldsymbol{Q}_{1}, \boldsymbol{Q}_{\mathbf{2}}, \boldsymbol{Q}_{\mathbf{3}}$. Note that $\boldsymbol{Q}_{1}$ is the same as the $25^{\text {th }}$ percentile, $\boldsymbol{Q}_{\mathbf{2}}$ is the same as the $50^{\text {th }}$ percentile or the median and $\boldsymbol{Q}_{\mathbf{3}}$ corresponds to the $75^{\text {th }}$ percentile.
- Quartiles can be found as follow

1. Arrange the data in order from lowest to highest.
2. Find the median of the data values $\left(\boldsymbol{Q}_{2}\right)$.
3. Find the median of the data values that fall bellow $Q_{2}\left(Q_{1}\right)$.
4. Find the median of the data values that fall above $\boldsymbol{Q}_{2}\left(\boldsymbol{Q}_{3}\right)$.

## 3-6 Measure of Position

- Example:
- Suppose that the number of burglaries reported in a specific year for nine cities are $61,11,1,3,2,30,18,3,7$ Find the first, second and third quartile.



## 3-6 Measure of Position

## Outliers

- An outlier is an extremely high or an extremely low data value when compared with the rest of the data values.
- Outliers can be identified as follows:

1. Arrange the data in order and find $\boldsymbol{Q}_{1}$ and $\boldsymbol{Q}_{\mathbf{3}}$.
2. Find the interquartile range: $I Q R=Q_{3}-Q_{1}$.
3. The values that are smaller than $Q_{1}-(1.5)(I Q R)$ or larger than $Q_{3}+(\mathbf{1 . 5})(I Q R)$ are called outliers.

- Outliers can be the result of measurement or observational error.


## 3-6 Measure of Position

- Example:
- Suppose that the number of burglaries reported in a specific year for nine cities are $61,11,1,3,2,30,18,3,7$ Find the outlier values if any.

$$
\begin{gathered}
1,\lfloor 2,3,3,37,11,\lfloor 18,30,61 \\
Q_{2}=7 \\
\boldsymbol{Q}_{1}=\mathbf{2 . 5} \quad Q_{3}=\mathbf{2 4}
\end{gathered}
$$

$$
I Q R=Q_{3}-Q_{1}=24-2.5=21.5
$$

$$
Q_{3}+(1.5)(I Q R)=24+(1.5)(21.5)=24+32.25=56.25
$$

$$
Q_{1}-(1.5)(I Q R)=2.5-(1.5)(21.5)=2.5-32.25=-29.75
$$

$$
1,2,3,3,7,11,18,30,61
$$

61 is an outlier value in this data.

## 3-7 Exploratory Data Analysis

- The purpose of exploratory data analysis is to examine data in order to find out what information can be discovered such as the center and the spread.
- Boxplots are graphical representations of a five-number summary of a data set. The five specific values that make up a five-number summary are

Min, $Q_{1}, Q_{2}, Q_{3}$, Max

## 3-7 Exploratory Data Analysis

- Information obtained from a boxplot
- Using the box:
- If the median is near the center of the box, the distribution is approximately symmetric.
- If the median is to the left of the box, the distribution is positively skewed.
- If the median is to the right of the box, the distribution is negatively skewed.
- Using the lines:
- If the lines are about the same length, the distribution is approximately symmetric.
- If the right line is taller, the distribution is positively skewed.
- If the left line is taller, the distribution is negatively skewed.


## 3-7 Exploratory Data Analysis

- Example:
- Suppose that the number of burglaries reported in a specific year for nine cities are $61,11,1,3,2,30,18,3,7$ Find the fivenumber summary and comment on the skewness of the data.

- The distribution is positively skewed.

