## Chapter Two

## Frequency Distributions and Graphs

## 2-1 Organizing Data

- Raw data is the data when are collected in original form.
- When the raw data are organized into a table, which is called frequency distribution, the frequency will be the number of values in a specific class of the distribution.
- A frequency distribution is the organization of raw data in a table form, using classes and frequencies.


## 2-1 Organizing Data



## 2-2 Categorical Frequency Distributions

- Categorical Frequency Distributions are used for data that can be placed in specific categories, such as nominal or ordinal level data.

$$
\begin{aligned}
n & =\sum f \\
\text { Percent } & =\frac{f}{\sum f} * 100
\end{aligned}
$$

## 2-2 Categorical Frequency Distributions

- Example: Blood type frequency distribution of 28 patients

| Class | Frequency | Percent |
| :---: | :---: | :---: |
| A | 6 | $\frac{6}{28} * 100=21 \%$ |
| B | 8 | $\frac{8}{28} * 100=29 \%$ |
| O | 11 | $\frac{11}{28} * 100=39 \%$ |
| AB | 3 | $\frac{3}{28} * 100=11 \%$ |
| $\mathrm{\sum}$ | 28 | $100 \%$ |

## 2-3 Ungrouped Frequency Distributions

- Ungrouped frequency distributions are used for data that can be enumerated and when the range of values in the data set is small (discrete data).


## 2-3 Ungrouped Frequency Distributions

- Example: Number of patients in the waiting rooms of 16 clinics within a hospital at a specific time.

| Class | Frequency | Cumulative Frequency | Percent |
| :---: | :---: | :---: | :---: |
| 4 | 8 | 8 | $\frac{8}{16} * 100=50 \%$ |
| 5 | 3 | $8+3=11$ | $\frac{3}{16} * 100=19 \%$ |
| 8 | 5 | $11+5=16$ | $\frac{5}{16} * 100=31 \%$ |
| $\sum$ | 16 | - | $100 \%$ |

## 2-4 Grouped Frequency Distributions

- Grouped frequency distributions are used when the range of values in a data set is large (continuous data). The data must be grouped into classes that are more than one unit in width, e.g., $24-30$.
- The lower class limit represents the smallest data value that can be included in a class, e.g., 24 for the class limit $24-30$.
- The upper class limit represents the largest value that can be included in the class, e.g., 30 for the class limit 24-30.


## 2-4 Grouped Frequency Distributions

- The class boundaries are used to separate the classes so that there are no gaps in the frequency distribution and they can be found by the following steps:
- 1- make sure the number of decimal digits are equal in the lower and upper limit if not add zero to the one that has less decimal digit. (if exist)

$$
\begin{array}{rlc}
\text { e.g., } 24.4-30 & \rightarrow 24.4-30.0 \\
4.4-7.93 & \rightarrow 4.40-7.93 \\
6-9 & \rightarrow & 6-9
\end{array}
$$

## 2-4 Grouped Frequency Distributions

- 2- add zero after the last decimal digit in the lower and upper limit.

$$
\begin{array}{rlc}
\text { e.g., } 24.4-30.0 & \rightarrow 24.40-30.00 \\
4.40-7.93 & \rightarrow 4.400-7.930 \\
6-9 & \rightarrow & 6.0-9.0
\end{array}
$$

- 3- subtracting 5 from the last digit in the lower class limit and adding 5 to the last digit in the upper class limit.

$$
\begin{array}{rlc}
\text { e.g., } 24.40-30.00 & \rightarrow 24.35-30.05 \\
4.400-7.930 & \rightarrow 4.395-7.935 \\
6.0-9.0 & \rightarrow 5 & 5.5-9.5
\end{array}
$$

## 2-4 Grouped Frequency Distributions

- The class width for a class in a frequency distribution is found by one of the following:
- subtracting the lower (or upper) class limit of one class from the lower (or upper) class limit of the next class.
- subtracting the lower (or upper) class boundary of one class from the lower (or upper) class boundary of the next class.
- subtracting the lower class limit of one class from the upper class limit of the same class then add 1 to the last digit.
- subtracting the lower class boundary of one class from the upper class boundary of the same class.


## 2-4 Grouped Frequency Distributions

- The class midpoint is found by adding the lower and upper limits then divide by 2 or adding the lower and upper boundaries then divide by 2 .

$$
\begin{aligned}
& \text { e.g., } 24-30 \rightarrow \\
& \qquad \text { class midpoint }=\frac{24+30}{2}=27
\end{aligned}
$$

## 2-4 Grouped Frequency Distributions

- Example: Sample of birth weight (oz) from 40 consecutive deliveries.

| Class <br> limit | Frequency | Relative <br> Frequency | Class <br> boundaries | Class <br> midpoint | Percent |  | Cumulative <br> frequency | Cumulative <br> Relative <br> Frequency |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $32-50$ | 1 | $\frac{1}{40}=0.025$ | $31.5-50.5$ | 41 | $2.5 \%$ | Less than <br> 50.5 | 1 | 0.025 |
| $51-69$ | 2 | 0.050 | $50.5-69.5$ | 60 | $5 \%$ | Less than <br> 69.5 | $1+2=3$ | $0.025+0.050=0.075$ |
| $70-88$ | 3 | 0.075 | $69.5-88.5$ | 79 | $7.5 \%$ | Less than <br> 88.5 | $3+3=6$ | $0.075+0.075=0.150$ |
| $89-107$ | 10 | 0.250 | $88.5-107.5$ | 98 | $25 \%$ | Less than <br> 107.5 | $6+10=16$ | $0.150+0.250=0.400$ |
| $108-126$ | 12 | 0.300 | $107.5-126.5$ | 117 | $30 \%$ | Less than <br> 126.5 | $16+12=28$ | $0.400+0.300=0.700$ |
| $127-145$ | 9 | 0.225 | $126.5-145.5$ | 136 | $22.5 \%$ | Less than <br> 145.5 | $28+9=37$ | $0.700+0.225=0.925$ |
| $146-164$ | 3 | 0.075 | $145.5-164.5$ | 155 | $7.5 \%$ | Less than <br> 164.5 | $37+3=40$ | $0.925+0.075=1$ |
| Total | 40 | 1 | - | - | $100 \%$ | - | - | - |

## 2-5 The Most Common Graphs

- The histogram displays the continuous data that are organized in a grouped frequency distribution by using vertical bars of various heights to represent the frequencies.

Sample of birthweight (oz) from 40 consecutive deliveries


## 2-5 The Most Common Graphs

- The frequency polygon displays the continuous data that are organized in a grouped frequency distribution by using lines that connect points plotted for the frequencies at the midpoints of the classes.



## 2-5 The Most Common Graphs

- The cumulative frequency graph or ogive displays the continuous data that are organized in a grouped frequency distribution.



## 2-6 Relative frequency graph

- The histogram



## 2-6 Relative frequency graph

- The frequency polygon



## 2-6 Relative frequency graph

- The cumulative frequency graph or ogive

Sample of birthweight (oz) from 40 consecutive deliveries


## 2-7 Other Types of Graphs

- The bar chart displays the data by using vertical bars of various heights to represent the frequencies of discrete or categorical variables.



## 2-7 Other Types of Graphs

- A Pareto chart is used to represent a frequency distribution for categorical variable. The frequencies are displayed by the heights of vertical bars, which are arranged in order from highest to lowest.



## 2-7 Other Types of Graphs

- The pie graph is a circle that is divided into sections according to the percentage of frequencies in each category of the distribution.

$$
\text { Degree }=\frac{f}{\sum f} * 360
$$

| Class | Frequency | Percent | Degree |
| :---: | :---: | :---: | :---: |
| A | 6 | $\frac{6}{28} * 100=21.43 \%$ | $\frac{6}{28} * 360=77.14^{\circ}$ |
| B | 8 | $\frac{8}{28} * 100=28.57 \%$ | $\frac{8}{28} * 360=102.86^{\circ}$ |
| O | 11 | $\frac{11}{28} * 100=39.29 \%$ | $\frac{11}{28} * 360=141.43^{\circ}$ |
| AB | 3 | $\frac{3}{28} * 100=10.71 \%$ | $\frac{3}{28} * 360=38.57^{\circ}$ |
| Total | 28 | $100 \%$ | $360^{\circ}$ |

## 2-7 Other Types of Graphs

Blood Type


## 2-7 Other Types of Graphs

- The time series graph represents data that occur over a specific period of time.



## 2-7 Other Types of Graphs

- A stem-and-leaf plot is a data plot that uses part of a data value as the stem, the most significant digit (i.e. the 'tens'), and the other part of the data value as the leaf, the less significant digits (the 'units'), to form groups or classes.
- It has the advantage over grouped frequency distribution of retaining the actual data while showing them in a graphic form.


## 2-7 Other Types of Graphs

| 3 | 2 |  |  |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 |  |  |  |  |  |  |  |
| 5 | 8 |  |  |  |  |  |  |
| 6 | 7 |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |  |
| 8 | 3 | 5 | 6 |  |  |  |  |
| 9 | 2 | 3 | 4 | 4 | 5 | 6 | 8 |
| 10 | 0 | 4 | 5 | 8 |  |  |  |
| 11 | 2 | 3 | 5 | 6 | 8 | 8 |  |
| 12 | 0 | 2 | 3 | 4 | 4 | 7 | 8 |
| 13 | 2 | 2 | 2 | 4 | 8 |  |  |
| 14 | 0 | 1 | 6 |  |  |  |  |
| 15 | 5 |  |  |  |  |  |  |
| 16 | 1 |  |  |  |  |  |  |

