Chapter Two

Frequency Distributions and Graphs

2-1 Organizing Data

- **<u>Raw data</u>** is the data when are collected in original form.
- When the raw data are organized into a table, which is called <u>frequency distribution</u>, the <u>frequency</u> will be the number of values in a specific class of the distribution.
- A <u>frequency distribution</u> is the organization of raw data in a table form, using classes and frequencies.

2-2 Categorical Frequency Distributions

 <u>Categorical Frequency Distributions</u> are used for data that can be placed in specific categories, such as <u>nominal</u> or <u>ordinal</u> level data.

$$n=\sum f$$

$$Percent = \frac{f}{\sum f} * 100$$

2-2 Categorical Frequency Distributions

• Example: Blood type frequency distribution of 28 patients

Class	Frequency	Percent
А	6	$\frac{6}{28} * 100 = 21\%$
В	8	$\frac{8}{28} * 100 = 29\%$
Ο	11	$\frac{11}{28} * 100 = 39\%$
AB	3	$\frac{3}{28} * 100 = 11\%$
\sum	28	100%

 <u>Ungrouped frequency distributions</u> are used for data that can be enumerated and when the range of values in the data set is small (discrete data).

• <u>Example</u>: Number of patients in the waiting rooms of 16 clinics within a hospital at a specific time.

Class	Frequency	Cumulative Frequency	Percent
4	8	8	$\frac{8}{16} * 100 = 50\%$
5	3	8+3=11	$\frac{3}{16} * 100 = 19\%$
8	5	11+5=16	$\frac{5}{16} * 100 = 31\%$
\sum	16	_	100%

- Grouped frequency distributions are used when the range of values in a data set is large (continuous data). The data must be grouped into classes that are more than one unit in width, e.g., 24 30.
- The lower class limit represents the smallest data value that can be included in a class, e.g., 24 for the class limit 24 – 30.
- The <u>upper class limit</u> represents the largest value that can be included in the class, e.g., 30 for the class limit 24 – 30.

- The <u>class boundaries</u> are used to separate the classes so that there are no gaps in the frequency distribution and they can be found by the following steps:
 - 1- make sure the number of decimal digits are equal in the lower and upper limit if not add zero to the one that has less decimal digit. (if exist)

e.g.,
$$24.4 - 30 \rightarrow 24.4 - 30.0$$

 $4.4 - 7.93 \rightarrow 4.40 - 7.93$
 $6 - 9 \rightarrow 6 - 9$

 2- add zero after the last decimal digit in the lower and upper limit.

e.g., $24.4 - 30.0 \rightarrow 24.40 - 30.00$ $4.40 - 7.93 \rightarrow 4.400 - 7.930$ $6 - 9 \rightarrow 6.0 - 9.0$

 3- subtracting 5 from the last digit in the lower class limit and adding 5 to the last digit in the upper class limit.

e.g., $24.40 - 30.00 \rightarrow 24.35 - 30.05$ $4.400 - 7.930 \rightarrow 4.395 - 7.935$ $6.0 - 9.0 \rightarrow 5.5 - 9.5$

- The <u>class width</u> for a class in a frequency distribution is found by one of the following:
 - subtracting the lower (or upper) class limit of one class from the lower (or upper) class limit of the next class.
 - subtracting the lower (or upper) class boundary of one class from the lower (or upper) class boundary of the next class.
 - subtracting the lower class limit of one class from the upper class limit of the same class then add 1 to the last digit.
 - subtracting the lower class boundary of one class from the upper class boundary of the same class.

 The <u>class midpoint</u> is found by adding the lower and upper limits then divide by 2 or adding the lower and upper boundaries then divide by 2.

e.g.,
$$24 - 30 \rightarrow$$

class midpoint = $\frac{24 + 30}{2} = 27$

<u>Example</u>: Sample of birth weight (oz) from 40 consecutive deliveries.

Class limit	Frequency	Relative Frequency	Class boundaries	Class midpoint	Percent		Cumulative frequency	Cumulative Relative Frequency
32 - 50	1	$\frac{1}{40} = 0.025$	31.5 - 50.5	41	2.5%	Less than 50.5	1	0.025
51 - 69	2	0.050	50.5 - 69.5	60	5%	Less than 69.5	1+2=3	0.025+0.050=0.075
70 - 88	3	0.075	69.5 - 88.5	79	7.5%	Less than 88.5	3+3=6	0.075+0.075=0.150
89 - 107	10	0.250	88.5 - 107.5	98	25%	Less than 107.5	6+10=16	0.150+0.250=0.400
108 - 126	12	0.300	107.5 - 126.5	117	30%	Less than 126.5	16+12=28	0.400+0.300=0.700
127 - 145	9	0.225	126.5 - 145.5	136	22.5%	Less than 145.5	28+9=37	0.700+0.225=0.925
146 - 164	3	0.075	145.5 - 164.5	155	7.5%	Less than 164.5	37+3=40	0.925+0.075=1
Total	40	1	-	-	100%	-	-	-

2-5 The Most Common Graphs

• The <u>histogram</u> displays the <u>continuous</u> data that are organized in a grouped frequency distribution by using vertical bars of various heights to represent the frequencies.

2-5 The Most Common Graphs

 The <u>frequency polygon</u> displays the <u>continuous</u> data that are organized in a grouped frequency distribution by using lines that connect points plotted for the frequencies at the midpoints of the classes.

2-5 The Most Common Graphs

 The <u>cumulative frequency graph</u> or <u>ogive</u> displays the <u>continuous</u> data that are organized in a grouped frequency distribution.

2-6 Relative frequency graph

• The histogram

2-6 Relative frequency graph

The frequency polygon

2-6 Relative frequency graph

• The cumulative frequency graph or ogive

 The <u>bar chart</u> displays the data by using vertical bars of various heights to represent the frequencies of <u>discrete</u> or <u>categorical</u> variables.

 A <u>Pareto chart</u> is used to represent a frequency distribution for <u>categorical</u> variable. The frequencies are displayed by the heights of vertical bars, which are arranged in order from highest to lowest.

The <u>pie graph</u> is a circle that is divided into sections according to the percentage of frequencies in each <u>category</u> of the distribution.

$$Degree = \frac{f}{\sum f} * 360$$

Class	Frequency	Percent	Degree		
А	6	$\frac{6}{28}$ * 100 = 21.43%	$\frac{6}{28}$ * 360 = 77.14°		
В	8	$\frac{8}{28}$ * 100 = 28.57%	$\frac{8}{28}$ * 360 = 102.86°		
Ο	11	$\frac{11}{28} * 100 = 39.29\%$	$\frac{11}{28} * 360 = 141.43^{\circ}$		
AB	3	$\frac{3}{28} * 100 = 10.71\%$	$\frac{3}{28}$ * 360 = 38.57°		
Total	28	100%	360°		

The <u>time series graph</u> represents data that occur over a specific period of time.

- A <u>stem-and-leaf plot</u> is a data plot that uses part of a data value as the <u>stem</u>, the most significant digit (i.e. the 'tens'), and the other part of the data value as the <u>leaf</u>, the less significant digits (the 'units'), to form groups or classes.
- It has the advantage over grouped frequency distribution of retaining the actual data while showing them in a graphic form.

3	2						
4							
5	8						
6	7						
7							
8	3	5	6				
9	2	3	4	4	5	6	8
10	0	4	5	8			
11	2	3	5	6	8	8	
12	0	2	3	4	4	7	8
13	2	2	2	4	8		
14	0	1	6				
15	5						
16	1						