

Riemann Sums

Dr.Hamed al-Sulami

October 19, 2011

Definition 3.1: Let Let $f : [a,b] \to \mathbb{R}$ be bounded function, and $P = \{x_0, x_1, \dots, x_n\}$ be a partition of [a,b]. For each interval $[x_{k-1}, x_k]$ choose $t_k \in [x_{k-1}, x_k]$. Then the number $S(f, P) = \sum_{k=1}^n f(t_k) \triangle x_k$ is called a *Riemann sum* of f over P determined by $\{t_k\}$.

Example 3.1: Let $f:[a,b] \to \mathbb{R}$ be a bounded function and let $P_n = \left\{ x_k \mid x_k = a + \frac{k(b-a)}{n}, k = 0, 1, \dots, n \right\}$, $\forall n \in \mathbb{N}$ be a partition of [a,b]. Let $t_k = x_{k-1}, k = 1, \dots, n$ then Riemann Sum is $S(f,P) = \sum_{k=1}^n f(x_{k-1}) \bigtriangleup x_k$. Also if we choose $t_k = \frac{x_k + x_{k-1}}{2}$, then Riemann Sum is $S(f,P) = \sum_{k=1}^n f\left(\frac{x_k + x_{k-1}}{2}\right) \bigtriangleup x_k$. The two sums may not be equal.

Theorem 3.1: []

Let $f : [a, b] \to \mathbb{R}$ be a bounded function on [a, b]. Then f is integrable on [a, b] if and only if there is a real number $A \in \mathbb{R}$ such that for $\varepsilon > 0$ there is a partition P_{ε} such that if P is any partition of [a, b] with $P_{\varepsilon} \subseteq P$ and if S(f, P) is any Riemann Sum for f over P then $|S(f, P) - A| < \varepsilon$. If the condition is satisfied, then $A = \int_{\varepsilon}^{b} f$.

Proof: (\Rightarrow) Suppose f is integrable on [a, b]. Let $A = \int_{a}^{b} f$ and $\epsilon > 0$ be given. There is a partition P_{ε} of [a, b] such that $U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \epsilon$. Let P any partition of [a, b] such that $P_{\varepsilon} \subseteq P$. Then $L(f, P_{\varepsilon}) \leq L(f, P) \leq S(f, P) \leq U(f, P) \leq U(f, P_{\varepsilon}) < L(f, P_{\varepsilon}) + \epsilon$.

Also $L(f, P_{\varepsilon}) \leq L(f, P) \leq \int_{a}^{b} f \leq U(f, P) \leq U(f, P_{\varepsilon}) < L(f, P_{\varepsilon}) + \epsilon$. Hence $|S(f, P) - \int_{a}^{b} f| < \varepsilon$. (\Leftarrow) Let $\epsilon > 0$ be given. By the condition there is a partition $P_{\varepsilon} = \{a = x_0, x_1, ..., x_n = b\}$ such that $|S(f, P_{\varepsilon}) - A| < \varepsilon$.

 $(\Leftarrow) \text{ Let } \epsilon > 0 \text{ be given. By the condition there is a partition} P_{\varepsilon} = \{a = x_0, x_1, ..., x_n = b\} \text{ such that } |S(f, P_{\varepsilon}) - A| < \frac{\varepsilon}{4}.$ For each k = 1, 2, ..., n choose $t_k, u_k \in [x_{k-1}, x_k]$ such that $M_k(f) - \frac{\epsilon}{4(b-a)} < f(t_k)$ and $f(u_k) < m_k(f) + \frac{\epsilon}{4(b-a)}.$ Thus $M_k(f) - m_k(f) < f(t_k) + \frac{\epsilon}{4(b-a)} - f(u_k) + \frac{\epsilon}{4(b-a)} = f(t_k) - f(u_k) + \frac{\epsilon}{2(b-a)}.$ Now,

$$\begin{split} U(f,P_{\varepsilon}) - L(f,P_{\varepsilon}) &= \sum_{k=1}^{n} (M_{k}(f) - m_{k}(f)) \triangle x_{k} \\ &< \sum_{k=1}^{n} \left[f(t_{k}) - f(u_{k}) + \frac{\epsilon}{2(b-a)} \right] \triangle x_{k} \\ &= \sum_{k=1}^{n} f(t_{k}) \triangle x_{k} - \sum_{k=1}^{n} f(u_{k}) \triangle x_{k} + \sum_{k=1}^{n} \frac{\epsilon}{2(b-a)} \triangle x_{k} \\ &= \left[\sum_{k=1}^{n} f(t_{k}) \triangle x_{k} - A \right] - \left[\sum_{k=1}^{n} f(u_{k}) \triangle x_{k} - A \right] + \sum_{k=1}^{n} \frac{\epsilon}{2(b-a)} \triangle x_{k} \\ &= \left[S(f,P_{\varepsilon}) - A \right] - \left[S(f,P_{\varepsilon}) - A \right] + \frac{\epsilon}{2(b-a)} (b-a) \\ &< \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

Thus f is integrable on [a, b].

To show that
$$A = \int_{a}^{b} f$$
:

Let $\epsilon > 0$ be given. By the condition there is a partition P_1 such that if Q is any partition of [a, b] with $P_1 \subseteq Q$ then $|S(f,Q) - A| < \frac{\epsilon}{3}$. Also since f is integrable there is a partition P_2 of [a, b] such that $U(f, P_2) - L(f, P_2) < \frac{\epsilon}{3}$. Let $P = P_1 \cup P_2$ then $U(f,P) - L(f,P) < \frac{\epsilon}{3}$ and $|S(f,P) - A| < \frac{\epsilon}{3}$. Thus $U(f,P) < L(f,P) + \frac{\epsilon}{3}$. Note that $L(f,P) \leq S(f,P) \leq U(f,P)$. Hence $L(f,P) \leq S(f,P) \leq U(f,P) < L(f,P) + \frac{\epsilon}{3}$. Therefore $|S(f,P) - L(f,P)| < \frac{\epsilon}{3}$. Also we have $L(f,P) \leq \int_{a}^{b} f \leq U(f,P)$. Hence $L(f,P) \leq \int_{a}^{b} f \leq U(f,P) < \frac{\epsilon}{3}$. Therefore $|\int_{a}^{b} f - L(f,P)| < \frac{\epsilon}{3}$. Now,

$$\begin{vmatrix} \int_{a}^{b} f - A \end{vmatrix} = \begin{vmatrix} \int_{a}^{b} f - L(f, P) + L(f, P) - S(f, P) + S(f, P) - A \end{vmatrix}$$
$$\leq \begin{vmatrix} \int_{a}^{b} f - L(f, P) \end{vmatrix} + |L(f, P) - S(f, P)| + |S(f, P) - A|$$
$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$
$$= \epsilon.$$

Hence $A = \int_{a}^{b} f$.

Theorem 3.2: []

Let $f : [a, b] \to \mathbb{R}$ be a bounded function on [a, b]. Then f is integrable if and only if there is a real number $A \in \mathbb{R}$ such that for $\epsilon > 0$ there is a $\delta > 0$ such that if P is any partition of [a, b] with $||P|| < \delta$ and if S(f, P) is any Riemann Sum for f over P then $|S(f, P) - A| < \varepsilon$. If the condition is satisfied, then $A = \int_{-\infty}^{b} f$.

 $\begin{array}{l} \textit{Proof:} \quad (\Rightarrow) \text{ Suppose } f \text{ is integrable on } [a,b]. \text{ Let } A = \int_{a}^{b} f \text{ and } \epsilon > 0 \text{ be given. There is a partition } P_{\varepsilon} = \{a = x_0, x_1, \cdots, x_N = b\} \text{ of } [a,b] \text{ such that } U(f,P_{\varepsilon}) - L(f,P_{\varepsilon}) < \frac{\epsilon}{3}. \text{ Let } M = \sup_{x \in [a,b]} f(x) \text{ and } m = \inf_{x \in [a,b]} f(x) \text{ and let } \delta = \frac{\epsilon}{3N(M-m)}. \text{ (}N \text{ is the number of subintervals in } P_{\varepsilon}) \text{ Let } P \text{ be any partition of } [a,b] \text{ with } \|P\| < \delta \text{ and let } P^* = P \cup P_{\varepsilon} \text{ then } P_{\varepsilon} \subseteq P^*. \text{ Now, since } P \subseteq P^*, \text{ we have } U(f,P^*) \leq U(f,P), \ L(f,P) \leq L(f,P^*), \ U(f,P^*) \leq U(f,P_{\varepsilon}), \text{ and } L(f,P_{\varepsilon}) \leq L(f,P^*) \text{ we have } U(f,P) - U(f,P^*) \leq N(M-m)\|P\| < N(M-m)\frac{\epsilon}{3N(M-m)} = \frac{\epsilon}{3} \text{ and } L(f,P^*) - L(f,P) \leq N(M-m)\|P\| < N(M-m)\frac{\epsilon}{3N(M-m)} = \frac{\epsilon}{3} \text{ and } U(f,P^*) - L(f,P^*) \leq U(f,P_{\varepsilon}) - L(f,P_{\varepsilon}) < \frac{\epsilon}{3}. \text{ Now, we have } H^* = \frac{\epsilon}{3} \text{ and } H^* = \frac{\epsilon}{3} \text{ and } U(f,P^*) - L(f,P^*) \leq U(f,P_{\varepsilon}) - L(f,P_{\varepsilon}) < \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3} \text{ and } U(f,P^*) - L(f,P^*) \leq U(f,P_{\varepsilon}) - L(f,P_{\varepsilon}) < \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3} \text{ and } U(f,P^*) - L(f,P^*) \leq U(f,P_{\varepsilon}) - L(f,P_{\varepsilon}) < \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3} \text{ and } U(f,P^*) - L(f,P^*) \leq U(f,P_{\varepsilon}) - L(f,P_{\varepsilon}) < \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3} \text{ and } U(f,P^*) - L(f,P^*) = U(f,P_{\varepsilon}) - L(f,P_{\varepsilon}) < \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3} \text{ and } U(f,P^*) - L(f,P^*) \leq U(f,P_{\varepsilon}) - L(f,P_{\varepsilon}) < \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3} \text{ and } U(f,P^*) - L(f,P^*) = U(f,P_{\varepsilon}) - L(f,P_{\varepsilon}) < \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3} \text{ and } U(f,P^*) - L(f,P^*) \leq U(f,P_{\varepsilon}) - L(f,P_{\varepsilon}) < \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3} \text{ and } U(f,P^*) + \frac{\epsilon}{3} \text{ and } U(f,P^*) + \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3} \text{ and } U(f,P^*) + \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3} \text{ and } U(f,P^*) + \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3} \text{ and } U(f,P^*) + \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3} \text{ and } U(f,P^*) + \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3} \text{ Let } H^* = \frac{\epsilon}{3} \text{ Let } H^* = \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3} \text{ Let } H^* = \frac{\epsilon}{3}. \text{ Let } H^* = \frac{\epsilon}{3}. \text$

 $L(f, P^*) - \frac{\epsilon}{3} < L(f, P) \le S(f, P) \le U(f, P) < U(f, P^*) + \frac{\epsilon}{3} < L(f, P^*) + \frac{2\epsilon}{3}$

and

$$L(f, P^*) - \frac{\epsilon}{3} < L(f, P) \le \int_{a}^{b} f \le U(f, P) < U(f, P^*) + \frac{\epsilon}{3} < L(f, P^*) + \frac{2\epsilon}{3}$$

Hence

$$\left|S(f,P) - \int\limits_a^b f\right| < \epsilon.$$

(\Leftarrow) Suppose that the condition holds. Let $\epsilon > 0$ be given. By the condition there is a $\delta > 0$ such that if P is any

Theorem 3.3: []

Let $f:[a,b] \to \mathbb{R}$ be a bounded function on [a,b]. Then f is integrable if and only if for each sequence $\{P_n\}$ of partitions of [a, b] with $\lim_{n \to \infty} \|P_n\| = 0$, the sequence of Riemann sums $\{S(f, P_n)\}$ converges. If the condition is satisfied, then $\int_{a}^{b} f = \lim_{n \to \infty} S(f, P_n).$ *Proof:* The proof is left as an exercise.

Example 3.2: Let

$$f(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q}, \ (p,q) = 1\\ 0 & \text{for irrational } x \text{ and } x = 0. \end{cases}$$

Prove that f is integrable on [0,1] and find $\int_{0}^{1} f$. **Solution:** For each $n \in \{2,3,5,7,11,13,17,\cdots\}$ (the set of prime numbers) let $P_n = \{0, \frac{1}{n}, \cdots, \frac{n-1}{n}, 1\}$ then P_n is a partition of [0,1] with $||P_n|| = \frac{1}{n}$. For each $1 \le k \le n$ let $t_k = \frac{k}{n}$ then $t_k \in [\frac{k-1}{n}, \frac{k}{n}]$ and (k,n) = 1. Thus $f(t_k) = \frac{1}{n}$ for each $1 \leq k \leq n$.

Now $S(f, P_n) = \sum_{k=1}^n f(t_k) \Delta x_k = \sum_{k=1}^n \frac{1}{n} \frac{1}{n} = \sum_{k=1}^n \frac{1}{n^2} = \frac{1}{n^2} \cdot n = \frac{1}{n}$. Now, we have a sequence of partitions $\{P_n\}$ with $\lim_{n \to \infty} \|P_n\| = \lim_{n \to \infty} \frac{1}{n} = 0$ and also we have the sequence of Riemann Sums $\{S(f, P_n)\}$ converges to 0 since $\lim_{n \to \infty} S(f, P_n) = \lim_{n \to \infty} \frac{1}{n} = 0.$ Then f is integrable and $\int_0^1 f = \lim_{n \to \infty} S(f, P_n) = 0.$