The Riemann Integral

Dr.Hamed al-Sulami

September 20, 2011

Definition 1.1: Let $[a, b] \subseteq \mathbb{R}$ be a closed and bounded interval.
i) A Partition of $[a, b]$ is a set of points $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ such that

$$
a=x_{0}<x_{1}<\ldots<x_{n}=b
$$

Note that the point of the partition divide $[a, b]$ into non-overlapping subintervals $\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, x_{n}\right]$, and $[a, b]=\bigcup_{k=1}^{n}\left[x_{k-1}, x_{k}\right]$.
ii) The norm of a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is $\|P\|=\max \left\{x_{k}-x_{k-1}: k=1,2, \ldots, n\right\}$.
iii) A refinement of a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a partition Q of $[a, b]$ such that $P \subseteq Q$.

Example 1.1: Let $[a, b] \subseteq \mathbb{R}$ be a closed and bounded interval and let

$P_{n}=\left\{x_{k} \left\lvert\, x_{k}=a+\frac{k(b-a)}{n}\right., k=0,1, \ldots, n\right\}, \forall n \in \mathbb{N}$. Prove that for each $n \in \mathbb{N}, P_{n}$ is a partition of $[a, b]$ and $P_{2 n}$ is a refinement of P_{n}.
Solution: We have $x_{0}=a+\frac{0(b-a)}{n}=a$, and $x_{n}=a+\frac{n(b-a)}{n}=b$.
Now, if $1 \leq k \leq n$, we have

$$
\begin{aligned}
x_{k-1} & =a+\frac{(k-1)(b-a)}{n} \\
& <a+\frac{k(b-a)}{n} \\
& =x_{k} .
\end{aligned}
$$

Hence $a=x_{0}<x_{1}<\ldots<x_{n}=b$. Thus P_{n} is partition of $[a, b]$.
To see that $P_{n} \subset P_{2 n}$: Let $0 \leq k \leq n$, then $0 \leq 2 k \leq 2 n$. Now, if $x_{k} \in P_{n}$, we have

$$
\begin{aligned}
x_{k} & =a+\frac{k(b-a)}{n} \\
& =a+\frac{2 k(b-a)}{2 n} \\
& =x_{2 k} \in P_{2 n} .
\end{aligned}
$$

Definition 1.2: Let $[a, b] \subseteq \mathbb{R}$ be a closed and bounded interval, $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$, and $f:[a, b] \rightarrow \mathbb{R}$ be bounded function. For $k=1,2, \ldots, n$, let $\triangle x_{k}=x_{k}-x_{k-1}$, $M_{k}=M_{k}(f)=\sup \left\{f(x) \mid x \in\left[x_{k-1}, x_{k}\right]\right\}$, and $m_{k}=m_{k}(f)=\inf \left\{f(x) \mid x \in\left[x_{k-1}, x_{k}\right]\right\}$.
i) The upper Riemann sum of f over P is the number

$$
U(f, P)=\sum_{k=1}^{n} M_{k} \triangle x_{k}
$$

Figure 1: $U(f, P)$, an upper Riemann sum
ii) The lower Riemann sum of f over P is the number

$$
L(f, P)=\sum_{k=1}^{n} m_{k} \triangle x_{k}
$$

Figure 2: $L(f, P)$, a lower Riemann sum

Remark 1.1: Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded function. Then $L(f, P) \leq U(f, P)$ for all partition P of $[a, b]$. Proof: Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$. Since $m_{k} \leq M_{k}, \forall k=1,2, \ldots, n$, then

$$
\begin{aligned}
L(f, P) & =\sum_{k=1}^{n} m_{k} \triangle x_{k} \\
& \leq \sum_{k=1}^{n} M_{k} \triangle x_{k} \\
& =U(f, P)
\end{aligned}
$$

Hence $L(f, P) \leq U(f, P)$ for all partition P of $[a, b]$.

Example 1.2: Let $f:[0,1] \rightarrow \mathbb{R}$ given by $f(x)=x$, and for $n \in \mathbb{N}$, let $P_{n}=\left\{x_{k} \left\lvert\, x_{k}=\frac{k}{n}\right., k=0,1, \ldots, n\right\}$ be a partition of $[0,1]$. Find $U\left(f, P_{n}\right)$ and $L\left(f, P_{n}\right)$.

Solution:

Since f is an increasing function we have $m_{k}=\frac{k-1}{n}, M_{k}=\frac{k}{n}$, and $\triangle x_{k}=\frac{1}{n}$, $k=1,2, \ldots, n$. Thus

$$
\begin{aligned}
U\left(f, P_{n}\right) & =\sum_{k=1}^{n} M_{k} \triangle x_{k} \\
& =\sum_{k=1}^{n}\left[\frac{k}{n}\right]\left[\frac{1}{n}\right] \\
& =\frac{1}{n}\left[\sum_{k=1}^{n} \frac{k}{n}\right] \\
& =\frac{1}{n}\left[\frac{1}{n} \sum_{k=1}^{n} k\right], \text { we use } \sum_{k=1}^{n} k=\frac{n(n+1)}{2} \\
& =\frac{1}{n}\left[\frac{1}{x} \frac{n(n+1)}{2}\right] \\
& =\frac{1}{n}\left[\frac{n+1}{2}\right] \\
& =\left[\frac{n+1}{2 n}\right] \\
& =\frac{1}{2}\left[1+\frac{1}{n}\right] .
\end{aligned}
$$

and

$$
\begin{aligned}
L\left(f, P_{n}\right) & =\sum_{k=1}^{n} m_{k} \Delta x_{k} \\
& =\sum_{k=1}^{n}\left[\frac{k-1}{n}\right]\left[\frac{1}{n}\right] \\
& =\frac{1}{n}\left[\sum_{k=1}^{n} \frac{k-1}{n}\right] \\
& =\frac{1}{n}\left[\frac{1}{n} \sum_{k=1}^{n}(k-1)\right], \text { we use } \sum_{k=1}^{n}(k-1)=\frac{(n-1)((n+1)-1)}{2}=\frac{n(n-1)}{2} \\
& =\frac{1}{n}\left[\frac{1}{2 n} \frac{n(n-1)}{2}\right] \\
& =\frac{1}{n}\left[\frac{n-1}{2}\right] \\
& =\left[\frac{n-1}{2 n}\right] \\
& =\frac{1}{2}\left[1-\frac{1}{n}\right] .
\end{aligned}
$$

Note 1.1: Note that for any set A we have $\inf A \leq \sup A$ and if $A \subseteq B$, then

$$
\inf B \leq \inf A \leq \sup A \leq \sup B
$$

Lemma 1.1: If P^{*} is a refinement of the partition P of $[a, b]$, then for any bounded function f define on $[a, b]$,

$$
L(f, P) \leq L\left(f, P^{*}\right) \leq U\left(f, P^{*}\right) \leq U(f, P)
$$

Proof: Suppose $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$ and $P^{*}=\left\{x^{*}\right\} \cup P$ such that $x_{i-1}<x^{*}<x_{i}$ for some $1 \leq i \leq n$. Since $\left[x_{i-1}, x_{i}\right]=\left[x_{i-1}, x^{*}\right] \cup\left[x^{*}, x_{i}\right]$, then $m_{i} \leq \inf \left\{f(x) \mid x \in\left[x_{i-1}, x^{*}\right]\right\}$ and $m_{i} \leq \inf \left\{f(x) \mid x \in\left[x^{*}, x_{i}\right]\right\}$.

$$
\begin{aligned}
L(f, P) & =\sum_{k=1}^{n} m_{k} \triangle x_{k} \\
& =\sum_{k=1}^{i-1} m_{k} \triangle x_{k}+m_{i} \triangle x_{i}+\sum_{k=i}^{n} m_{k} \triangle x_{k} \\
& =\sum_{k=1}^{i-1} m_{k} \triangle x_{k}+m_{i}\left(x_{i}-x_{i-1}\right)+\sum_{k=i}^{n} m_{k} \triangle x_{k} \\
& =\sum_{k=1}^{i-1} m_{k} \triangle x_{k}+m_{i}\left(x_{i}-x^{*}+x^{*}-x_{i-1}\right)+\sum_{k=i}^{n} m_{k} \triangle x_{k} \\
& =\sum_{k=1}^{i-1} m_{k} \triangle x_{k}+m_{i}\left(x_{i}-x^{*}\right)+m_{i}\left(x^{*}-x_{i-1}\right)+\sum_{k=i}^{n} m_{k} \triangle x_{k} \\
& \leq \sum_{k=1}^{i-1} m_{k} \triangle x_{k}+\left[\inf \left\{f(x) \mid x \in\left[x^{*}, x_{i}\right]\right\}\right]\left(x_{i}-x^{*}\right)+\left[\inf \left\{f(x) \mid x \in\left[x_{i-1}, x^{*}\right]\right\}\right]\left(x^{*}-x_{i-1}\right)+\sum_{k=i}^{n} m_{k} \triangle x_{k} \\
& =L\left(f, P^{*}\right)
\end{aligned}
$$

Hence $L(f, P) \leq L\left(f, P^{*}\right)$.
Now, if $P^{*}=\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{l}^{*}\right\} \cup P$. Let $P_{1}=\left\{x_{1}^{*}\right\} \cup P$, and $P_{k}=\left\{x_{k}^{*}\right\} \cup P_{k-1}, k=2,3, \ldots, l$. Thus we have a set of partitions of $[a, b], P_{1}, P_{2}<\ldots, P_{l}$ such that $P_{1} \subset P_{2} \subset \ldots \subset P_{l}=P^{*}$ and each partition is obtained from the preceding one by adding exactly one point. Then

$$
L(f, P) \leq L\left(f, P_{1}\right) \leq L\left(f, P_{2}\right) \leq \ldots \leq L\left(f, P_{l-1}\right) \leq L\left(f, P_{l}\right)=L\left(f, P^{*}\right)
$$

Similarly one can show $U\left(f, P^{*}\right) \leq U(f, P)$. Therefore $L(f, P) \leq L\left(f, P^{*}\right) \leq U\left(f, P^{*}\right) \leq U(f, P)$.

Remark 1.2: Let P be any partition of the interval $[a, b]$. Let $P^{*}=\left\{x^{*}\right\} \cup P$ and $P_{k}^{*}=\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{k}^{*}\right\} \cup P$ If $f:[a, b] \rightarrow \mathbb{R}$ be bounded function. Let $M=\sup \{f(x) \mid x \in[a, b]\}$, and $m=\inf \{f(x) \mid x \in[a, b]\}$. Then $L\left(f, P^{*}\right)-L(f, P) \leq(M-m)\|P\|, U(f, P)-U\left(f, P^{*}\right) \leq(M-m)\|P\|, L\left(f, P_{k}^{*}\right)-L(f, P) \leq k(M-m)\|P\|$, and $U(f, P)-U\left(f, P_{k}^{*}\right) \leq k(M-m)\|P\|$.
Proof: Suppose $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$ and $P^{*}=\left\{x^{*}\right\} \cup P$ such that $x_{i-1}<x^{*}<x_{i}$ for some $1 \leq i \leq n$. Since $\left[x_{i-1}, x_{i}\right]=\left[x_{i-1}, x^{*}\right] \cup\left[x^{*}, x_{i}\right]$, then $m \leq m_{i} \leq \inf \left\{f(x) \mid x \in\left[x_{i-1}, x^{*}\right]\right\}$ and $m \leq m_{i} \leq \inf \left\{f(x) \mid x \in\left[x^{*}, x_{i}\right]\right\}$. Also $m \leq \sup \left\{f(x) \mid x \in\left[x_{i-1}, x^{*}\right]\right\} \leq M_{i} \leq M$ and $m \leq \sup \left\{f(x) \mid x \in\left[x^{*}, x_{i}\right]\right\} \leq M_{i} \leq M$.

Hence

$$
\begin{aligned}
L\left(f, P^{*}\right)-L(f, P) & =\inf \left\{f(x) \mid x \in\left[x_{i-1}, x^{*}\right]\right\}\left(x^{*}-x_{i-1}\right)+\inf \left\{f(x) \mid x \in\left[x^{*}, x_{i}\right]\right\}\left(x_{i}-x^{*}\right)-m_{i}\left(x_{i}-x_{i-1}\right) \\
& \leq M\left(x^{*}-x_{i-1}\right)+M\left(x_{i}-x^{*}\right)-m\left(x_{i}-x_{i-1}\right) \\
& =M\left(x^{*}-x_{i-1}+x_{i}-x^{*}\right)-m\left(x_{i}-x_{i-1}\right) \\
& \leq(M-m)\|P\| .
\end{aligned}
$$

Also

$$
\begin{aligned}
U(f, P)-L\left(f, P^{*}\right) & =M_{i}\left(x_{i}-x_{i-1}\right)-\sup \left\{f(x) \mid x \in\left[x_{i-1}, x^{*}\right]\right\}\left(x^{*}-x_{i-1}\right)-\sup \left\{f(x) \mid x \in\left[x^{*}, x_{i}\right]\right\}\left(x_{i}-x^{*}\right) \\
& \leq M\left(x_{i}-x_{i-1}\right)-m\left(x_{i}-x^{*}\right)-m\left(x_{i}-x_{i-1}\right) \\
& =M\left(x_{i}-x_{i-1}\right)-m\left(x^{*}-x_{i-1}+x_{i}-x^{*}\right) \\
& \leq(M-m)\|P\|
\end{aligned}
$$

By induction we can prove that $L\left(f, P_{k}^{*}\right)-L(f, P) \leq k(M-m)\|P\|$, and $U(f, P)-U\left(f, P_{k}^{*}\right) \leq k(M-m)\|P\|$.

Definition 1.3: Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded function.
i) We define the upper Riemann integral of f on $[a, b]$ as

$$
\begin{aligned}
\overline{\int_{a}^{b}} f & =\inf \{U(f, P) \mid P \text { a partitions of }[a, b]\} \\
& =\inf _{P} U(f, P)
\end{aligned}
$$

ii) and we define the lower Riemann integral of f on $[a, b]$ as

$$
\begin{aligned}
\underline{\int_{a}^{b} f} & =\sup \{L(f, P) \mid P \text { a partitions of }[a, b]\} \\
& =\sup _{P} L(f, P) .
\end{aligned}
$$

iii) f is called Riemann integrable on $[a, b]$ if $\overline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} f$ and we define $\int_{a}^{b} f(x) d x$ to be the common value.

Example 1.3: Let $[a, b] \subseteq \mathbb{R}$ be a closed and bounded interval an let $f(x)=c$, for some $c \in \mathbb{R}$. Prove that f is integrable on $[a, b]$ and that $\int_{a}^{b} c d x=c(b-a)$

Solution:

Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be any partition of $[a, b]$. Then $m_{k}=M_{k}=c, k=1,2, \ldots, n$. Thus

$$
\begin{aligned}
U(f, P) & =\sum_{k=1}^{n} M_{k} \Delta x_{k} \\
& =\sum_{k=1}^{n} c\left(x_{k}-x_{k-1}\right) \\
& =c \sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) \\
& =c\left[\left(x_{1}-x_{0}\right)+\left(x_{2}-x_{1}\right)+\ldots+\left(x_{n-1}-x_{n-2}\right)+\left(x_{n}-x_{n-1}\right)\right] \\
& =c(b-a)
\end{aligned}
$$

and

$$
\begin{aligned}
L(f, P) & =\sum_{k=1}^{n} m_{k} \triangle x_{k} \\
& =\sum_{k=1}^{n} c\left(x_{k}-x_{k-1}\right) \\
& =c \sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) \\
& =c\left[\left(x_{1}-x_{0}\right)+\left(x_{2}-x_{1}\right)+\ldots+\left(x_{n-1}-x_{n-2}\right)+\left(x_{n}-x_{n-1}\right)\right] \\
& =c(b-a) .
\end{aligned}
$$

Hence $\overline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} f=c(b-a)$. Therefore $\int_{a}^{b} c d x=c(b-a)$.

Lemma 1.2: If P_{1} and P_{2} are any two partitions of $[a, b]$, then for any bounded function f define on $[a, b]$, then $L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)$.

Proof: Note that if $P^{*}=P_{1} \cup P_{2}$, then P^{*} is a refinement of both P_{1} and P_{2}. Then from Lemma $1 L\left(f, P_{1}\right) \leq$ $L\left(f, P^{*}\right) \leq U\left(f, P^{*}\right) \leq U\left(f, P_{1}\right)$, and $L\left(f, P_{2}\right) \leq L\left(f, P^{*}\right) \leq U\left(f, P^{*}\right) \leq U\left(f, P_{2}\right)$. Hence $L\left(f, P_{1}\right) \leq L\left(f, P^{*}\right) \leq$ $U\left(f, P^{*}\right) \leq U\left(f, P_{2}\right)$. Therefore $L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)$.

Lemma 1.3: For any bounded function f define on $[a, b]$, the upper Riemann integral and the lower Riemann integral exist, and $\underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f$.
Proof: By Lemma 2, $L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)$ for all partitions P_{1} and P_{2} of $[a, b]$. Now, $U\left(f, P_{2}\right)$ is an upper bound for the set $\{L(f, P) \mid P$ a partitions of $[a, b]\}$, then
$\underline{\int_{a}^{b}} f=\sup \{L(f, P) \mid P$ a partitions of $[a, b]\} \leq U\left(f, P_{2}\right)$. Since P_{2} is an arbitrary partition of $[a, b]$, then $\underline{\int_{a}^{b} f}$ is a lower bound for the set $\{U(f, P) \mid P$ a partitions of $[a, b]\}$.
Thus $\underline{\int_{a}^{b}} f \leq \inf \{U(f, P) \mid P$ a partitions of $[a, b]\}=\overline{\int_{a}^{b}} f$. Hence $\underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f$.

Note 1.2: Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function on $[a, b]$. For any partition P of $[a, b]$ we have

$$
L(f, P) \leq \underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f \leq U(f, P)
$$

Example 1.4: Let $[a, b] \subseteq \mathbb{R}$ be a closed and bounded interval an let $f(x)=x$. Prove that f is integrable on $[a, b]$ and that $\int_{a}^{b} x d x=\frac{b^{2}-a^{2}}{2}$

Solution:

Let P_{n} be the partition of $[a, b]$ into n subintervals given by $P_{n}=\left\{x_{k} \left\lvert\, x_{k}=a+\frac{k(b-a)}{n}\right., k=0,1, \ldots, n\right\}$. Since f is an increasing function we have $m_{k}=a+\frac{(k-1)(b-a)}{n}, M_{k}=a+\frac{k(b-a)}{n}$, and $\triangle x_{k}=\frac{b-a}{n}$, $k=1,2, \ldots, n$. Thus

$$
\begin{aligned}
U\left(f, P_{n}\right) & =\sum_{k=1}^{n} M_{k} \triangle x_{k} \\
& =\sum_{k=1}^{n}\left[a+\frac{k(b-a)}{n}\right]\left[\frac{b-a}{n}\right] \\
& =\frac{b-a}{n}\left[\sum_{k=1}^{n} a+\sum_{k=1}^{n} \frac{k(b-a)}{n}\right] \\
& =\frac{b-a}{n}\left[\sum_{k=1}^{n} a+\frac{b-a}{n} \sum_{k=1}^{n} k\right], \text { we use } \sum_{k=1}^{n} a=n a \text { and } \sum_{k=1}^{n} k=\frac{n(n+1)}{2} \\
& =\frac{b-a}{n}\left[n a+\frac{(b-a)}{\not 2} \frac{n(n+1)}{2}\right] \\
& =\frac{b-a}{n}\left[\frac{2 n a}{2}+\frac{(b-a)(n+1)}{2}\right] \\
& =\frac{b-a}{n}\left[\frac{2 n a-(n+1) a+b(n+1)}{2}\right] \\
& =\frac{b-a}{n}\left[\frac{2 n a-n a-a+b n+b}{2}\right] \\
& =\frac{b-a}{n}\left[\frac{n(b+a)+(b-a)}{2}\right] \\
& =\left[\frac{n(b+a)(b-a)+(b-a)(b-a)}{2 n}\right] \\
& =\left[\frac{n\left(b^{2}-a^{2}\right)}{2 \not x}+\frac{(b-a)^{2}}{2 n}\right] \\
& =\frac{b^{2}-a^{2}}{2}+\frac{(b-a)^{2}}{2 n} .
\end{aligned}
$$

and

$$
\begin{aligned}
L\left(f, P_{n}\right) & =\sum_{k=1}^{n} m_{k} \Delta x_{k} \\
& =\sum_{k=1}^{n}\left[a+\frac{(k-1)(b-a)}{n}\right]\left[\frac{b-a}{n}\right] \\
& =\frac{b-a}{n}\left[\sum_{k=1}^{n} a+\sum_{k=1}^{n} \frac{(k-1)(b-a)}{n}\right] \\
& =\frac{b-a}{n}\left[\sum_{k=1}^{n} a+\frac{b-a}{n} \sum_{k=1}^{n}(k-1)\right], \text { we use } \sum_{k=1}^{n} a=n a \text { and } \sum_{k=1}^{n}(k-1)=\frac{(n-1)((n-1)+1)}{2}=\frac{(n-1) n}{2} \\
& =\frac{b-a}{n}\left[n a+\frac{(b-a)}{\not n} \frac{n(n-1)}{2}\right] \\
& =\frac{b-a}{n}\left[\frac{2 n a}{2}+\frac{(b-a)(n-1)}{2}\right] \\
& =\frac{b-a}{n}\left[\frac{2 n a-(n-1) a+b(n-1)}{2}\right] \\
& =\frac{b-a}{n}\left[\frac{2 n a-n a+a+b n-b}{2}\right] \\
& =\frac{b-a}{n}\left[\frac{n(b+a)+(-b+a)}{2}\right] \\
& =\frac{b-a}{n}\left[\frac{n(b+a)-(b-a)}{2}\right] \\
& =\left[\frac{n(b+a)(b-a)-(b-a)(b-a)}{2 n}\right] \\
& =\left[\frac{\not n\left(b^{2}-a^{2}\right)}{2 \not 2}-\frac{(b-a)^{2}}{2 n}\right] \\
& =\frac{b^{2}-a^{2}}{2}-\frac{(b-a)^{2}}{2 n} .
\end{aligned}
$$

Now, since $\left\{U\left(f, P_{n}\right) \mid n \in \mathbb{N}\right\} \subset\{U(f, P) \mid P$ a partitions of $[a, b]\}$, then
$\frac{b^{2}-a^{2}}{2}=\inf \left\{\left.\frac{b^{2}-a^{2}}{2}+\frac{(b-a)^{2}}{2 n} \right\rvert\, n \in \mathbb{N}\right\}=\inf \left\{U\left(f, P_{n}\right) \mid n \in \mathbb{N}\right\} \geq \inf \{U(f, P) \mid P$ a partitions of $[a, b]\}=\overline{\int_{a}^{b}} x$.
Thus $\overline{\int_{a}^{b}} x \leq \frac{b^{2}-a^{2}}{2}$.
Also, since $\left\{L\left(f, P_{n}\right) \mid n \in \mathbb{N}\right\} \subset\{L(f, P) \mid P$ a partitions of $[a, b]\}$, then
$\frac{b^{2}-a^{2}}{2}=\sup \left\{\left.\frac{b^{2}-a^{2}}{2}-\frac{(b-a)^{2}}{2 n} \right\rvert\, n \in \mathbb{N}\right\}=\sup \left\{L\left(f, P_{n}\right) \mid n \in \mathbb{N}\right\} \leq \sup \{L(f, P) \mid P$ a partitions of $[a, b]\}=\underline{\int_{a}^{b}} x$.
Thus $\frac{b^{2}-a^{2}}{2} \leq \underline{\int_{a}^{b} x}$.
Therefore $\frac{b^{2}-\overline{a^{2}}}{2} \leq \underline{\int_{a}^{b}} x \leq \overline{\int_{a}^{b}} x \leq \frac{b^{2}-a^{2}}{2}$. Thus $\underline{\int_{a}^{b} x} \overline{\int_{a}^{b}} x=\frac{b^{2}-a^{2}}{2}$.

Theorem 1.1: [The Riemann Integrability Criterion I:]

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function on $[a, b]$. Then f is integrable on $[a, b]$ if and only if for $\varepsilon>0$ there is a partition P_{ε} such that

$$
U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)<\varepsilon
$$

Figure 3: $U(f, P)-L(f, P)$

Proof: (\Rightarrow) Suppose that f is integrable, then $\inf _{P} U(f, P)=\overline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} f=\sup _{P} L(f, P)$. Let $\varepsilon>0$ be given. Since $\overline{\int_{a}^{b}} f+\frac{\varepsilon}{2}$ is not a lower bound of the set $\{U(f, P) \mid P$ is a partition of $[a, b]\}$, there is a partition P_{1} of $[a, b]$ such that

$$
\overline{\int_{a}^{b}} f<U\left(f, P_{1}\right)<\overline{\int_{a}^{b}} f+\frac{\varepsilon}{2}
$$

Similarly, since $\underline{\int_{a}^{b} f-\frac{\varepsilon}{2} \text { is not an upper bound of the set }\{L(f, P) \mid P \text { is a partition of }[a, b]\} \text {, there is a partition } P_{2}, ~(a)}$ of $[a, b]$ such that

$$
\underline{\int_{a}^{b}} f-\frac{\varepsilon}{2}<L\left(f, P_{2}\right)<\underline{\int_{a}^{b}} f . \quad\left(-\int_{\underline{a}}^{b} f<-L\left(f, P_{2}\right)<-\underline{\int_{a}^{b}} f+\frac{\varepsilon}{2}\right)
$$

Let $P_{\varepsilon}=P_{1} \cup P_{2}$, then P_{ε} is a refinement of both P_{1} and P_{2}. Hence By Lemma 1, we have

$$
L\left(f, P_{2}\right) \leq L\left(f, P_{\varepsilon}\right) \text { and } U\left(f, P_{\varepsilon}\right) \leq U\left(f, P_{1}\right)
$$

Now,

$$
U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)<U\left(f, P_{1}\right)-L\left(f, P_{2}\right)<\overline{\int_{a}^{b}} f+\frac{\varepsilon}{2}-\left[\underline{\int_{a}^{b}} f-\frac{\varepsilon}{2}\right]=\overline{\int_{a}^{b}} f+\frac{\varepsilon}{2}-\underline{\int_{a}^{b}} f+\frac{\varepsilon}{2}=\varepsilon
$$

(\Leftarrow) Suppose that for $\varepsilon>0$ there is a partition P_{ε} such that

$$
U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)<\varepsilon
$$

Now, let $\varepsilon>0$ be given. Since

$$
L\left(f, P_{\varepsilon}\right) \leq \underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f \leq U\left(f, P_{\varepsilon}\right)
$$

then

$$
0 \leq \overline{\int_{a}^{b}} f-\underline{\int_{a}^{b}} f \leq U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)<\varepsilon
$$

Hence $\overline{\int_{a}^{b}} f=\underline{\int_{a}^{b} f}$. Thus f is integrable.

Corollary 1.1: Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function on $[a, b]$. If $\left\{P_{n}: n \in \mathbb{N}\right\}$ is a sequence of partitions of $[a, b]$ such that

$$
\lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0
$$

then f is integrable and

$$
\int_{a}^{b} f=\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=\lim _{n \rightarrow \infty} L\left(f, P_{n}\right)
$$

Proof: Let $\varepsilon>0$ be given. Since $\lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0$, then there exist $N \in \mathbb{N}$ such that if $n>N \Rightarrow U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=\left|U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right|<\varepsilon$. Hence f is integrable.
Thus $\int_{\underline{a}}^{b} f=\overline{\int_{a}^{b}} f=\int_{a}^{b} f$. Therefore using Note 1 we have $L\left(f, P_{n}\right) \leq \int_{a}^{b} f \leq U\left(f, P_{n}\right)$. Now,

$$
\text { if } n>N \Rightarrow\left|U\left(f, P_{n}\right)-\int_{a}^{b} f\right|=U\left(f, P_{n}\right)-\int_{a}^{b} f<U\left(f, P_{n}\right)-L\left(f, P_{n}\right)<\varepsilon
$$

Thus

$$
\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=\int_{a}^{b} f
$$

Also

$$
\text { if } n>N \Rightarrow\left|\int_{a}^{b} f-L\left(f, P_{n}\right)\right|=\int_{a}^{b} f-L\left(f, P_{n}\right)<U\left(f, P_{n}\right)-L\left(f, P_{n}\right)<\varepsilon
$$

Hence

$$
\lim _{n \rightarrow \infty} L\left(f, P_{n}\right)=\int_{a}^{b} f
$$

Example 1.5: Show that $\int_{1}^{2}(3 x+1) d x=\frac{11}{2}$.
Solution: Let P_{n} be the partition of [1, 2] into n subintervals given by $P_{n}=\left\{x_{k} \left\lvert\, x_{k}=1+\frac{k(2-1)}{n}\right., k=0,1, \ldots, n\right\}$.
Let $f(x)=3 x+1$. In each subinterval $\left[x_{k-1}, x_{k}\right]=\left[1+\frac{k-1}{n}, 1+\frac{k}{n}\right]$ the function f is increasing. Hence its maximum will be at $x=1+\frac{k}{n}$ and its minimum will be at $x=1+\frac{k-1}{n}$. Thus

$$
\begin{gathered}
m_{k}=3\left(1+\frac{(k-1)}{n}\right)+1=3+\frac{3(k-1)}{n}+1=4+\frac{3(k-1)}{n}, \\
M_{k}=3\left(1+\frac{k}{n}\right)+1=3+\frac{3 k}{n}+1=4+\frac{3 k}{n}, \text { and } \\
\triangle x_{k}=\frac{1}{n}, k=1,2, \ldots, n .
\end{gathered}
$$

Thus

$$
\begin{aligned}
U\left(f, P_{n}\right) & =\sum_{k=1}^{n} M_{k} \triangle x_{k} \\
& =\sum_{k=1}^{n}\left[4+\frac{3 k}{n}\right]\left[\frac{1}{n}\right] \\
& =\frac{1}{n}\left[\sum_{k=1}^{n} 4+\sum_{k=1}^{n} \frac{3 k}{n}\right] \\
& =\frac{1}{n}\left[\sum_{k=1}^{n} 4+\frac{3}{n} \sum_{k=1}^{n} k\right] \\
& =\frac{1}{n}\left[4 n+\frac{3}{\not x} \frac{\not n(n+1)}{2}\right] \\
& =\frac{1}{n}\left[\frac{11 n+3}{2}\right] \\
& =\left[\frac{11 n+3}{2 n}\right] \\
& =\frac{11}{2}+\frac{3}{2 n} .
\end{aligned}
$$

and

$$
\begin{aligned}
L\left(f, P_{n}\right) & =\sum_{k=1}^{n} m_{k} \triangle x_{k} \\
& =\sum_{k=1}^{n}\left[4+\frac{3(k-1)}{n}\right]\left[\frac{1}{n}\right] \\
& =\frac{1}{n}\left[\sum_{k=1}^{n} 4+\sum_{k=1}^{n} \frac{3(k-1))}{n}\right] \\
& =\frac{1}{n}\left[\sum_{k=1}^{n} 4+\frac{3}{n} \sum_{k=1}^{n}(k-1)\right], \text { we use } \sum_{k=1}^{n} a=n a \text { and } \sum_{k=1}^{n}(k-1)=\frac{(n-1)((n-1)+1)}{2}=\frac{(n-1) n}{2} \\
& =\frac{1}{n}\left[4 n+\frac{3}{\not n} \frac{n(n-1)}{2}\right] \\
& =\frac{1}{n}\left[\frac{2(4 n)}{2}+\frac{3(n-1)}{2}\right] \\
& =\frac{1}{n}\left[\frac{8 n+3 n-3}{2}\right] \\
& =\frac{1}{n}\left[\frac{11 n-3}{2}\right] \\
& =\left[\frac{11 n-3}{2 n}\right] \\
& =\left[\frac{11 \not x}{2 \not n}-\frac{3}{2 n}\right] \\
& =\frac{11}{2}-\frac{3}{2 n} .
\end{aligned}
$$

Now,

$$
U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=\left[\frac{11}{2}+\frac{3}{2 n}\right]-\left[\frac{11}{2}-\frac{3}{2 n}\right]=\frac{6}{2 n}=\frac{3}{n}, \text { hence } \lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0
$$

Therefore

$$
\int_{1}^{2}(3 x+1) d x=\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=\lim _{n \rightarrow \infty}\left[\frac{11}{2}+\frac{3}{2 n}\right]=\frac{11}{2} .
$$

Theorem 1.2: [The Riemann Integrability Criterion II:]

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function on $[a, b]$. Then f is integrable on $[a, b]$ if and only if for $\varepsilon>0$ there is a $\delta=\delta(\varepsilon)>0$ such that if P is any partition with $\|P\|<\delta$, then $U(f, P)-L(f, P)<\varepsilon$.

Proof: (\Rightarrow) Suppose that f is integrable. Let $\varepsilon>0$ be given, then by Theorem 0.1 there is a partition $P_{\varepsilon}=\{a=$ $\left.x_{0}, x_{1}, \ldots, x_{N}=b\right\}$ such that $U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)<\frac{\varepsilon}{2}$. We want to show that there is a $\delta>0$ such that if P is any partition of $[a, b]$ with $\|P\|<\delta$, then $U(f, P)-L(f, P)<\varepsilon$. Let $\delta=\frac{\varepsilon}{4(M-m) N}$. If P is any partition of $[a, b]$ with $\|P\|<\delta$. Let $Q=P \cup P_{\varepsilon}$, then by Remark2 we have

$$
L(f, Q)-L(f, P) \leq N(M-m)\|P\|<N(M-m) \delta=N(M-m) \frac{\varepsilon}{4 N(M-m)}=\frac{\varepsilon}{4}
$$

Thus $L(f, Q)-L(f, P)<\frac{\varepsilon}{4}$.
Also

$$
U(f, P)-U(f, Q) \leq N(M-m)\|P\|<N(M-m) \delta=N(M-m) \frac{\varepsilon}{4 N(M-m)}=\frac{\varepsilon}{4}
$$

Hence $U(f, P)-U(f, Q)<\frac{\varepsilon}{4}$. Now,

$$
\text { since } \begin{align*}
P_{\varepsilon} \subseteq Q & \Rightarrow L\left(f, P_{\varepsilon}\right) \leq L(f, Q) \\
& \Rightarrow L\left(f, P_{\varepsilon}\right)-L(f, P) \leq L(f, Q)-L(f, P)<\frac{\varepsilon}{4} \tag{1}
\end{align*}
$$

Also, since $P_{\varepsilon} \subseteq Q \Rightarrow U(f, Q) \leq U\left(f, P_{\varepsilon}\right)$

$$
\begin{align*}
& \Rightarrow-U\left(f, P_{\varepsilon}\right) \leq-U(f, Q) \\
& \Rightarrow U(f, P)-U\left(f, P_{\varepsilon}\right) \leq U(f, P)-U(f, Q)<\frac{\varepsilon}{4} \tag{2}
\end{align*}
$$

Now,

$$
\begin{aligned}
L\left(f, P_{\varepsilon}\right)-L(f, P) & <\frac{\varepsilon}{4} \\
U(f, P)-U\left(f, P_{\varepsilon}\right) & <\frac{\varepsilon}{4} \\
U(f, P)-L(f, P)-\left(U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)\right) & <\frac{\varepsilon}{4}+\frac{\varepsilon}{4} \\
U(f, P)-L(f, P) & <U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)+\frac{\varepsilon}{2} \\
U(f, P)-L(f, P) & <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned} \quad \text { adding the two inequities }
$$

(\Leftarrow) Suppose that for $\varepsilon>0$ there is a $\delta>0$ such that if P is any partition with $\|P\|<\delta$, then $U(f, P)-L(f, P)<\varepsilon$. Now, let $\varepsilon>0$ be given. Choose a partition P such that $\|P\|<\delta$, then $U(f, P)-L(f, P)<\varepsilon$. Hence f is integrable by Theorem 0.1.

