Monotone Sequences

Dr.Hamed Al-Sulami

November 17, 2012

3.1 Monotone Sequences

Definition 3.1: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of a real numbers.
(1) We say $\left\{x_{n}\right\}_{n=1}^{\infty}$ is increasing if it satisfies the inequalities $x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq x_{n+1} \leq \cdots$.
(2) We say $\left\{x_{n}\right\}_{n=1}^{\infty}$ is decreasing if it satisfies the inequalities $x_{1} \geq x_{2} \geq \cdots \geq x_{n} \geq x_{n+1} \geq \cdots$.
(3) We say $\left\{x_{n}\right\}_{n=1}^{\infty}$ is monotone if it is either increasing or decreasing.

Note 3.1: If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is an increasing sequence and if $n, k \in \mathbb{N}$ such that $n>k, \Rightarrow x_{k} \leq x_{n}$. If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is an decreasing sequence and if $n, k \in \mathbb{N}$ such that $n>k, \Rightarrow x_{n} \leq x_{k}$.

Example 3.1:

(a) $\left\{\frac{1}{n}\right\}$ is decreasing sequence since $\frac{1}{n}>\frac{1}{n+1} \forall n \in \mathbb{N}$.
(b) $\left\{1-\frac{1}{n^{2}}\right\}$ is increasing sequence since $1-\frac{1}{n^{2}}<1-\frac{1}{(n-1)^{2}}$.
(c) $\left\{(-1)^{n}\right\}$ is not monotone.

Theorem 3.1: [Monotone Convergence Theorem -MCT]

A monotone sequence of real numbers is convergent if and only if it is bounded. Moreover:
(a) If $\left\{x_{n}\right\}$ is bounded above increasing sequence and $x=\sup \left\{x_{n}: n \in \mathbb{N}\right\}$, then $\lim _{n \rightarrow \infty} x_{n}=x$.
(b) If $\left\{y_{n}\right\}$ is bounded below decreasing sequence and $y=\inf \left\{y_{n}: n \in \mathbb{N}\right\}$, then $\lim _{n \rightarrow \infty} y_{n}=y$.

Proof:

(a) Since $\left\{x_{n}\right\}$ is bounded above, then $\sup \left\{x_{n}: n \in \mathbb{N}\right\}$ exists in \mathbb{R}. Let $x=\sup \left\{x_{n}: n \in \mathbb{N}\right\}$.

We want to show that $\lim _{n \rightarrow \infty} x_{n}=x$. Let $\epsilon>0$ be given. Since $x-\epsilon$ is not an upper bound of $\left\{x_{n}: n \in \mathbb{N}\right\}$, then there exist $N \in \mathbb{N}$ such that $x-\epsilon<x_{N}$. Now, if $n>N$, since $\left\{x_{n}\right\}$ is increasing sequence, then $x_{N} \leq x_{n}$. If $n>N \Rightarrow x-\epsilon<x_{N} \leq x_{n} \leq x<x+\epsilon$. Hence, if $n>N \Rightarrow x-\epsilon<x_{n}<x+\epsilon$. Thus, if $n>N \Rightarrow\left|x_{n}-x\right|<\epsilon$. Therefore $\lim _{n \rightarrow \infty} x_{n}=x$.
(b) Since $\left\{y_{n}\right\}$ is bounded below, then $\inf \left\{y_{n}: n \in \mathbb{N}\right\}$ exists in \mathbb{R}. Let $y=\inf \left\{y_{n}: n \in \mathbb{N}\right\}$. We want to show that $\lim _{n \rightarrow \infty} y_{n}=y$. Let $\epsilon>0$ be given. Since $y+\epsilon$ is not a lower bound of $\left\{y_{n}: n \in \mathbb{N}\right\}$, then there exist $N \in \mathbb{N}$ such that $y_{N}<y+\epsilon$. Now, if $n>N$, since $\left\{y_{n}\right\}$ is decreasing sequence, then $y_{n} \leq y_{N}$. If
$n>N \Rightarrow y-\epsilon<y \leq y_{n} \leq y_{N}<y+\epsilon$. Hence, if $n>N \Rightarrow y-\epsilon<y_{n}<y+\epsilon$. Thus, if $n>N \Rightarrow\left|y_{n}-y\right|<\epsilon$. Therefore $\lim _{n \rightarrow \infty} y_{n}=y$.

Example 3.2: Let $x_{1}=1$ and $x_{n+1}=1-\sqrt{3-x_{n}}$, for all $n \in \mathbb{N}$.
(a) Prove $-1 \leq x_{n+1} \leq x_{n} \leq 1$, for all $n \in \mathbb{N}$.
(b) Prove that $\lim _{n \rightarrow \infty} x_{n}=-1$.

Solution:

(a) We will use mathematical induction to show $-1 \leq x_{n+1} \leq x_{n} \leq 1$. Suppose it is true for n. Thus $-1 \leq x_{n+1} \leq$ $x_{n} \leq 1$, and we will prove it for $n+1$.

Now, we have

$$
\begin{align*}
-1 \leq x_{n+1} & \Leftrightarrow-x_{n+1} \leq 1 \\
& \Leftrightarrow 3-x_{n+1} \leq 4 \\
& \Leftrightarrow \sqrt{3-x_{n+1}} \leq \sqrt{4} \\
& \Leftrightarrow-\sqrt{4} \leq-\sqrt{3-x_{n+1}} \\
& \Leftrightarrow 1-2 \leq 1-\sqrt{3-x_{n+1}} \\
& \Leftrightarrow-1 \leq x_{n+2} . \tag{1}
\end{align*}
$$

Also, we have

$$
\begin{align*}
x_{n+1} \leq x_{n} & \Leftrightarrow-x_{n} \leq-x_{n+1} \\
& \Leftrightarrow 3-x_{n} \leq 3-x_{n+1} \\
& \Leftrightarrow \sqrt{3-x_{n}} \leq \sqrt{3-x_{n+1}} \\
& \Leftrightarrow-\sqrt{3-x_{n+1}} \leq-\sqrt{3-x_{n}} \\
& \Leftrightarrow 1-\sqrt{3-x_{n+1}} \leq 1-\sqrt{3-x_{n}} \\
& \Leftrightarrow x_{n+2} \leq x_{n+1} . \tag{2}
\end{align*}
$$

Finally, we have

$$
\begin{align*}
x_{n} \leq 1 & \Leftrightarrow-1 \leq-x_{n} \\
& \Leftrightarrow 3-1 \leq 3-x_{n} \\
& \Leftrightarrow \sqrt{3-1} \leq \sqrt{3-x_{n}} \\
& \Leftrightarrow-\sqrt{3-x_{n}} \leq-\sqrt{2} \\
& \Leftrightarrow 1-\sqrt{3-x_{n}} \leq 1-\sqrt{2}<1 \\
& \Leftrightarrow x_{n+1} \leq 1 . \tag{3}
\end{align*}
$$

From (1),(2), and (3) we get $-1 \leq x_{n+2} \leq x_{n+1} \leq 1$. Thus $-1 \leq x_{n+1} \leq x_{n} \leq 1$, for all $n \in \mathbb{N}$.
(b) Since $\left\{x_{n}\right\}$ is decreasing bounded sequence, then by $\operatorname{MCT}\left\{x_{n}\right\}$ is convergent. Also, since $-1 \leq x_{n} \leq 1$, then $-1 \leq \lim _{n \rightarrow \infty} x_{n} \leq 1$. Now, let $\lim _{n \rightarrow \infty} x_{n}=x$, then $\lim _{n \rightarrow \infty} x_{n+1}=x$ also. Since $x_{n+1}=1-\sqrt{3-x_{n}}$, then $\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty}\left(1-\sqrt{3-x_{n}}\right)=1-\sqrt{3-\lim _{n \rightarrow \infty} x_{n}}$. Hence $x=1-\sqrt{3-x}$. Thus $(x-1)^{2}=3-x$. Hence $x^{2}-2 x+1=3-x$. Thus $x^{2}-x-2=0$. Hence $(x+1)(x-2)=0$. Thus $x=-1$, or $x=2$. But since $-1 \leq x \leq 1$, then $x \neq 2$. Therefore $\lim _{n \rightarrow \infty} x_{n}=-1$.

Example 3.3: Let $x_{1}=2$ and $x_{n+1}=\sqrt{2 x_{n}+3}$, for all $n \in \mathbb{N}$.
(a) Prove $2 \leq x_{n} \leq x_{n+1} \leq 3$.
(b) Prove that $\lim _{n \rightarrow \infty} x_{n}=3$.

Solution:

(a) We will use mathematical induction to show $2 \leq x_{n} \leq x_{n+1} \leq 3$. Suppose it is true for n. Thus $2 \leq x_{n} \leq x_{n+1} \leq$ 3 , and we will prove it for $n+1$. Now, we have

$$
\begin{align*}
2 \leq x_{n} & \Leftrightarrow 4 \leq 2 x_{n} \\
& \Leftrightarrow 4+3 \leq 2 x_{n}+3 \\
& \Leftrightarrow \sqrt{7} \leq \sqrt{2 x_{n}+3} \\
& \Leftrightarrow 2<\sqrt{7} \leq \sqrt{2 x_{n}+3} \\
& \Leftrightarrow 2<x_{n+1} . \tag{1}
\end{align*}
$$

Also, we have

$$
\begin{align*}
x_{n} \leq x_{n+1} & \Leftrightarrow 2 x_{n} \leq 2 x_{n+1} \\
& \Leftrightarrow 2 x_{n}+3 \leq 2 x_{n+1}+3 \\
& \Leftrightarrow \sqrt{2 x_{n}+3} \leq \sqrt{2 x_{n+1}+3} \\
& \Leftrightarrow x_{n+1} \leq x_{n+2} . \tag{2}
\end{align*}
$$

Finally, we have

$$
\begin{align*}
x_{n+1} \leq 3 & \Leftrightarrow 2 x_{n+1} \leq 6 \\
& \Leftrightarrow 2 x_{n+1}+3 \leq 6+3 \\
& \Leftrightarrow \sqrt{2 x_{n+1}+3} \leq \sqrt{9} \\
& \Leftrightarrow \sqrt{2 x_{n+1}+3} \leq 3 \\
& \Leftrightarrow x_{n+2} \leq 3 . \tag{3}
\end{align*}
$$

From (1),(2), and (3) we get $2 \leq x_{n+1} \leq x_{n+2} \leq 3$. Thus $2 \leq x_{n} \leq x_{n+1} \leq 3$, for all $n \in \mathbb{N}$.
(b) Since $\left\{x_{n}\right\}$ is increasing bounded sequence, then by $\operatorname{MCT}\left\{x_{n}\right\}$ is convergent. Also, since $2 \leq x_{n} \leq 3$, then $2 \leq \lim _{n \rightarrow \infty} x_{n} \leq 3$. Now, let $\lim _{n \rightarrow \infty} x_{n}=x$, then $\lim _{n \rightarrow \infty} x_{n+1}=x$ Also since $x_{n+1}=\sqrt{2 x_{n}+3}$, then $\lim _{n \rightarrow \infty} x_{n+1}=$
$\lim _{n \rightarrow \infty}\left(\sqrt{2 x_{n}+3}\right)=\sqrt{2 \lim _{n \rightarrow \infty} x_{n}+3}$. Hence $x=\sqrt{2 x+3}$. Thus $(x)^{2}=2 x+3$. Hence $x^{2}-2 x-3=0$. Thus $(x+1)(x-3)=0$. Thus $x=-1$, or $x=3$. But since $2 \leq x \leq 3$, then $x \neq-1$. Therefore $\lim _{n \rightarrow \infty} x_{n}=3$.

Example 3.4: Let $a>0, x_{1}>0$, and $x_{n+1}=\frac{x_{n}+\frac{a}{x_{n}}}{2}$, for all $n \in \mathbb{N}$ and $n \geq 2$.
(a) Prove $\sqrt{a} \leq x_{n+1} \leq x_{n}$.
(b) Prove that $\lim _{n \rightarrow \infty} x_{n}=\sqrt{a}$.

Solution:

(a) Note that $x_{n}>0$ now, we have

$$
\begin{align*}
x_{n+1}=\frac{x_{n}+\frac{a}{x_{n}}}{2} & \Leftrightarrow 2 x_{n+1}=x_{n}+\frac{a}{x_{n}} \\
& \Leftrightarrow 2 x_{n+1} x_{n}=x_{n}^{2}+a \\
& \Leftrightarrow-a=x_{n}^{2}-2 x_{n} x_{n+1} \\
& \Leftrightarrow x_{n+1}^{2}-a=x_{n}^{2}-2 x_{n} x_{n+1}+x_{n+1}^{2}=\left(x_{n}-x_{n+1}\right)^{2} \geq 0 \\
& \Leftrightarrow x_{n+1}^{2} \geq a \\
& \Leftrightarrow \sqrt{a} \leq x_{n+1} . \tag{1}
\end{align*}
$$

Also, we have

$$
\begin{align*}
x_{n}-x_{n+1} & =x_{n}-\frac{x_{n}+\frac{a}{x_{n}}}{2} \\
& =\frac{2 x_{n}}{2}-\frac{x_{n}+\frac{a}{x_{n}}}{2} \\
& =\frac{2 x_{n}-x_{n}-\frac{a}{x_{n}}}{2} \\
& =\frac{x_{n}-\frac{a}{x_{n}}}{2} \\
& =\frac{x_{n}^{2}-a}{2 x_{n}} \geq 0 \\
& \Leftrightarrow x_{n}-x_{n+1} \geq 0 \\
& \Leftrightarrow x_{n+1} \leq x_{n} . \tag{2}
\end{align*}
$$

From (1), and (2) we get $\sqrt{a} \leq x_{n+1} \leq x_{n}$. Thus $\sqrt{a} \leq x_{n+1} \leq x_{n}$, for all $n \in \mathbb{N}$ such that $n \geq 2$.
(b) Since $\left\{x_{n}\right\}$ is decreasing bounded below sequence, then by MCT $\left\{x_{n}\right\}$ is convergent. Also, since $\sqrt{a} \leq x_{n+1} \leq x_{2}$, then $\sqrt{a} \leq \lim _{n \rightarrow \infty} x_{n} \leq x_{2}$. Now, let $\lim _{n \rightarrow \infty} x_{n}=x$, then $\lim _{n \rightarrow \infty} x_{n+1}=x$ Also since $x_{n+1}=\frac{x_{n}+\frac{a}{x_{n}}}{2}$, then $x=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty}\left(\frac{x_{n}+\frac{a}{x_{n}}}{2}\right)=\frac{x+\frac{a}{x}}{2}$. Hence $x=\frac{x+\frac{a}{x}}{2}$. Thus $x=\frac{x^{2}+a}{2 x}$. Hence $2 x^{2}=x^{2}+a$. Thus $x^{2}=a$. Thus $x= \pm \sqrt{a}$. But since $x_{n}>0$, then $x=\lim _{n \rightarrow \infty} x_{n} \geq 0$. Therefore $\lim _{n \rightarrow \infty} x_{n}=\sqrt{a}$.

Example 3.5: Let $e_{n}=\left(1+\frac{1}{n}\right)^{n}$, for all $n \in \mathbb{N}$. Prove that $\left\{e_{n}\right\}$ is increasing and bounded.

Solution: We will use The Binomial Theorem to expand $\left(1+\frac{1}{n}\right)^{n}$.

$$
\begin{aligned}
e_{n}=\left(1+\frac{1}{n}\right)^{n} & =\sum_{i=0}^{n}\binom{n}{i}\left(\frac{1}{n}\right)^{i} \\
& =\sum_{i=0}^{n}\binom{n}{i} \frac{1}{n^{i}} \\
& <\sum_{i=0}^{n} \frac{1}{i!} \\
& =1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!} \quad \text { Note that: }\binom{n}{i} \frac{1}{n^{i}}=\frac{1}{i!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{i-1}{n}\right)<\frac{1}{i!} \\
& <1+1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{n-1}} \\
& <1+1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{n-1}} \quad \text { Note that: } \frac{1}{i!} \leq \frac{1}{2^{i-1}} \text { for all } i \geq 3 \\
& =1+2-\frac{1}{2^{n-1}} \\
& <3 .
\end{aligned}
$$

Thus $2=e_{1}<e_{n}<3$.Thus $\left\{e_{n}\right\}$ is bounded.

$$
\begin{aligned}
e_{n}=\left(1+\frac{1}{n}\right)^{n} & =\sum_{i=0}^{n}\binom{n}{i}\left(\frac{1}{n}\right)^{i} \\
& =\sum_{i=0}^{n} \frac{1}{i!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{i-1}{n}\right) \quad \text { and } \\
e_{n+1}=\left(1+\frac{1}{n+1}\right)^{n+1} & =\sum_{i=0}^{n+1} \frac{1}{i!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right) \ldots\left(1-\frac{i-1}{n+1}\right) \\
& \geq \sum_{i=0}^{n} \frac{1}{i!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right) \ldots\left(1-\frac{i-1}{n+1}\right) \quad \text { Note that: } 1-\frac{k}{n+1}>1-\frac{k}{n} \quad \forall k \in \mathbb{N} \\
& >\sum_{i=0}^{n} \frac{1}{i!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{i-1}{n}\right)=e_{n} .
\end{aligned}
$$

Hence $e_{n}<e_{n+1}$. Therefore $\left\{e_{n}\right\}$ is increasing and bounded. Thus it is convergent.The limit of this sequence is the number e.

Example 3.6: Let $x_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$, for all $n \in \mathbb{N}$. Prove that $\left\{x_{n}\right\}$ is increasing and unbounded.

Solution:

$$
\begin{aligned}
x_{n+1} & =1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\frac{1}{n+1} \\
& >1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=x_{n}
\end{aligned}
$$

Thus $\left\{s_{n}\right\}$ is increasing.

$$
\begin{aligned}
x_{2^{n}} & =1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{n}} \\
& =1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\cdots+\left(\frac{1}{2^{n-1}+1}+\cdots+\frac{1}{2^{n}}\right) \\
& >1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\cdots+\left(\frac{1}{2^{n}}+\cdots+\frac{1}{2^{n}}\right) \\
& =1+\frac{1}{2}+\frac{1}{2}+\cdots+\frac{1}{2} \\
& =1+\frac{n}{2} .
\end{aligned}
$$

Since $\left\{x_{n}\right\}$ is unbounded.Thus $\left\{x_{n}\right\}$ is divergent.

