

Monotone Sequences

Dr.Hamed Al-Sulami

November 17, 2012

3.1 Monotone Sequences

Definition 3.1: Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of a real numbers.

- (1) We say $\{x_n\}_{n=1}^{\infty}$ is *increasing* if it satisfies the inequalities $x_1 \leq x_2 \leq \cdots \leq x_n \leq x_{n+1} \leq \cdots$.
- (2) We say $\{x_n\}_{n=1}^{\infty}$ is *decreasing* if it satisfies the inequalities $x_1 \ge x_2 \ge \cdots \ge x_n \ge x_{n+1} \ge \cdots$.
- (3) We say $\{x_n\}_{n=1}^{\infty}$ is *monotone* if it is either increasing or decreasing.

Note 3.1: If $\{x_n\}_{n=1}^{\infty}$ is an increasing sequence and if $n, k \in \mathbb{N}$ such that $n > k, \Rightarrow x_k \leq x_n$. If $\{x_n\}_{n=1}^{\infty}$ is an decreasing sequence and if $n, k \in \mathbb{N}$ such that $n > k, \Rightarrow x_n \leq x_k$.

Example 3.1:

(a)
$$\{\frac{1}{n}\}$$
 is decreasing sequence since $\frac{1}{n} > \frac{1}{n+1} \forall n \in \mathbb{N}$.

- (b) $\{1 \frac{1}{n^2}\}$ is increasing sequence since $1 \frac{1}{n^2} < 1 \frac{1}{(n-1)^2}$.
- (c) $\{(-1)^n\}$ is not monotone.

Theorem 3.1: [Monotone Convergence Theorem -MCT]

A monotone sequence of real numbers is convergent if and only if it is bounded. Moreover:

- (a) If $\{x_n\}$ is bounded above increasing sequence and $x = \sup\{x_n : n \in \mathbb{N}\}$, then $\lim_{n \to \infty} x_n = x$.
- (b) If $\{y_n\}$ is bounded below decreasing sequence and $y = \inf\{y_n : n \in \mathbb{N}\}$, then $\lim_{n \to \infty} y_n = y$.

Proof:

- (a) Since $\{x_n\}$ is bounded above, then $\sup\{x_n : n \in \mathbb{N}\}$ exists in \mathbb{R} . Let $x = \sup\{x_n : n \in \mathbb{N}\}$.
 - We want to show that $\lim_{n\to\infty} x_n = x$. Let $\epsilon > 0$ be given. Since $x \epsilon$ is not an upper bound of $\{x_n : n \in \mathbb{N}\}$, then there exist $N \in \mathbb{N}$ such that $x - \epsilon < x_N$. Now, if n > N, since $\{x_n\}$ is increasing sequence, then $x_N \le x_n$. If $n > N \Rightarrow x - \epsilon < x_N \le x_n \le x < x + \epsilon$. Hence, if $n > N \Rightarrow x - \epsilon < x_n < x + \epsilon$. Thus, if $n > N \Rightarrow |x_n - x| < \epsilon$. Therefore $\lim_{n \to \infty} x_n = x$.
- (b) Since $\{y_n\}$ is bounded below, then $\inf\{y_n : n \in \mathbb{N}\}$ exists in \mathbb{R} . Let $y = \inf\{y_n : n \in \mathbb{N}\}$. We want to show that $\lim_{n \to \infty} y_n = y$. Let $\epsilon > 0$ be given. Since $y + \epsilon$ is not a lower bound of $\{y_n : n \in \mathbb{N}\}$, then there exist $N \in \mathbb{N}$ such that $y_N < y + \epsilon$. Now, if n > N, since $\{y_n\}$ is decreasing sequence, then $y_n \leq y_N$. If

 $n > N \Rightarrow y - \epsilon < y \le y_n \le y_N < y + \epsilon$. Hence, if $n > N \Rightarrow y - \epsilon < y_n < y + \epsilon$. Thus, if $n > N \Rightarrow |y_n - y| < \epsilon$. Therefore $\lim_{n \to \infty} y_n = y$.

Example 3.2: Let $x_1 = 1$ and $x_{n+1} = 1 - \sqrt{3 - x_n}$, for all $n \in \mathbb{N}$.

- (a) Prove $-1 \le x_{n+1} \le x_n \le 1$, for all $n \in \mathbb{N}$.
- (b) Prove that $\lim_{n \to \infty} x_n = -1$.

Solution:

(a) We will use mathematical induction to show $-1 \le x_{n+1} \le x_n \le 1$. Suppose it is true for n. Thus $-1 \le x_{n+1} \le x_n \le 1$, and we will prove it for n + 1.

Now, we have

$$1 \leq x_{n+1} \Leftrightarrow -x_{n+1} \leq 1$$

$$\Leftrightarrow 3 - x_{n+1} \leq 4$$

$$\Leftrightarrow \sqrt{3 - x_{n+1}} \leq \sqrt{4}$$

$$\Leftrightarrow -\sqrt{4} \leq -\sqrt{3 - x_{n+1}}$$

$$\Leftrightarrow 1 - 2 \leq 1 - \sqrt{3 - x_{n+1}}$$

$$\Leftrightarrow -1 \leq x_{n+2}.$$
(1)

Also, we have

$$x_{n+1} \leq x_n \Leftrightarrow -x_n \leq -x_{n+1}$$

$$\Leftrightarrow 3 - x_n \leq 3 - x_{n+1}$$

$$\Leftrightarrow \sqrt{3 - x_n} \leq \sqrt{3 - x_{n+1}}$$

$$\Leftrightarrow -\sqrt{3 - x_{n+1}} \leq -\sqrt{3 - x_n}$$

$$\Leftrightarrow 1 - \sqrt{3 - x_{n+1}} \leq 1 - \sqrt{3 - x_n}$$

$$\Leftrightarrow x_{n+2} \leq x_{n+1}.$$
(2)

Finally, we have

$$x_n \le 1 \Leftrightarrow -1 \le -x_n$$

$$\Leftrightarrow 3 - 1 \le 3 - x_n$$

$$\Leftrightarrow \sqrt{3 - 1} \le \sqrt{3 - x_n}$$

$$\Leftrightarrow -\sqrt{3 - x_n} \le -\sqrt{2}$$

$$\Leftrightarrow 1 - \sqrt{3 - x_n} \le 1 - \sqrt{2} < 1$$

$$\Leftrightarrow x_{n+1} \le 1.$$
(3)

From (1),(2),and (3) we get $-1 \le x_{n+2} \le x_{n+1} \le 1$. Thus $-1 \le x_{n+1} \le x_n \le 1$, for all $n \in \mathbb{N}$.

(b) Since $\{x_n\}$ is decreasing bounded sequence, then by MCT $\{x_n\}$ is convergent. Also, since $-1 \le x_n \le 1$, then $-1 \le \lim_{n \to \infty} x_n \le 1$. Now, let $\lim_{n \to \infty} x_n = x$, then $\lim_{n \to \infty} x_{n+1} = x$ also. Since $x_{n+1} = 1 - \sqrt{3 - x_n}$, then $\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} (1 - \sqrt{3 - x_n}) = 1 - \sqrt{3 - \lim_{n \to \infty} x_n}$. Hence $x = 1 - \sqrt{3 - x}$. Thus $(x - 1)^2 = 3 - x$. Hence $x^2 - 2x + 1 = 3 - x$. Thus $x^2 - x - 2 = 0$. Hence (x + 1)(x - 2) = 0. Thus x = -1, or x = 2. But since $-1 \le x \le 1$, then $x \ne 2$. Therefore $\lim_{n \to \infty} x_n = -1$.

Example 3.3: Let $x_1 = 2$ and $x_{n+1} = \sqrt{2x_n + 3}$, for all $n \in \mathbb{N}$.

- (a) Prove $2 \le x_n \le x_{n+1} \le 3$.
- (b) Prove that $\lim_{n \to \infty} x_n = 3$.

Solution:

(a) We will use mathematical induction to show $2 \le x_n \le x_{n+1} \le 3$. Suppose it is true for n. Thus $2 \le x_n \le x_{n+1} \le 3$, and we will prove it for n + 1. Now, we have

$$2 \leq x_n \Leftrightarrow 4 \leq 2x_n$$

$$\Leftrightarrow 4+3 \leq 2x_n+3$$

$$\Leftrightarrow \sqrt{7} \leq \sqrt{2x_n+3}$$

$$\Leftrightarrow 2 < \sqrt{7} \leq \sqrt{2x_n+3}$$

$$\Leftrightarrow 2 < x_{n+1}.$$
(1)

Also, we have

$$x_n \le x_{n+1} \Leftrightarrow 2x_n \le 2x_{n+1}$$

$$\Leftrightarrow 2x_n + 3 \le 2x_{n+1} + 3$$

$$\Leftrightarrow \sqrt{2x_n + 3} \le \sqrt{2x_{n+1} + 3}$$

$$\Leftrightarrow x_{n+1} \le x_{n+2}.$$
 (2)

Finally, we have

$$x_{n+1} \leq 3 \Leftrightarrow 2x_{n+1} \leq 6$$

$$\Leftrightarrow 2x_{n+1} + 3 \leq 6 + 3$$

$$\Leftrightarrow \sqrt{2x_{n+1} + 3} \leq \sqrt{9}$$

$$\Leftrightarrow \sqrt{2x_{n+1} + 3} \leq 3$$

$$\Leftrightarrow x_{n+2} \leq 3.$$
 (3)

From (1),(2),and (3) we get $2 \le x_{n+1} \le x_{n+2} \le 3$. Thus $2 \le x_n \le x_{n+1} \le 3$, for all $n \in \mathbb{N}$.

(b) Since $\{x_n\}$ is increasing bounded sequence, then by MCT $\{x_n\}$ is convergent. Also, since $2 \le x_n \le 3$, then $2 \le \lim_{n \to \infty} x_n \le 3$. Now, let $\lim_{n \to \infty} x_n = x$, then $\lim_{n \to \infty} x_{n+1} = x$ Also since $x_{n+1} = \sqrt{2x_n + 3}$, then $\lim_{n \to \infty} x_{n+1} = x$

$$\lim_{n \to \infty} (\sqrt{2x_n + 3}) = \sqrt{2 \lim_{n \to \infty} x_n + 3}.$$
 Hence $x = \sqrt{2x + 3}.$ Thus $(x)^2 = 2x + 3.$ Hence $x^2 - 2x - 3 = 0.$ Thus $(x + 1)(x - 3) = 0.$ Thus $x = -1$, or $x = 3.$ But since $2 \le x \le 3$, then $x \ne -1.$ Therefore $\lim_{n \to \infty} x_n = 3.$

Example 3.4: Let a > 0, $x_1 > 0$, and $x_{n+1} = \frac{x_n + \frac{a}{x_n}}{2}$, for all $n \in \mathbb{N}$ and $n \ge 2$.

- (a) Prove $\sqrt{a} \le x_{n+1} \le x_n$.
- (b) Prove that $\lim_{n \to \infty} x_n = \sqrt{a}$.

Solution:

(a) Note that $x_n > 0$ now, we have

$$x_{n+1} = \frac{x_n + \frac{a}{x_n}}{2} \Leftrightarrow 2x_{n+1} = x_n + \frac{a}{x_n}$$

$$\Leftrightarrow 2x_{n+1}x_n = x_n^2 + a$$

$$\Leftrightarrow -a = x_n^2 - 2x_n x_{n+1}$$

$$\Leftrightarrow x_{n+1}^2 - a = x_n^2 - 2x_n x_{n+1} + x_{n+1}^2 = (x_n - x_{n+1})^2 \ge 0$$

$$\Leftrightarrow x_{n+1}^2 \ge a$$

$$\Leftrightarrow \sqrt{a} \le x_{n+1}.$$
(1)

Also, we have

$$x_n - x_{n+1} = x_n - \frac{x_n + \frac{a}{x_n}}{2}$$

$$= \frac{2x_n}{2} - \frac{x_n + \frac{a}{x_n}}{2}$$

$$= \frac{2x_n - x_n - \frac{a}{x_n}}{2}$$

$$= \frac{x_n - \frac{a}{x_n}}{2}$$

$$= \frac{x_n^2 - a}{2x_n} \ge 0$$

$$\Leftrightarrow x_n - x_{n+1} \ge 0$$

$$\Leftrightarrow x_{n+1} \le x_n.$$
(2)

From (1), and (2) we get $\sqrt{a} \le x_{n+1} \le x_n$. Thus $\sqrt{a} \le x_{n+1} \le x_n$, for all $n \in \mathbb{N}$ such that $n \ge 2$.

(b) Since $\{x_n\}$ is decreasing bounded below sequence, then by MCT $\{x_n\}$ is convergent. Also, since $\sqrt{a} \le x_{n+1} \le x_2$, then $\sqrt{a} \le \lim_{n \to \infty} x_n \le x_2$. Now, let $\lim_{n \to \infty} x_n = x$, then $\lim_{n \to \infty} x_{n+1} = x$ Also since $x_{n+1} = \frac{x_n + \frac{a}{x_n}}{2}$, then $x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \left(\frac{x_n + \frac{a}{x_n}}{2}\right) = \frac{x + \frac{a}{x}}{2}$. Hence $x = \frac{x + \frac{a}{x}}{2}$. Thus $x = \frac{x^2 + a}{2x}$. Hence $2x^2 = x^2 + a$. Thus $x^2 = a$. Thus $x = \pm \sqrt{a}$. But since $x_n > 0$, then $x = \lim_{n \to \infty} x_n \ge 0$. Therefore $\lim_{n \to \infty} x_n = \sqrt{a}$.

Example 3.5: Let $e_n = (1 + \frac{1}{n})^n$, for all $n \in \mathbb{N}$. Prove that $\{e_n\}$ is increasing and bounded.

$$e_{n} = \left(1 + \frac{1}{n}\right)^{n} = \sum_{i=0}^{n} \binom{n}{i} \left(\frac{1}{n}\right)^{i}$$

$$= \sum_{i=0}^{n} \binom{n}{i} \frac{1}{n^{i}}$$

$$< \sum_{i=0}^{n} \frac{1}{i!}$$

$$= 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

$$< 1 + 1 + \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n-1}}$$

$$< 1 + 1 + \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n-1}}$$

$$= 1 + 2 - \frac{1}{2^{n-1}}$$

$$< 3.$$

Note that:
$$\binom{n}{i} \frac{1}{n^i} = \frac{1}{i!} (1 - \frac{1}{n})(1 - \frac{2}{n}) \dots (1 - \frac{i-1}{n}) < \frac{1}{i!}$$

Note that:
$$\frac{1}{i!} \le \frac{1}{2^{i-1}}$$
 for all $i \ge 3$

Note that:
$$1 + \frac{1}{2} + \dots + \frac{1}{2^{n-1}} = \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} = 2 - \frac{1}{2^{n-1}}$$

Thus $2 = e_1 < e_n < 3$. Thus $\{e_n\}$ is bounded.

$$e_n = \left(1 + \frac{1}{n}\right)^n = \sum_{i=0}^n \binom{n}{i} \left(\frac{1}{n}\right)^i$$

$$= \sum_{i=0}^n \frac{1}{i!} (1 - \frac{1}{n})(1 - \frac{2}{n}) \dots (1 - \frac{i-1}{n}) \quad \text{and}$$

$$e_{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1} = \sum_{i=0}^{n+1} \frac{1}{i!} (1 - \frac{1}{n+1})(1 - \frac{2}{n+1}) \dots (1 - \frac{i-1}{n+1})$$

$$\geq \sum_{i=0}^n \frac{1}{i!} (1 - \frac{1}{n+1})(1 - \frac{2}{n+1}) \dots (1 - \frac{i-1}{n+1}) \quad \text{Note that: } 1 - \frac{k}{n+1} > 1 - \frac{k}{n} \quad \forall k \in \mathbb{N}$$

$$> \sum_{i=0}^n \frac{1}{i!} (1 - \frac{1}{n})(1 - \frac{2}{n}) \dots (1 - \frac{i-1}{n}) = e_n.$$

Hence $e_n < e_{n+1}$. Therefore $\{e_n\}$ is increasing and bounded. Thus it is convergent. The limit of this sequence is the number e.

Example 3.6: Let $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, for all $n \in \mathbb{N}$. Prove that $\{x_n\}$ is increasing and unbounded. Solution:

$$x_{n+1} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1}$$

> $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = x_n$

Thus $\{s_n\}$ is increasing.

$$x_{2^{n}} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^{n}}$$

$$= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \dots + \left(\frac{1}{2^{n-1} + 1} + \dots + \frac{1}{2^{n}}\right)$$

$$> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \dots + \left(\frac{1}{2^{n}} + \dots + \frac{1}{2^{n}}\right)$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2}$$

$$= 1 + \frac{n}{2}.$$

Since $\{x_n\}$ is unbounded. Thus $\{x_n\}$ is divergent.