Lab (4): Column chromatography of Carotenoids (part II + III)

T.A Nouf Alshareef KAU-Faculty of Science- Biochemistry depart Analytical biochemistry lab (Bioc 343) 201 <u>nf.shareef@hotmil.com</u>

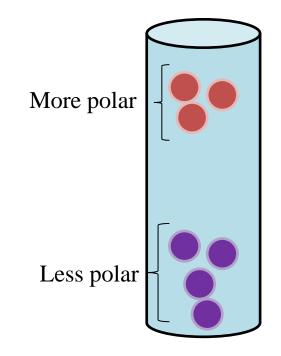
PART II: Column chromatography

- is Liquid-Solid Chromatography
- Used in separation and purification for both solids and liquids.
- Separation based on the same principle as in TLC
- Stationary phase is solid packed in column

- Components of the sample separate from each other by partitioning between the stationary phase and the mobile phase (eluent).
- Molecules with different polarity distributes by different extents, and move through the column at different rates.

Separation depends on **polarity**:

- If stationary phase in the column is polar:
 - polar compound interacts strongly with st. phase moves slowly.
 - non-polar compound interacts strongly with st. phase moves rapidly.


• If stationary phase is non-polar:

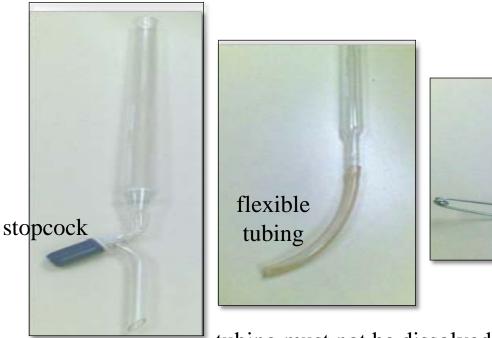
- non-polar compounds will move slowly because they are attracted to st.phase
- more polar compound moves more quickly down the column.

The eluent is collected in fractions.

• depends on **polarity** of mixture components to be separated:

Less polar compounds ——> elutes first
More polar compounds ——> elutes last

DIFFERENCES BETWEEN COLUMN CHROM&TOGR&PHY AND TLC


	TLC	Column Chromatography
stationary phase (adsorbent)	thin layer of silica gel (SiO ₂) or alumina (Al ₂ O ₃) on a glass, metal or plastic plate.	silica gel (SiO ₂) or alumina (Al ₂ O ₃) packed into a vertical column)
Sample	Mixture (sample) is applied on the bottom of the TL plate and migrates to the top of plate	Mixture (sample) is applied on the top of the column and passed through the column. (like filtration)
Mobile phase (solvent) or (eluent)	Solvent (eluent), rising up by capillary action	Solvent flows down through the column by gravity action or by application of air pressure.

Factors affect on column separation

- adsorbent
- polarity of the column
- polarity of the solvents
- size of the column
- rate of flow

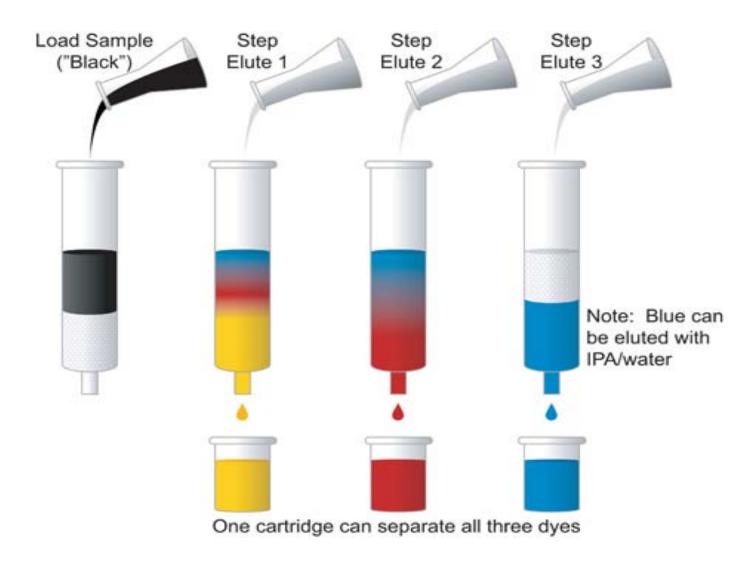
COLUMN

- Is glass or polyethylene vertical column or tube
- Ends with **stopcock** or **flexible tubing** attached to the bottom of the column to control the flow the solvent

tubing must not be dissolved by solvents used in separation.

SIZE OF COLUMN

- Column chromatography can be small or big according to the amount of material loaded in the column.
- Longer column >>>> better separtion
- Various sizes are used
- Ordinary burette is usually used as a chromatography column.
- A pasteur pipette is also used as a chromatography column.


 THE MOST COMMON SOLVENTS ARE ARRANGED IN ORDER OF THEIR ELUTION POWERS AS :

Water > Methanol > Ethanol > Propanol > Acetone > Ethyl Acetate > Diethyl Ether > Chloroform > Dichloromethane > Benzene > Carbon Tetrachloride > Cyclohexane > Hexane > Petroleum ether.

Carbon Tetrachloride > Cyclohexane > Hexane > Petroleum ether.

Advantages of column chromatography

- 1- ability to handle large amounts of material
- 2- ability to change the eluting solvent throughout the course of the separation.
 - Help in elution of components that strongly bound to stationary phase.
 - Solvents changes include: changes in polarity, pH or ionic strength.
 - The last two are used largely in biological separations.
- 3- efficient separation: due to ability in varying the stationary phase and changing solvent

Lab Practice

• In this experiment the carotenoids separating according to the differences in polarity

Beta carotene is non polar

lycopene is more polar

In this lab:

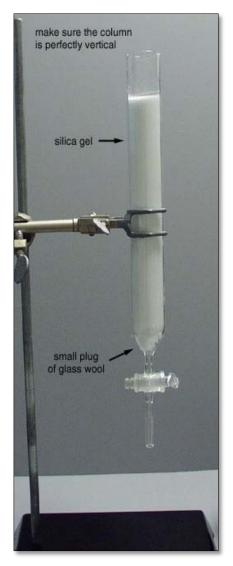
- Stationary phase (adsorbent): alumina (polar)
- Mobile phase (eluent): petroleum ether (less polar) petroleum ether+ chloroform(5:1) more polar
- Sample: carrot extract (β-carotene) tomato extract (lycopene + β-carotene)

meritnation

• <u>β-CAROTENE WILL ELUTE FIRST THEN LYCOPENE</u>

- β-carotene (non-polar) will held to the alumina (polar) more weakly therefore, move through the column more faster
- Lycopene (polar) will held to the alumina (polar) more tightly therefore, move through the column more slowly.
- We needs to increase the polarity of solvent to allow lycopene to move faster and elute from the column

PART III: Column chromatography


Procedure

1- Prepare the column

• Plug the bottom of the column: by placing a very small glass wool with long glass rod, until all entrapped air is forced out.

(plug: allows the solvent to pass and keep the solid alumina from getting out of the column)

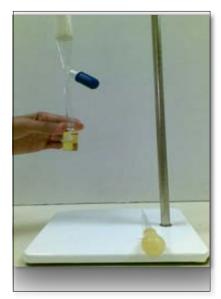
• Clamp the column to a ring stand in vertical position.

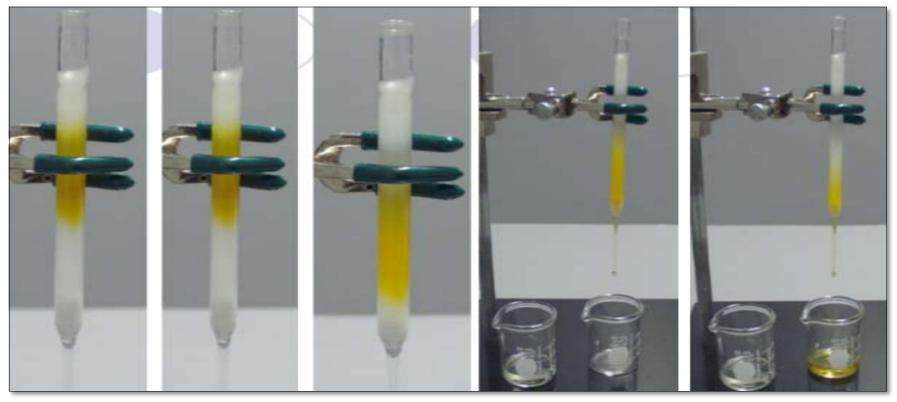
2- Prepare of the slurry

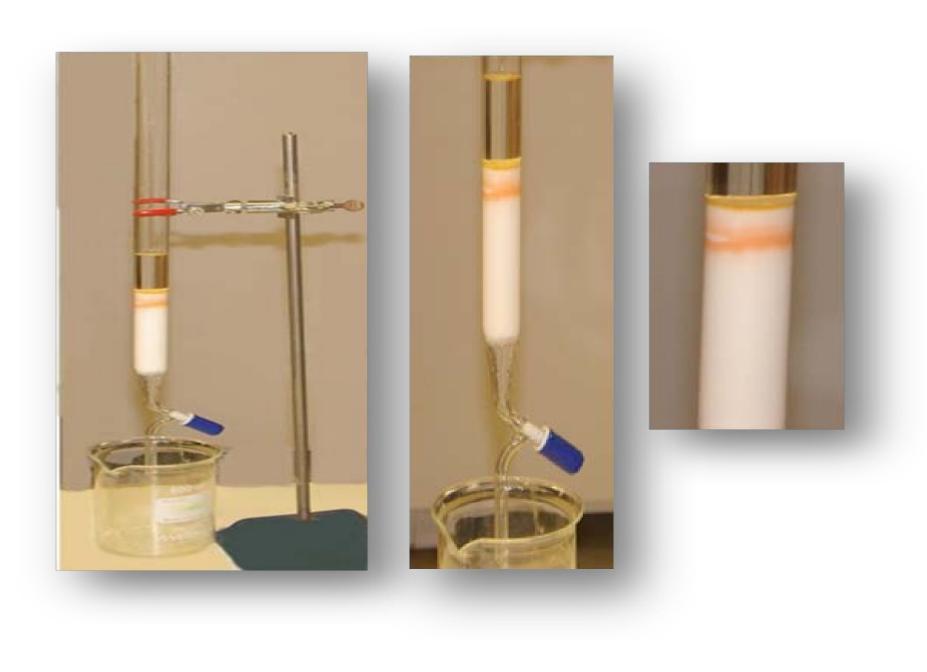
• Prepare slurry (Mixture of a solvent and stationary phase in beaker: (30g alumina + double volume of petroleum ether 60ml)

3- Packing the column

- By mixing the slurry and adding it in the column
- Tapping the column to avoid air bubbles formation
- Open the stopcock to allow solvent to get out
- Re-add solvent again on the top of column to avoid alumina drying (solvent must be 1cm above st.phase)


4- Adding the sample (carotene extract)


- Open stopcock and allows solvent to get out
- add 1 or 2 ml (use pipette)of the sample extract on the column (note: add sample slowly and on the wall side of the column to avoid st. phase distribution)
- After sample move and enter st.phase add enough amount of solvent for elution



5- Sample collection

• Collect each fraction (color) in separate beaker

PART III: TLC analysis of sample fractions

- Stationary phase: Silica gel TL plates
- Mobile phase (solvent): Benzen-cyclohexan 1:9
- Sample:
 - carrot:
 - 1- extract (before column)
 - 2- β -carotene (after purification)
 - tomato:
 - 1- extract (before column)
 - 2- β -carotene (after purification)
 - 3-lycopene

