Math 311 all sections Fall 2013 $\,$

$You \ must \ solve \ question \ number \ one \ and \ any \ other \ two.$

1. For the sequence $\{\frac{2n^2+3}{3n^2-n}\}_{n=1}^{\infty}$ find the limit and prove your answer using the *definition*. Solution:

$$\lim_{n \to \infty} \frac{2n^2 + 3}{3n^2 - n} = \lim_{n \to \infty} \frac{\frac{2n^2}{n^2} + \frac{3}{n^2}}{\frac{3n^2}{n^2} - \frac{n}{n^2}} = \lim_{n \to \infty} \frac{2 + \frac{3}{n^2}}{3 - \frac{1}{n}} = \frac{2}{3}$$

Discussion:

We want to show $\lim_{n\to\infty} \frac{2n^2+3}{3n^2-n} = \frac{2}{3}$.

$$\begin{aligned} \left| \frac{2n^2 + 3}{3n^2 - n} - \frac{2}{3} \right| &= \left| \frac{6n^2 + 9 - 6n^2 + 2n}{9n^2 - 3n} \right| \\ &= \frac{2n + 9}{9n^2 - 3n} \\ &\leq \frac{11n}{9n^2 - 3n} \\ &\leq \frac{11n}{6n^2} = \frac{11}{6n}. \end{aligned}$$
 Note that: $9n^2 - 3n \ge 9n^2 - 3n^2 \Leftrightarrow \frac{1}{9n^2 - 3n} \le \frac{1}{9n^2 - 3n^2} \\ &\leq \frac{11n}{6n^2} = \frac{11}{6n}. \end{aligned}$ Now, let $\frac{11}{6n} < \varepsilon \\ &\Leftrightarrow n > \frac{11}{6\varepsilon}. \end{aligned}$

Proof of $\lim_{n\to\infty} \frac{2n^2+3}{3n^2-n} = \frac{2}{3}$: Let $\varepsilon > 0$ be given. Let $N \in \mathbb{N}$ such that $N > \frac{11}{6\varepsilon}$.

Now, if
$$n > N \Rightarrow \frac{1}{n} < \frac{1}{N} < \frac{6\varepsilon}{11}$$

 $\Rightarrow \frac{11}{6n} < \varepsilon$
 $\Rightarrow \left| \frac{2n^2 + 3}{3n^2 - n} - \frac{2}{3} \right| < \frac{11}{6n} < \varepsilon$
Now, if $n > N \Rightarrow \left| \frac{2n^2 + 3}{3n^2 - n} - \frac{2}{3} \right| < \varepsilon$.
Therefore $\lim_{n \to \infty} \frac{2n^2 + 3}{3n^2 - n} = \frac{2}{3}$.

2. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $|f(x) - f(y)| \le C|x - y|$, for all $x, y \in \mathbb{R}$ and for some C > 0. Let $\{a_n\}$ be a sequence of real numbers such that $\lim_{n \to \infty} a_n = a \in \mathbb{R}$.

(a) Prove that $\lim_{n \to \infty} f(a_n) = f(a)$.

Solution:

Discussion:

Since $|f(x) - f(y)| \le C|x - y|$, for all $x, y \in \mathbb{R}$, then $|f(a_n) - f(a)| \le C|a_n - a|$, and we want $C|a_n - a| < \epsilon \Rightarrow |a_n - a| < \frac{\epsilon}{C}$.

Proof:

Let $\epsilon > 0$ be given. Since $\lim_{n \to \infty} a_n = a \in \mathbb{R}$ then there exist $N \in \mathbb{N}$ such that if $n > N \Rightarrow |a_n - a| < \frac{\epsilon}{C}$. Now if $n > N \Rightarrow |f(a_n) - f(a)| \le C|a_n - a| < C \cdot \frac{\epsilon}{C} = \epsilon$. Hence $\lim_{n \to \infty} f(a_n) = f(a)$.

(b) Is the sequence $\{\tan^{-1}(1+\frac{1}{n})\}$ convergent? If it is convergent find the limit.

Solution:

From Calculus we know that $|\tan^{-1} x - \tan^{-1} y| \leq |x - y|, \forall x, y \in \mathbb{R}$. Since $\lim_{n \to \infty} [1 + \frac{1}{n}] = 1$, then $\{\tan^{-1}(1 + \frac{1}{n})\}$ is convergent and the $\lim_{n \to \infty} \tan^{-1}(1 + \frac{1}{n}) = \tan^{-1}1 = \frac{\pi}{4}$.

3. Let $\{x_n\}$ be a convergent sequence and $\{y_n\}$ is a divergent sequence.

(a) Prove that $\{x_n + y_n\}$ is divergent.

Solution:

Suppose that $\{x_n + y_n\}$ is convergent. Now since $\{x_n\}$ is convergent and $\{x_n + y_n\}$ is convergent, then difference between them is convergent. Since $y_n = x_n + y_n - x_n$ then $\{y_n\}$ is convergent. Contradiction, therefor $\{x_n + y_n\}$ is divergent.

(b) Is the sequence $\{(-1)^n + \frac{1}{n}\}$ convergent? If it is convergent find the limit.

Solution:

Since $\{(-1)^n\}$ is divergent and $\{\frac{1}{n}\}$ is convergent, then by (a) $\{(-1)^n + \frac{1}{n}\}$ is divergent.

4. Let $\{x_n\}$ be a sequence of positive real numbers such that $\lim_{n \to \infty} x_n = x \in \mathbb{R}^+$. Let $m \in \mathbb{Z}$.

(a) Prove that $\lim_{n \to \infty} x_n^m = x^m$.

Solution:

Discussion:

Note that if m > 0, we have $x_n^m - x^m = (x_n - x) \sum_{k=1}^m x_n^{m-k} x^{k-1}$. $|x_n^m - x^m| = |x_n - x| \cdot |\sum_{k=1}^m x_n^{m-k} x^{k-1}| \le |x_n - x| (\sum_{k=1}^m |x_n|^{m-k} |x|^{k-1}).$ Now, we want to get raid of $|x_n|^{m-k}$ we do this by using the fact that $\{x_n\}$ is bounded because it is convergent. Hence there exist M > 0 such that $|x_n| \leq M$ for all n. Hence $|x_n^m - x^m| = |x_n - x| \cdot |\sum_{k=1}^m x_n^{m-k} x^{k-1}| \le |x_n - x| (\sum_{k=1}^m |x_n|^{m-k} |x|^{k-1} \le |x_n - x| (\sum_{k=1}^m M^{m-k} |x|^{k-1})$. Let $\beta = \sum_{k=1}^{m} M^{m-k} |x|^{k-1} \in \mathbb{R}^+. \text{ Thus } |x_n^m - x^m| \le \beta |x_n - x|. \text{ We want } \beta |x_n - x| < \epsilon \Rightarrow |x_n - x| < \frac{\epsilon}{\beta}.$ **Proof**: Case I: If m > 0Let $\epsilon > 0$ be given. Since $\{x_n\}$ is convergent, then there exist M > 0 such that $|x_n| \leq M$ for all n. Since $\lim_{n \to \infty} x_n = x \in \mathbb{R}^+$, then there exist $N \in \mathbb{N}$ such that if $n > N \Rightarrow |x_n - x| < \frac{\epsilon}{\beta}$. Now, if $n > N \Rightarrow |x_n^m - x^m| \le \beta |x_n - x| < \beta \cdot \frac{\epsilon}{\beta} = \epsilon$. Hence $\lim_{n \to \infty} x_n^m = x^m$. Case II: If m < 0Note that -m > 0 and $a^m = \frac{1}{a^{-m}} = \left(\frac{1}{a}\right)^{-m}$. Since $x_n, x > 0$. then $\lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{x}$ and by Case I $\lim_{n \to \infty} \left(\frac{1}{x_n}\right)^{-m} = \left(\frac{1}{x}\right)^{-m}. \text{ Now, } \lim_{n \to \infty} x_n^m = \lim_{n \to \infty} \frac{1}{x_n^{-m}} = \lim_{n \to \infty} \left(\frac{1}{x_n}\right)^{-m} = \left(\frac{1}{x}\right)^{-m} = \frac{1}{x^{-m}} = x^m.$ Case III: If m = 0 $\lim_{n \to \infty} x_n^m = \lim_{n \to \infty} x_n^0 = \lim_{n \to \infty} 1 = 1 = x^0 = x^m.$ Prove that there exist $N \in \mathbb{N}$ such that if $n > N \Rightarrow \frac{x}{3} < x_n < 3x$. (\mathbf{b}) Solution: **Discussion:**

Since $x_n, x > 0$, and $\lim_{n \to \infty} x_n = x \in \mathbb{R}^+$, then there exist $N_1 \in \mathbb{N}$ such that

if
$$n > N_1 \Rightarrow |x_n - x| < \epsilon'$$

 $\Rightarrow -\epsilon' < x_n - x < \epsilon'$
 $\Rightarrow x - \epsilon' < x_n < x + \epsilon'$

We want $x + \epsilon' = 3x \Leftrightarrow \epsilon' = 2x$.

Since $x_n, x > 0$, and $\lim_{n \to \infty} x_n = x \in \mathbb{R}^+$, then there exist $N_2 \in \mathbb{N}$ such that

$$\text{if } n > N_2 \Rightarrow |x_n - x| < \epsilon'' \\ \Rightarrow -\epsilon'' < x_n - x < \epsilon'' \\ \Rightarrow x - \epsilon'' < x_n < x + \epsilon''$$

We want $x - \epsilon'' = \frac{x}{3} \Leftrightarrow \epsilon'' = \frac{2x}{3}$.

Proof:

Since $x_n, x > 0$, and $\lim_{n \to \infty} x_n = x \in \mathbb{R}^+$, then there exist $N_1 \in \mathbb{N}$ such that

if
$$n > N_1 \Rightarrow |x_n - x| < 2x$$

 $\Rightarrow -2x < x_n - x < 2x$
 $\Rightarrow x - 2x < x_n < x + 2x$
 $\Rightarrow -x < x_n < 3x$

Hence there exist $N_1 \in \mathbb{N}$ such that if $n > N_1 \Rightarrow x_n < 3x$. Also since $x_n, x > 0$, and $\lim_{n \to \infty} x_n = x \in \mathbb{R}^+$, then there exist $N_2 \in \mathbb{N}$ such that

if
$$n > N_2 \Rightarrow |x_n - x| < \frac{2x}{3}$$

$$\Rightarrow -\frac{2x}{3} < x_n - x < \frac{2x}{3}$$

$$\Rightarrow x - \frac{2x}{3} < x_n < x + \frac{2x}{3}$$
$$\Rightarrow \frac{x}{3} < x_n < \frac{5x}{3}$$

Hence there exist $N_2 \in \mathbb{N}$ such that if $n > N_2 \Rightarrow \frac{x}{3} < x_n$. Let $N = \max\{N_1, N_2\}$, if n > N then $n > N_1$ and $n > N_2$ and hence $n > N \Rightarrow \frac{x}{3} < x_n < 3x$. **5.** Let $\{x_n\}$ be a sequence of real numbers.

(a) Prove that there exist a sequence $\{m_n\} \subset \mathbb{Z}$ such that $\lim_{n \to \infty} [x_n - \frac{m_n}{n}] = 0$.

Solution:

Discussion:

Note that for $x \in \mathbb{R}, \exists ! m \in \mathbb{Z} \ni m \leq x < m + 1$. Now, for each $n \in \mathbb{N}$, since $nx_n \in \mathbb{R}$, then there exist $m_n \in \mathbb{Z}$ such that $m_n \leq nx_n < m_n + 1$. Hence $\frac{m_n}{n} \leq x_n < \frac{m_n}{n} + \frac{1}{n}$. Therefore for each $n \in \mathbb{N}$, since $nx_n \in \mathbb{R}$, then there exist $m_n \in \mathbb{Z}$ such that $0 = \frac{m_n}{n} - \frac{m_n}{n} \leq x_n - \frac{m_n}{n} < \frac{m_n}{n} + \frac{1}{n} - \frac{m_n}{n} + \frac{1}{n} = \frac{1}{n}$. Thus $0 \leq |x_n - \frac{m_n}{n}| = x_n - \frac{m_n}{n} < \frac{1}{n}$. We can choose $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$.

Proof:

Let $\epsilon > 0$ be given. Choose $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$.

If
$$n > N \Rightarrow \frac{1}{n} < \frac{1}{N} < \epsilon$$

$$\Rightarrow |x_n - \frac{m_n}{n}| = x_n - \frac{m_n}{n} < \frac{1}{n} < \frac{1}{N} < \epsilon$$
If $n > N \Rightarrow |x_n - \frac{m_n}{n} - 0| = |x_n - \frac{m_n}{n}| < \epsilon$

Hence $\lim_{n \to \infty} [x_n - \frac{m_n}{n}] = 0.$ (b) If $\lim_{n \to \infty} x_n = x$, prove that $\lim_{n \to \infty} \frac{m_n}{n} = x.$ Solution: Since $\frac{m_n}{n} = x_n - [x_n - \frac{m_n}{n}]$ and since $\lim_{n \to \infty} x_n = x$, and $\lim_{n \to \infty} [x_n - \frac{m_n}{n}] = 0.$

Then $\lim_{n \to \infty} \frac{m_n}{n} = \lim_{n \to \infty} x_n - \lim_{n \to \infty} [x_n - \frac{m_n}{n}] = x - 0 = x.$

6. Let $\{y_n\}$ be a sequence of positive real numbers such that $\lim_{n \to \infty} y_n = 0$.

(a) Let $\{x_n\}$ be a sequence of real numbers and $x \in \mathbb{R}$. Suppose that there is $N_1 \in \mathbb{N}$ such that if $n > N_1 \Rightarrow |x_n - x| \le y_n$. Prove that $\lim_{n \to \infty} x_n = x$.

Solution:

Discussion:

Since $y_n > 0$, and $\lim_{n \to \infty} y_n = 0$ then there exist $N_2 \in \mathbb{N}$ such that if $n > N_2 \Rightarrow y_n = |y_n| = |y_n - 0| < \epsilon'$. Given that there is $N_1 \in \mathbb{N}$ such that if $n > N_1 \Rightarrow |x_n - x| \le y_n$. Let $N = \max\{N_1, N_2\} \in \mathbb{N}$ and if $n > N \Rightarrow |x_n - x| \le y_n < \epsilon'$. We want $\epsilon' = \epsilon$.

Proof:

Let $\epsilon > 0$ be given. Since $y_n > 0$, and $\lim_{n \to \infty} y_n = 0$ then there exist $N_2 \in \mathbb{N}$ such that if $n > N_2 \Rightarrow y_n = |y_n| = |y_n - 0| < \epsilon$. Given that there is $N_1 \in \mathbb{N}$ such that if $n > N_1 \Rightarrow |x_n - x| \leq y_n$. Let $N = \max\{N_1, N_2\} \in \mathbb{N}$ and if $n > N \Rightarrow |x_n - x| \leq y_n < \epsilon$. Hence $\lim_{n \to \infty} x_n = x$.

(b) Suppose that $\{x_n\}$ is bounded sequence. Prove that $\lim_{n \to \infty} x_n y_n = 0$.

Solution:

Discussion:

Since $\{x_n\}$, is bounded sequence then there exist M > 0 such that $|x_n| \leq M$ for all n. Since $y_n > 0$, and $\lim_{n \to \infty} y_n = 0$ then there exist $N \in \mathbb{N}$ such that if $n > N \Rightarrow y_n = |y_n| = |y_n - 0| < \epsilon'$. Now, if $n > N \Rightarrow |x_n y_n - 0| = |x_n y_n| = |x_n|y_n < My_n < M\epsilon'$. We want $M\epsilon' = \epsilon \Leftrightarrow \epsilon' = \frac{\epsilon}{M}$

Proof:

Let $\epsilon > 0$ be given. Since $y_n > 0$, and $\lim_{n \to \infty} y_n = 0$ then there exist $N \in \mathbb{N}$ such that if $n > N \Rightarrow y_n = |y_n| = |y_n - 0| < \frac{\epsilon}{M}$. Now, if $n > N \Rightarrow |x_n y_n - 0| = |x_n y_n| = |x_n |y_n < M y_n < M \frac{\epsilon}{M} = \epsilon$. Hence $\lim_{n \to \infty} x_n y_n = 0$.

7. Let $x_1 = 1$ and $x_{n+1} = \sqrt{2x_n + 3}$, for $n \ge 2$

(a) Prove that $1 \le x_n \le 3$.

Solution: We use mathematical induction to prove this (you did this in Math251) Prove it for n = 1. Assume it is true for n = k and use it to prove it for n = k + 1.

Since $1 \le 1 = x_1 \le 3$, then it is true for n = 1. Assume that $1 \le x_k \le 3$, prove that $1 \le x_{k+1} \le 3$.

$$\begin{split} 1 &\leq x_k \leq 3 \Rightarrow 2 \leq 2x_k \leq 6 & \text{multiply all sides by 2.} \\ &\Rightarrow 1 < 2+3 \leq 2x_k+3 \leq 6+3 = 9 & \text{add 3 to all sides.} \\ &\Rightarrow 1 = \sqrt{1} \leq \sqrt{2x_k+3} \leq \sqrt{9} = 3 & \text{take the square root of all sides. Note } x_{k+1} = \sqrt{2x_k+3.} \\ &\Rightarrow 1 \leq x_{k+1} \leq 3 \end{split}$$

Hence $1 \le x_n \le 3$ and $\{x_n\}$ is bounded.

(b) Prove that $x_n \leq x_{n+1}$.

Solution: Since $1 \le 5 \Rightarrow 1 = \sqrt{1} \le \sqrt{5} \Rightarrow x_1 = 1 \le \sqrt{5} = x_2$ then it is true for n = 1. Assume that $x_k \le x_{k+1}$, use it to prove that $x_{k+1} \le x_{k+2}$.

$$\begin{array}{ll} x_k \leq x_{k+1} \Rightarrow 2x_k \leq 2x_{k+1} & \text{multiply all sides by 2.} \\ \Rightarrow 2x_k + 3 \leq 2x_{k+1} + 3 & \text{add 3 to all sides.} \\ \Rightarrow \sqrt{2x_k + 3} \leq \sqrt{2x_{k+1} + 3} & \text{take the square root of all sides. Note } x_{k+1} = \sqrt{2x_k + 3} \text{ and } x_{k+2} = \sqrt{2x_{k+1} + 3} & \text{add 3 to all sides.} \end{array}$$

Hence $x_n \leq x_{n+1}$ and $\{x_n\}$ is increasing.

(c) Prove that $\{x_n\}$ is convergent and find its limit. **Solution:** Since $\{x_n\}$ is bounded and $\{x_n\}$ is increasing, then by MCT $\{x_n\}$ is convergent. Let $x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1}$. Since $1 \le x_n \le 3 \Rightarrow 1 \le x = \lim_{n \to \infty} x_n \le 3$.

$$\begin{aligned} x &= \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} \Rightarrow x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} \sqrt{2x_n + 3} = \sqrt{2x + 3} & \text{use } x_{n+1} = \sqrt{2x_n + 3}. \\ \Rightarrow x &= \sqrt{2x + 3} & \text{square both sides.} \\ \Rightarrow x^2 &= 2x + 3 & \text{make it a zero equation .} \\ \Rightarrow x^2 - 2x - 3 &= 0 & \text{two integers their sum is } -2 \text{ and their product is } -3. \\ \Rightarrow (x - 3)(x + 1) = 0 & \text{the two integers are } -3 \text{ and } 1 \\ \Rightarrow x = 3 \text{ or } x = -1 & \text{since } 1 \leq x \leq 3, \text{ then } x \neq -1. \end{aligned}$$

Hence $\lim_{n \to \infty} x_n = 3.$

8. Let $x_1 = \frac{3}{2}$ and $x_{n+1} = 2 - \frac{1}{x_n}$, for $n \ge 2$ (a) Prove that $1 < x_n < 2$.

Solution:

Since $1 < \frac{3}{2} = x_1 < 2$, then it is true for n = 1. Assume that $1 < x_k < 2$, prove that $1 < x_{k+1} < 2$.

$$\begin{split} 1 < x_k < 2 \Rightarrow 1 > \frac{1}{x_k} > \frac{1}{2} & \text{Use } 0 < a < b \Leftrightarrow \frac{1}{a} > \frac{1}{b}. \\ \Rightarrow -1 < -\frac{1}{x_k} < -\frac{1}{2} & \text{Multiply all sides by } -1. \\ \Rightarrow 1 = 2 - 1 < 2 - \frac{1}{x_k} < 2 - \frac{1}{2} = \frac{3}{2} < 2 & \text{add } 2 \text{ to all sides. Note } x_{k+1} = 2 - \frac{1}{x_k}. \\ \Rightarrow 1 < x_{k+1} < 2 \end{split}$$

Hence $1 < x_n < 2$ and $\{x_n\}$ is bounded.

(b) Prove that $x_n > x_{n+1}$. **Solution:** Since $x_1 = \frac{3}{2} = 1\frac{1}{2} > 1\frac{1}{3} = \frac{4}{3} = 2 - \frac{1}{\frac{3}{2}} = x_2$ then it is true for n = 1. Assume that $x_k > x_{k+1}$, use it to prove that $x_{k+1} > x_{k+2}$.

$$\begin{aligned} x_k > x_{k+1} \Rightarrow \frac{1}{x_k} < \frac{1}{x_{k+1}} & \text{Use } 0 < a < b \Leftrightarrow \frac{1}{a} > \frac{1}{b} \\ \Rightarrow -\frac{1}{x_k} > -\frac{1}{x_{k+1}} & \text{Multiply all sides by } -1. \\ \Rightarrow 2 - \frac{1}{x_k} > 2 - \frac{1}{x_{k+1}} & \text{add } 2 \text{ to all sides. Note } x_{k+1} = 2 - \frac{1}{x_k} \text{ and } x_{k+2} = 2 - \frac{1}{x_{k+1}} \\ \Rightarrow x_{k+1} > x_{k+2} \end{aligned}$$

Hence $x_n > x_{n+1}$ and $\{x_n\}$ is decreasing.

(c) Prove that $\{x_n\}$ is convergent and find its limit. **Solution:** Since $\{x_n\}$ is bounded and $\{x_n\}$ is decreasing, then by MCT $\{x_n\}$ is convergent. Let $x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1}$. Since $1 < x_n < 2 \Rightarrow 1 \le x = \lim_{n \to \infty} x_n \le 2$.

$$\begin{aligned} x &= \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} \Rightarrow x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} 2 - \frac{1}{x_n} = 2 - \frac{1}{x} & \text{use } x_{n+1} = 2 - \frac{1}{x_n}. \\ \Rightarrow x &= 2 - \frac{1}{x} & \text{Multiply both sides by } x. \\ \Rightarrow x^2 &= 2x - 1 & \text{make it a zero equation }. \\ \Rightarrow x^2 - 2x + 1 &= 0 & \text{two integers their sum is } -2 \text{ and their product is } 1. \\ \Rightarrow (x - 1)(x - 1) &= 0 & \text{the two integers are } -1 \text{ and } -1 \\ \Rightarrow x &= 1 \text{ or } x = 1 \end{aligned}$$

Hence $\lim_{n \to \infty} x_n = 1.$