Math 311 all sections Fall 2013

You must solve question number one and any other two.

1. For the sequence $\left\{\frac{2 n^{2}+3}{3 n^{2}-n}\right\}_{n=1}^{\infty}$ find the limit and prove your answer using the definition.

Solution:

$$
\lim _{n \rightarrow \infty} \frac{2 n^{2}+3}{3 n^{2}-n}=\lim _{n \rightarrow \infty} \frac{\frac{2 n^{2}}{n^{2}}+\frac{3}{n^{2}}}{\frac{3 n^{2}}{n^{2}}-\frac{n}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{2+\frac{3}{n^{2}}}{3-\frac{1}{n}}=\frac{2}{3}
$$

Discussion:

We want to show $\lim _{n \rightarrow \infty} \frac{2 n^{2}+3}{3 n^{2}-n}=\frac{2}{3}$.

$$
\begin{array}{rlr}
\left|\frac{2 n^{2}+3}{3 n^{2}-n}-\frac{2}{3}\right| & =\left|\frac{6 n^{2}+9-6 n^{2}+2 n}{9 n^{2}-3 n}\right| & \\
& =\frac{2 n+9}{9 n^{2}-3 n} & \quad \text { Note that: } 2 n+9 \leq 2 n+9 n=11 n \\
& \leq \frac{11 n}{9 n^{2}-3 n} & \quad \text { Note that: } 9 n^{2}-3 n \geq 9 n^{2}-3 n^{2} \Leftrightarrow \frac{1}{9 n^{2}-3 n} \leq \frac{1}{9 n^{2}-3 n^{2}} \\
& \leq \frac{11 n}{6 n^{2}}=\frac{11}{6 n} . &
\end{array}
$$

$$
\text { Now, let } \frac{11}{6 n}<\varepsilon
$$

$$
\Leftrightarrow n>\frac{11}{6 \varepsilon} .
$$

Proof of $\lim _{n \rightarrow \infty} \frac{2 n^{2}+3}{3 n^{2}-n}=\frac{2}{3}$:
Let $\varepsilon>0$ be given. Let $N \in \mathbb{N}$ such that $N>\frac{11}{6 \varepsilon}$.

$$
\begin{aligned}
& \text { Now, if } n>N \Rightarrow \frac{1}{n}<\frac{1}{N}<\frac{6 \varepsilon}{11} \\
& \Rightarrow \frac{11}{6 n}<\varepsilon \\
& \Rightarrow\left|\frac{2 n^{2}+3}{3 n^{2}-n}-\frac{2}{3}\right|<\frac{11}{6 n}<\varepsilon \\
& \text { Now, if } n>N \Rightarrow\left|\frac{2 n^{2}+3}{3 n^{2}-n}-\frac{2}{3}\right|<\varepsilon . \\
& \text { Therefore } \lim _{n \rightarrow \infty} \frac{2 n^{2}+3}{3 n^{2}-n}=\frac{2}{3} .
\end{aligned}
$$

2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $|f(x)-f(y)| \leq C|x-y|$, for all $x, y \in \mathbb{R}$ and for some $C>0$. Let $\left\{a_{n}\right\}$ be a sequence of real numbers such that $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$.
(a) Prove that $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(a)$.

Solution:

Discussion:

Since $|f(x)-f(y)| \leq C|x-y|$, for all $x, y \in \mathbb{R}$, then $\left|f\left(a_{n}\right)-f(a)\right| \leq C\left|a_{n}-a\right|$, and we want $C\left|a_{n}-a\right|<$ $\epsilon \Rightarrow\left|a_{n}-a\right|<\frac{\epsilon}{C}$.

Proof:

Let $\epsilon>0$ be given. Since $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$ then there exist $N \in \mathbb{N}$ such that if $n>N \Rightarrow\left|a_{n}-a\right|<\frac{\epsilon}{C}$. Now if $n>N \Rightarrow\left|f\left(a_{n}\right)-f(a)\right| \leq C\left|a_{n}-a\right|<C \cdot \frac{\epsilon}{C}=\epsilon$. Hence $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(a)$.
(b) Is the sequence $\left\{\tan ^{-1}\left(1+\frac{1}{n}\right)\right\}$ convergent? If it is convergent find the limit.

Solution:

From Calculus we know that $\left|\tan ^{-1} x-\tan ^{-1} y\right| \leq|x-y|, \forall x, y \in \mathbb{R}$. Since $\lim _{n \rightarrow \infty}\left[1+\frac{1}{n}\right]=1$, then $\left\{\tan ^{-1}\left(1+\frac{1}{n}\right)\right\}$ is convergent and the $\lim _{n \rightarrow \infty} \tan ^{-1}\left(1+\frac{1}{n}\right)=\tan ^{-1} 1=\frac{\pi}{4}$.
3. Let $\left\{x_{n}\right\}$ be a convergent sequence and $\left\{y_{n}\right\}$ is a divergent sequence.
(a) Prove that $\left\{x_{n}+y_{n}\right\}$ is divergent.

Solution:

Suppose that $\left\{x_{n}+y_{n}\right\}$ is convergent. Now since $\left\{x_{n}\right\}$ is convergent and $\left\{x_{n}+y_{n}\right\}$ is convergent, then difference between them is convergent. Since $y_{n}=x_{n}+y_{n}-x_{n}$ then $\left\{y_{n}\right\}$ is convergent. Contradiction, therefor $\left\{x_{n}+y_{n}\right\}$ is divergent.
(b) Is the sequence $\left\{(-1)^{n}+\frac{1}{n}\right\}$ convergent? If it is convergent find the limit.

Solution:

Since $\left\{(-1)^{n}\right\}$ is divergent and $\left\{\frac{1}{n}\right\}$ is convergent, then by (a) $\left\{(-1)^{n}+\frac{1}{n}\right\}$ is divergent.
4. Let $\left\{x_{n}\right\}$ be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} x_{n}=x \in \mathbb{R}^{+}$. Let $m \in \mathbb{Z}$.
(a) Prove that $\lim _{n \rightarrow \infty} x_{n}^{m}=x^{m}$.

Solution:

Discussion:

Note that if $m>0$, we have $x_{n}^{m}-x^{m}=\left(x_{n}-x\right) \sum_{k=1}^{m} x_{n}^{m-k} x^{k-1}$.
$\left|x_{n}^{m}-x^{m}\right|=\left|x_{n}-x\right| \cdot\left|\sum_{k=1}^{m} x_{n}^{m-k} x^{k-1}\right| \leq\left|x_{n}-x\right|\left(\sum_{k=1}^{m}\left|x_{n}\right|^{m-k}|x|^{k-1}\right)$. Now, we want to get raid of $\left|x_{n}\right|^{m-k}$ we do this by using the fact that $\left\{x_{n}\right\}$ is bounded because it is convergent. Hence there exist $M>0$ such that $\left|x_{n}\right| \leq M$ for all n.
Hence $\left|x_{n}^{m}-x^{m}\right|=\left|x_{n}-x\right| \cdot\left|\sum_{k=1}^{m} x_{n}^{m-k} x^{k-1}\right| \leq\left|x_{n}-x\right|\left(\sum_{k=1}^{m}\left|x_{n}\right|^{m-k}|x|^{k-1} \leq\left|x_{n}-x\right|\left(\sum_{k=1}^{m} M^{m-k}|x|^{k-1}\right)\right.$. Let $\beta=\sum_{k=1}^{m} M^{m-k}|x|^{k-1} \in \mathbb{R}^{+}$. Thus $\left|x_{n}^{m}-x^{m}\right| \leq \beta\left|x_{n}-x\right|$. We want $\beta\left|x_{n}-x\right|<\epsilon \Rightarrow\left|x_{n}-x\right|<\frac{\epsilon}{\beta}$.

Proof:

Case I: If $m>0$
Let $\epsilon>0$ be given. Since $\left\{x_{n}\right\}$ is convergent, then there exist $M>0$ such that $\left|x_{n}\right| \leq M$ for all n.
Since $\lim _{n \rightarrow \infty} x_{n}=x \in \mathbb{R}^{+}$, then there exist $N \in \mathbb{N}$ such that if $n>N \Rightarrow\left|x_{n}-x\right|<\frac{\epsilon}{\beta}$.
Now, if $n>N \Rightarrow\left|x_{n}^{m}-x^{m}\right| \leq \beta\left|x_{n}-x\right|<\beta \cdot \frac{\epsilon}{\beta}=\epsilon$.
Hence $\lim _{n \rightarrow \infty} x_{n}^{m}=x^{m}$.
Case II: If $m<0$
Note that $-m>0$ and $a^{m}=\frac{1}{a^{-m}}=\left(\frac{1}{a}\right)^{-m}$. Since $x_{n}, x>0$. then $\lim _{n \rightarrow \infty} \frac{1}{x_{n}}=\frac{1}{x}$ and by Case I
$\lim _{n \rightarrow \infty}\left(\frac{1}{x_{n}}\right)^{-m}=\left(\frac{1}{x}\right)^{-m}$. Now, $\lim _{n \rightarrow \infty} x_{n}^{m}=\lim _{n \rightarrow \infty} \frac{1}{x_{n}^{-m}}=\lim _{n \rightarrow \infty}\left(\frac{1}{x_{n}}\right)^{-m}=\left(\frac{1}{x}\right)^{-m}=\frac{1}{x^{-m}}=x^{m}$.
Case III: If $m=0$
$\lim _{n \rightarrow \infty} x_{n}^{m}=\lim _{n \rightarrow \infty} x_{n}^{0}=\lim _{n \rightarrow \infty} 1=1=x^{0}=x^{m}$.
(b) Prove that there exist $N \in \mathbb{N}$ such that if $n>N \Rightarrow \frac{x}{3}<x_{n}<3 x$.

Solution:

Discussion:

Since $x_{n}, x>0$, and $\lim _{n \rightarrow \infty} x_{n}=x \in \mathbb{R}^{+}$, then there exist $N_{1} \in \mathbb{N}$ such that

$$
\text { if } \begin{aligned}
n>N_{1} & \Rightarrow\left|x_{n}-x\right|<\epsilon^{\prime} \\
& \Rightarrow-\epsilon^{\prime}<x_{n}-x<\epsilon^{\prime} \\
& \Rightarrow x-\epsilon^{\prime}<x_{n}<x+\epsilon^{\prime}
\end{aligned}
$$

We want $x+\epsilon^{\prime}=3 x \Leftrightarrow \epsilon^{\prime}=2 x$.

Since $x_{n}, x>0$, and $\lim _{n \rightarrow \infty} x_{n}=x \in \mathbb{R}^{+}$, then there exist $N_{2} \in \mathbb{N}$ such that

$$
\text { if } \begin{aligned}
n>N_{2} & \Rightarrow\left|x_{n}-x\right|<\epsilon^{\prime \prime} \\
& \Rightarrow-\epsilon^{\prime \prime}<x_{n}-x<\epsilon^{\prime \prime} \\
& \Rightarrow x-\epsilon^{\prime \prime}<x_{n}<x+\epsilon^{\prime \prime}
\end{aligned}
$$

We want $x-\epsilon^{\prime \prime}=\frac{x}{3} \Leftrightarrow \epsilon^{\prime \prime}=\frac{2 x}{3}$.

Proof:

Since $x_{n}, x>0$, and $\lim _{n \rightarrow \infty} x_{n}=x \in \mathbb{R}^{+}$, then there exist $N_{1} \in \mathbb{N}$ such that

$$
\text { if } \begin{aligned}
n>N_{1} & \Rightarrow\left|x_{n}-x\right|<2 x \\
& \Rightarrow-2 x<x_{n}-x<2 x \\
& \Rightarrow x-2 x<x_{n}<x+2 x \\
& \Rightarrow-x<x_{n}<3 x
\end{aligned}
$$

Hence there exist $N_{1} \in \mathbb{N}$ such that if $n>N_{1} \Rightarrow x_{n}<3 x$.
Also since $x_{n}, x>0$, and $\lim _{n \rightarrow \infty} x_{n}=x \in \mathbb{R}^{+}$, then there exist $N_{2} \in \mathbb{N}$ such that

$$
\text { if } \begin{aligned}
n>N_{2} & \Rightarrow\left|x_{n}-x\right|<\frac{2 x}{3} \\
& \Rightarrow-\frac{2 x}{3}<x_{n}-x<\frac{2 x}{3} \\
& \Rightarrow x-\frac{2 x}{3}<x_{n}<x+\frac{2 x}{3} \\
& \Rightarrow \frac{x}{3}<x_{n}<\frac{5 x}{3}
\end{aligned}
$$

Hence there exist $N_{2} \in \mathbb{N}$ such that if $n>N_{2} \Rightarrow \frac{x}{3}<x_{n}$.
Let $N=\max \left\{N_{1}, N_{2}\right\}$, if $n>N$ then $n>N_{1}$ and $n>N_{2}$ and hence $n>N \Rightarrow \frac{x}{3}<x_{n}<3 x$.
5. Let $\left\{x_{n}\right\}$ be a sequence of real numbers.
(a) Prove that there exist a sequence $\left\{m_{n}\right\} \subset \mathbb{Z}$ such that $\lim _{n \rightarrow \infty}\left[x_{n}-\frac{m_{n}}{n}\right]=0$.

Solution:

Discussion:

Note that for $x \in \mathbb{R}, \exists!m \in \mathbb{Z} \ni m \leq x<m+1$. Now, for each $n \in \mathbb{N}$, since $n x_{n} \in \mathbb{R}$, then there exist $m_{n} \in \mathbb{Z}$ such that $m_{n} \leq n x_{n}<m_{n}+1$. Hence $\frac{m_{n}}{n} \leq x_{n}<\frac{m_{n}}{n}+\frac{1}{n}$. Therefore for each $n \in \mathbb{N}$, since $n x_{n} \in \mathbb{R}$, then there exist $m_{n} \in \mathbb{Z}$ such that $0=\frac{m_{n}}{n}-\frac{m_{n}}{n} \leq x_{n}-\frac{m_{n}}{n}<\frac{m_{n}}{n}+\frac{1}{n}-\frac{m_{n}}{n}+\frac{1}{n}=\frac{1}{n}$. Thus $0 \leq\left|x_{n}-\frac{m_{n}}{n}\right|=x_{n}-\frac{m_{n}}{n}<\frac{1}{n}$. We can choose $N \in \mathbb{N}$ such that $\frac{1}{N}<\epsilon$.

Proof:

Let $\epsilon>0$ be given. Choose $N \in \mathbb{N}$ such that $\frac{1}{N}<\epsilon$.

$$
\begin{aligned}
& \text { If } \begin{aligned}
n>N & \Rightarrow \frac{1}{n}<\frac{1}{N}<\epsilon \\
& \Rightarrow\left|x_{n}-\frac{m_{n}}{n}\right|=x_{n}-\frac{m_{n}}{n}<\frac{1}{n}<\frac{1}{N}<\epsilon \\
\text { If } n>N & \Rightarrow\left|x_{n}-\frac{m_{n}}{n}-0\right|=\left|x_{n}-\frac{m_{n}}{n}\right|<\epsilon
\end{aligned}
\end{aligned}
$$

Hence $\lim _{n \rightarrow \infty}\left[x_{n}-\frac{m_{n}}{n}\right]=0$.
(b) If $\lim _{n \rightarrow \infty} x_{n}=x$, prove that $\lim _{n \rightarrow \infty} \frac{m_{n}}{n}=x$.

Solution:

Since $\frac{m_{n}}{n}=x_{n}-\left[x_{n}-\frac{m_{n}}{n}\right]$ and since $\lim _{n \rightarrow \infty} x_{n}=x$, and $\lim _{n \rightarrow \infty}\left[x_{n}-\frac{m_{n}}{n}\right]=0$.
Then $\lim _{n \rightarrow \infty} \frac{m_{n}}{n}=\lim _{n \rightarrow \infty} x_{n}-\lim _{n \rightarrow \infty}\left[x_{n}-\frac{m_{n}}{n}\right]=x-0=x$.
6. Let $\left\{y_{n}\right\}$ be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} y_{n}=0$.
(a) Let $\left\{x_{n}\right\}$ be a sequence of real numbers and $x \in \mathbb{R}$. Suppose that there is $N_{1} \in \mathbb{N}$ such that if $n>N_{1} \Rightarrow\left|x_{n}-x\right| \leq y_{n}$. Prove that $\lim _{n \rightarrow \infty} x_{n}=x$.

Solution:

Discussion:

Since $y_{n}>0$, and $\lim _{n \rightarrow \infty} y_{n}=0$ then there exist $N_{2} \in \mathbb{N}$ such that if $n>N_{2} \Rightarrow y_{n}=\left|y_{n}\right|=\left|y_{n}-0\right|<\epsilon^{\prime}$.
Given that there is $N_{1} \in \mathbb{N}$ such that if $n>N_{1} \Rightarrow\left|x_{n}-x\right| \leq y_{n}$. Let $N=\max \left\{N_{1}, N_{2}\right\} \in \mathbb{N}$ and if $n>N \Rightarrow\left|x_{n}-x\right| \leq y_{n}<\epsilon^{\prime}$. We want $\epsilon^{\prime}=\epsilon$.

Proof:

Let $\epsilon>0$ be given. Since $y_{n}>0$, and $\lim _{n \rightarrow \infty} y_{n}=0$ then there exist $N_{2} \in \mathbb{N}$ such that if $n>N_{2} \Rightarrow$ $y_{n}=\left|y_{n}\right|=\left|y_{n}-0\right|<\epsilon$. Given that there is $N_{1} \in \mathbb{N}$ such that if $n>N_{1} \Rightarrow\left|x_{n}-x\right| \leq y_{n}$. Let $N=\max \left\{N_{1}, N_{2}\right\} \in \mathbb{N}$ and if $n>N \Rightarrow\left|x_{n}-x\right| \leq y_{n}<\epsilon$. Hence $\lim _{n \rightarrow \infty} x_{n}=x$.
(b) Suppose that $\left\{x_{n}\right\}$ is bounded sequence. Prove that $\lim _{n \rightarrow \infty} x_{n} y_{n}=0$.

Solution:

Discussion:

Since $\left\{x_{n}\right\}$, is bounded sequence then there exist $M>0$ such that $\left|x_{n}\right| \leq M$ for all n. Since $y_{n}>0$, and $\lim _{n \rightarrow \infty} y_{n}=0$ then there exist $N \in \mathbb{N}$ such that if $n>N \Rightarrow y_{n}=\left|y_{n}\right|=\left|y_{n}-0\right|<\epsilon^{\prime}$. Now, if $n>N \Rightarrow\left|x_{n} y_{n}-0\right|=\left|x_{n} y_{n}\right|=\left|x_{n}\right| y_{n}<M y_{n}<M \epsilon^{\prime}$. We want $M \epsilon^{\prime}=\epsilon \Leftrightarrow \epsilon^{\prime}=\frac{\epsilon}{M}$

Proof:

Let $\epsilon>0$ be given. Since $y_{n}>0$, and $\lim _{n \rightarrow \infty} y_{n}=0$ then there exist $N \in \mathbb{N}$ such that if $n>N \Rightarrow y_{n}=\left|y_{n}\right|=$ $\left|y_{n}-0\right|<\frac{\epsilon}{M}$. Now, if $n>N \Rightarrow\left|x_{n} y_{n}-0\right|=\left|x_{n} y_{n}\right|=\left|x_{n}\right| y_{n}<M y_{n}<M \frac{\epsilon}{M}=\epsilon$. Hence $\lim _{n \rightarrow \infty} x_{n} y_{n}=0$.
7. Let $x_{1}=1$ and $x_{n+1}=\sqrt{2 x_{n}+3}$, for $n \geq 2$
(a) Prove that $1 \leq x_{n} \leq 3$.

Solution: We use mathematical induction to prove this (you did this in Math251) Prove it for $n=1$. Assume it is true for $n=k$ and use it to prove it for $n=k+1$.
Since $1 \leq 1=x_{1} \leq 3$, then it is true for $n=1$. Assume that $1 \leq x_{k} \leq 3$, prove that $1 \leq x_{k+1} \leq 3$.

$$
\begin{array}{rlrl}
1 \leq x_{k} \leq 3 & \Rightarrow 2 \leq 2 x_{k} \leq 6 & & \text { multiply all sides by } 2 . \\
& \Rightarrow 1<2+3 \leq 2 x_{k}+3 \leq 6+3=9 & & \text { add } 3 \text { to all sides. } \\
& \Rightarrow 1=\sqrt{1} \leq \sqrt{2 x_{k}+3} \leq \sqrt{9}=3 & & \text { take the square rot of all sides. Note } x_{k+1}=\sqrt{2 x_{k}+3} . \\
& \Rightarrow 1 \leq x_{k+1} \leq 3 &
\end{array}
$$

Hence $1 \leq x_{n} \leq 3$ and $\left\{x_{n}\right\}$ is bounded.
(b) Prove that $x_{n} \leq x_{n+1}$.

Solution: Since $1 \leq 5 \Rightarrow 1=\sqrt{1} \leq \sqrt{5} \Rightarrow x_{1}=1 \leq \sqrt{5}=x_{2}$ then it is true for $n=1$. Assume that $x_{k} \leq x_{k+1}$, use it to prove that $x_{k+1} \leq x_{k+2}$.

$$
\begin{array}{rlrl}
x_{k} \leq x_{k+1} & \Rightarrow 2 x_{k} \leq 2 x_{k+1} & & \text { multiply all sides by } 2 . \\
& \Rightarrow 2 x_{k}+3 \leq 2 x_{k+1}+3 & & \text { add } 3 \text { to all sides. } \\
& \Rightarrow \sqrt{2 x_{k}+3} \leq \sqrt{2 x_{k+1}+3} & & \text { take the square root of all sides. Note } x_{k+1}=\sqrt{2 x_{k}+3} \text { and } x_{k+2}=\sqrt{2 x_{k+1}+3} . \\
& \Rightarrow x_{k+1} \leq x_{k+2} &
\end{array}
$$

Hence $x_{n} \leq x_{n+1}$ and $\left\{x_{n}\right\}$ is increasing.
(c) Prove that $\left\{x_{n}\right\}$ is convergent and find its limit.

Solution: Since $\left\{x_{n}\right\}$ is bounded and $\left\{x_{n}\right\}$ is increasing, then by MCT $\left\{x_{n}\right\}$ is convergent. Let $x=$ $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{n+1}$. Since $1 \leq x_{n} \leq 3 \Rightarrow 1 \leq x=\lim _{n \rightarrow \infty} x_{n} \leq 3$.

$$
\begin{array}{rlrl}
x=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{n+1} & \Rightarrow x=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \sqrt{2 x_{n}+3}=\sqrt{2 x+3} & & \text { use } x_{n+1}=\sqrt{2 x_{n}+3 .} . \\
& \Rightarrow x=\sqrt{2 x+3} & & \text { square both sides. } \\
& \Rightarrow x^{2}=2 x+3 & & \text { make it a zero equation. } \\
& \Rightarrow x^{2}-2 x-3=0 & & \text { two integers their sum is }-2 \text { and their product is }-3 . \\
& \Rightarrow(x-3)(x+1)=0 & & \text { the two integers are }-3 \text { and } 1 \\
& \Rightarrow x=3 \text { or } x=-1 & \text { since } 1 \leq x \leq 3, \text { then } x \neq-1 .
\end{array}
$$

Hence $\lim _{n \rightarrow \infty} x_{n}=3$.
8. Let $x_{1}=\frac{3}{2}$ and $x_{n+1}=2-\frac{1}{x_{n}}$, for $n \geq 2$
(a) Prove that $1<x_{n}<2$.

Solution:

Since $1<\frac{3}{2}=x_{1}<2$, then it is true for $n=1$. Assume that $1<x_{k}<2$, prove that $1<x_{k+1}<2$.

$$
\begin{array}{rlrl}
1<x_{k}<2 & \Rightarrow 1>\frac{1}{x_{k}}>\frac{1}{2} & & \text { Use } 0<a<b \Leftrightarrow \frac{1}{a}>\frac{1}{b} . \\
& \Rightarrow-1<-\frac{1}{x_{k}}<-\frac{1}{2} & \quad \text { Multiply all sides by }-1 . \\
& \Rightarrow 1=2-1<2-\frac{1}{x_{k}}<2-\frac{1}{2}=\frac{3}{2}<2 & \text { add } 2 \text { to all sides. Note } x_{k+1}=2-\frac{1}{x_{k}} . \\
& \Rightarrow 1<x_{k+1}<2 &
\end{array}
$$

Hence $1<x_{n}<2$ and $\left\{x_{n}\right\}$ is bounded.
(b) Prove that $x_{n}>x_{n+1}$.

Solution: Since $x_{1}=\frac{3}{2}=1 \frac{1}{2}>1 \frac{1}{3}=\frac{4}{3}=2-\frac{1}{3}=x_{2}$ then it is true for $n=1$. Assume that $x_{k}>x_{k+1}$, use it to prove that $x_{k+1}>x_{k+2}$.

$$
\begin{aligned}
x_{k}>x_{k+1} & \Rightarrow \frac{1}{x_{k}}<\frac{1}{x_{k+1}} & & \text { Use } 0<a<b \Leftrightarrow \frac{1}{a}>\frac{1}{b} . . \\
& \Rightarrow-\frac{1}{x_{k}}>-\frac{1}{x_{k+1}} & & \text { Multiply all sides by }-1 . \\
& \Rightarrow 2-\frac{1}{x_{k}}>2-\frac{1}{x_{k+1}} & & \text { add } 2 \text { to all sides. Note } x_{k+1}=2-\frac{1}{x_{k}} \text { and } x_{k+2}=2-\frac{1}{x_{k+1}} . \\
& \Rightarrow x_{k+1}>x_{k+2} & &
\end{aligned}
$$

Hence $x_{n}>x_{n+1}$ and $\left\{x_{n}\right\}$ is decreasing.
(c) Prove that $\left\{x_{n}\right\}$ is convergent and find its limit.

Solution: Since $\left\{x_{n}\right\}$ is bounded and $\left\{x_{n}\right\}$ is decreasing, then by MCT $\left\{x_{n}\right\}$ is convergent. Let $x=$ $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{n+1}$. Since $1<x_{n}<2 \Rightarrow 1 \leq x=\lim _{n \rightarrow \infty} x_{n} \leq 2$.

$$
\begin{array}{rlr}
x=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{n+1} & \Rightarrow x=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} 2-\frac{1}{x_{n}}=2-\frac{1}{x} & \\
& \text { use } x_{n+1}=2-\frac{1}{x_{n}} . \\
& \Rightarrow x=2-\frac{1}{x} & \\
& \Rightarrow x^{2}=2 x-1 & \\
& \Rightarrow x^{2}-2 x+1=0 & \\
& \Rightarrow(x-1)(x-1)=0 & \\
& \Rightarrow x=1 \text { two inty it a both sidesers by } x . \\
& \Rightarrow x=\text { or } x=1 &
\end{array}
$$

Hence $\lim _{n \rightarrow \infty} x_{n}=1$.

