Math 311 all sections Fall 2013 $\,$

You must solve question number one and any other one.

1. For the sequence $\{\frac{2n^2+3}{3n^2-n}\}_{n=1}^{\infty}$ find the limit and prove your answer using the *definition*.

2. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $|f(x) - f(y)| \le C|x - y|$, for all $x, y \in \mathbb{R}$ and for some C > 0.

Let $\{a_n\}$ be a sequence of real numbers such that $\lim_{n\to\infty} a_n = a \in \mathbb{R}$.

- (a) Prove that $\lim_{n \to \infty} f(a_n) = f(a)$.
- (b) Is the sequence $\{\tan^{-1}\left(1+\frac{1}{n}\right)\}$ convergent? If it is convergent find the limit.

3. Let $\{x_n\}$ be a convergent sequence and $\{y_n\}$ is a divergent sequence.

- (a) Prove that $\{x_n + y_n\}$ is divergent.
- (b) Is the sequence $\{(-1)^n + \frac{1}{n}\}$ convergent? If it is convergent find the limit.

4. Let $\{x_n\}$ be a sequence of positive real numbers such that $\lim_{n \to \infty} x_n = x \in \mathbb{R}^+$. Let $m \in \mathbb{Z}$.

(a) Prove that
$$\lim_{m \to \infty} x_n^m = x^m$$

- (b) Prove that there exist $N \in \mathbb{N}$ such that if $n > N \Rightarrow \frac{x}{3} < x_n < 3x$.
- **5.** Let $\{x_n\}$ be a sequence of real numbers.
 - (a) Prove that there exist a sequence $\{m_n\} \subset \mathbb{Z}$ such that $\lim_{n \to \infty} [x_n \frac{m_n}{n}] = 0$.

(b) If $\lim_{n \to \infty} x_n = x$, prove that $\lim_{n \to \infty} \frac{m_n}{n} = x$.

6. Let $\{y_n\}$ be a sequence of positive real numbers such that $\lim_{n \to \infty} y_n = 0$.

(a) Let $\{x_n\}$ be a sequence of real numbers and $x \in \mathbb{R}$. Suppose that there is $N_1 \in \mathbb{N}$ such that

if $n > N_1 \Rightarrow |x_n - x| \le y_n$. Prove that $\lim_{n \to \infty} x_n = x$.

(b) Suppose that $\{x_n\}$ is bounded sequence. Prove that $\lim_{n \to \infty} x_n y_n = 0$.

7. Let $x_1 = 1$ and $x_{n+1} = \sqrt{2x_n + 3}$, for $n \ge 2$

- (a) Prove that $1 \le x_n \le 3$.
- (b) Prove that $x_n \leq x_{n+1}$.

(c) Prove that $\{x_n\}$ is convergent and find its limit.

8. Let $x_1 = \frac{3}{2}$ and $x_{n+1} = 2 - \frac{1}{x_n}$, for $n \ge 2$

- (a) Prove that $1 < x_n < 2$.
- (b) Prove that $x_n > x_{n+1}$.
- (c) Prove that $\{x_n\}$ is convergent and find its limit.