Math 311 all sections Fall 2013

You must solve question number one and any other one.

1. For the sequence $\left\{\frac{2 n^{2}+3}{3 n^{2}-n}\right\}_{n=1}^{\infty}$ find the limit and prove your answer using the definition.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $|f(x)-f(y)| \leq C|x-y|$, for all $x, y \in \mathbb{R}$ and for some $C>0$.

Let $\left\{a_{n}\right\}$ be a sequence of real numbers such that $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$.
(a) Prove that $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(a)$.
(b) Is the sequence $\left\{\tan ^{-1}\left(1+\frac{1}{n}\right)\right\}$ convergent? If it is convergent find the limit.
3. Let $\left\{x_{n}\right\}$ be a convergent sequence and $\left\{y_{n}\right\}$ is a divergent sequence.
(a) Prove that $\left\{x_{n}+y_{n}\right\}$ is divergent.
(b) Is the sequence $\left\{(-1)^{n}+\frac{1}{n}\right\}$ convergent? If it is convergent find the limit.
4. Let $\left\{x_{n}\right\}$ be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} x_{n}=x \in \mathbb{R}^{+}$. Let $m \in \mathbb{Z}$.
(a) Prove that $\lim _{n \rightarrow \infty} x_{n}^{m}=x^{m}$.
(b) Prove that there exist $N \in \mathbb{N}$ such that if $n>N \Rightarrow \frac{x}{3}<x_{n}<3 x$.
5. Let $\left\{x_{n}\right\}$ be a sequence of real numbers.
(a) Prove that there exist a sequence $\left\{m_{n}\right\} \subset \mathbb{Z}$ such that $\lim _{n \rightarrow \infty}\left[x_{n}-\frac{m_{n}}{n}\right]=0$.
(b) If $\lim _{n \rightarrow \infty} x_{n}=x$, prove that $\lim _{n \rightarrow \infty} \frac{m_{n}}{n}=x$.
6. Let $\left\{y_{n}\right\}$ be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} y_{n}=0$.
(a) Let $\left\{x_{n}\right\}$ be a sequence of real numbers and $x \in \mathbb{R}$. Suppose that there is $N_{1} \in \mathbb{N}$ such that if $n>N_{1} \Rightarrow\left|x_{n}-x\right| \leq y_{n}$. Prove that $\lim _{n \rightarrow \infty} x_{n}=x$.
(b) Suppose that $\left\{x_{n}\right\}$ is bounded sequence. Prove that $\lim _{n \rightarrow \infty} x_{n} y_{n}=0$.
7. Let $x_{1}=1$ and $x_{n+1}=\sqrt{2 x_{n}+3}$, for $n \geq 2$
(a) Prove that $1 \leq x_{n} \leq 3$.
(b) Prove that $x_{n} \leq x_{n+1}$.
(c) Prove that $\left\{x_{n}\right\}$ is convergent and find its limit.
8. Let $x_{1}=\frac{3}{2}$ and $x_{n+1}=2-\frac{1}{x_{n}}$, for $n \geq 2$
(a) Prove that $1<x_{n}<2$.
(b) Prove that $x_{n}>x_{n+1}$.
(c) Prove that $\left\{x_{n}\right\}$ is convergent and find its limit.

