Math 311 all sections Winter 2013 $\,$

1. Let A be nonempty subset of \mathbb{R} . Let $\beta \in \mathbb{R}$. Then $\beta = \inf A$ if and only if β is a lower bound of A and for each $\epsilon > 0$ there exist $a_{\epsilon} \in A$ such that $a_{\epsilon} < \beta + \epsilon$.

2. Let A, B be two nonempty subsets of \mathbb{R} . Prove that $\inf(A + B) = \inf A + \inf B$

- **3.** Let A be nonempty subset of \mathbb{R} , and $c \in \mathbb{R}$. If c > 0, prove that $\sup(cA) = c \sup A$.
- **4.** Let A be nonempty subset of \mathbb{R} , and $c \in \mathbb{R}$. If c < 0, prove that $\sup(cA) = c \inf A$.
- **5.** Let 0 < a < b and b a > 1. Prove that there exist $n \in \mathbb{N}$ such that a < n < b.
- **6.** Let 0 < a < b. Prove that there exist $n \in \mathbb{N}$ such that $na \leq b < b(n+1)$.
- 7. Let $A = \{x \in \mathbb{Q} | 3 \le x^2 \le 7\}$. Prove that $\sup A = \sqrt{7}$.
- 8. Let $A = \{x \in \mathbb{Q} | 3 \le x^2 \le 7\}$. Prove that $\inf A = -\sqrt{3}$.
- **9.** Let $a \in \mathbb{R}$. Prove that for each $n \in \mathbb{N}$ there exist $r_n \in \mathbb{Q}$ such that $a \frac{1}{n} < r_n < a + \frac{1}{n}$.
- **10.** Let *A*, *B* be bounded two nonempty subsets of \mathbb{R} . If $A \subseteq B$, prove that $\sup A \leq \sup B$.
- **11.** Let *A*, *B* be bounded two nonempty subsets of \mathbb{R} . If $A \subseteq B$, prove that $\inf B \leq \inf A$.