4.1 Preliminary

Student's Name:	– Student ID: —	
	_	
	Marks:	

Mark True or False with justifications your answer

- (1) The set y_1 and y_2 are linearly independent if and only if the wronskian (W) is zero []
- (2) The functions $\{e^x \cos(2x), e^x \sin(2x)\}$ form a fundamental set of solutions of the DE y'' 2y' + 5y = 0 []
- (3) In the interval $(-\infty, \infty)$ the two functions $f_1(x) = x + 2$ and $f_2(x) = |x| + 2$ are linearly dependent []
- (4) If the functions $y_{p1} = e^{2x}$ and $y_{p2} = xe^x$ are a particular solution of the DE $y'' 3y' + 4y = 2e^{2x}$ and $y'' 3y' + 4y = 2xe^x e^x$, respectively. Then the Particular solution of The DE $y'' 3y' + 4y = 2e^{2x} + 2xe^x e^x$ is $y_p = e^{2x} + e^x$ []

4.3 Homogenous linear equation with constant coefficients

Student's Name: _____

Marks:

Student ID: _____

Find the general solution of:

 $(D^5 - 16D^3)y = 0$

Solve the given IVP:

 $y^{(4)} + 3y^{(3)} + 2y'' = 0, \ y(0) = 0, = y'(0) = 4, y''(0) = -6, y'''(0) = 14$

4.4 Undetermined coefficients

Student's Name: ——

Student ID: _____

Marks:

Solve the given IVP by undetermined coefficients:

 $y'' + 3y' = 18x, \ y(0) = 0, = y'(0) = 5$

Solve the given BVP by undetermined coefficients:

$$y'' + 2y' + y = x$$
, $y(0) = -2$, $= y'(1) = 2$

4.5 Undetermined coefficients- annihilator approach

Student's Name: _____

Student ID: _____

Marks:

Solve the given IVP by undetermined coefficients (annihilator approach):

 $y''' - 2y'' + y' = xe^x + 4, \ y(0) = 1 = y'(0)$

4.6 Variation of parameters

Student's Name: ——

Student ID: _____

Solve the DE by variation of parameters:

$$y'' + y = \tan^2 x$$

4.7 Cauchy-Euler equation

Student's Name: _____

Student ID: _____

Find the general solution of:

$$x^2y'' - 4xy' + 6y = 2x^4 + x^2$$

4.8 Solving system of DEs. by elimination

Student's Name: _____

Student ID: _____

Use systematic elimination to solve the given system of differential equations:

$$(D+2)x + (D+1)y = \sin(2t)$$

 $5x + (D+3)y = \cos(2t)$