بـسـماللهـهالـر حـهـن الـر حـيـم

- الرجـاء كتابة اسمُك و ر قمكك الجامعي في المكان المخصص أسفل هله الصفحة.
- تـأكد مز حصو لك على جميع الأسئلة.
- الرجـاء أغلق الجو ال و عدم أستخدامه خلال الاغتبـار.
 السؤ الينالأو ل و الثالث أجبـار يـان.
- الزمز المحدد لهلذا الإختبـار 120 دقيقة. - بـالتو فيق إن شاء الله.

Question:	1	2	3	4	5	6	7	Total
Points:	25	11	30	11	11	11	11	110
Score:								

Name : \qquad
Student's I.N.: \qquad
(C)Dr. H Alsulami

1. Let $x \in \mathbb{R},\left\{x_{n}\right\}$ be a sequence of real numbers, and $E \subseteq \mathbb{R}$. State the definition of the following:
(a) E is an open set of \mathbb{R}.

Solution:

A set E of real numbers is said to be open set if, for each $x \in E$ there is a number $\delta>0$ such that $(x-\delta, x+\delta) \subset E$.
(b) The Bolzano-Weierstrass Theorem.

Solution:

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be bounded sequence of a real numbers, then $\left\{x_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence.
(c) The sequence $\left\{x_{n}\right\}$ is Cauchy .

Solution:

A sequence $\left\{x_{n}\right\}$ of real numbers is said to be Cauchy sequence if for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that if $n, m>N \Rightarrow\left|x_{n}-x_{m}\right|<\epsilon$.
(d) x is a limit point of E.

Solution:

We say x is a limit point of E if for every $\delta>0,(x-\delta, x+\delta) \cap(E \backslash\{x\}) \neq \emptyset$.
(e) The Monotone Convergence Theorem.

Solution:

A monotone sequence of real numbers is convergent if and only if it is bounded. Moreover:
(a) If $\left\{x_{n}\right\}$ is bounded above increasing sequence and $x=\sup \left\{x_{n}: n \in \mathbb{N}\right\}$, then $\lim _{n \rightarrow \infty} x_{n}=x$.
(b) If $\left\{y_{n}\right\}$ is bounded below decreasing sequence and $y=\inf \left\{y_{n}: n \in \mathbb{N}\right\}$, then $\lim _{n \rightarrow \infty} y_{n}=y$.
2. Let $x_{1}=1.1$ and $x_{n+1}=\sqrt{3 x_{n}+4}$, for all $n \in \mathbb{N}$.
(a) Prove $1<x_{n}<4$, for all $n \in \mathbb{N}$.

Solution:

We will use mathematical induction to show $1<x_{n}<2$. Suppose it is true for n. Thus $1<x_{n}<2$, and we will prove it for $n+1$. Now, we have

$$
\begin{align*}
1<x_{n}<4 & \Leftrightarrow 3(1)<3 x_{n}<3(4) \\
& \Leftrightarrow 3<3 x_{n}<12 \\
& \Leftrightarrow 3+4<3 x_{n}+4<12+4 \\
& \Leftrightarrow \sqrt{7}<\sqrt{3 x_{n}+4}<\sqrt{16} \\
& \Leftrightarrow 1<\sqrt{7}<\sqrt{3 x_{n}+4}<\sqrt{16}=4 \quad \Leftrightarrow 1<x_{n+1}<4 . \tag{1}
\end{align*}
$$

Hence $1<x_{n}<4$, for all $n \in \mathbb{N}$.
(b) Prove $x_{n} \leq x_{n+1}$, for all $n \in \mathbb{N}$.

Solution:

We will use mathematical induction to show $x_{n} \leq x_{n+1}$. Suppose it is true for n. Thus $x_{n} \leq x_{n+1}$, and we will prove it for $n+1$. Now, we have

$$
\begin{align*}
x_{n} \leq x_{n+1} & \Leftrightarrow 3 x_{n}+4 \leq 3 x_{n+1}+4 \\
& \Leftrightarrow \sqrt{3 x_{n}+4} \leq \sqrt{3 x_{n+1}+4} \\
& \Leftrightarrow x_{n+1} \leq x_{n+2} . \tag{2}
\end{align*}
$$

Hence $x_{n} \leq x_{n+1}$ for all $n \in \mathbb{N}$.
(c) Prove that $\lim _{n \rightarrow \infty} x_{n}=4$.

Solution:

From parts (a), and (b) we have $1<x_{n} \leq x_{n+1}<4$, for all $n \in \mathbb{N}$. Since $\left\{x_{n}\right\}$ is increasing bounded sequence, then by MCT $\left\{x_{n}\right\}$ is convergent. Also, since $1<$ $x_{n}<4$, then $1 \leq \lim _{n \rightarrow \infty} x_{n} \leq 4$. Now, let $\lim _{n \rightarrow \infty} x_{n}=x$, then $\lim _{n \rightarrow \infty} x_{n+1}=x$ also. Since $x_{n+1}=\sqrt{3 x_{n}+4}$, then $x=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty}\left(\sqrt{3 x_{n}+4}\right)=\sqrt{\lim _{n \rightarrow \infty} 3 x_{n}+4}$. Hence $x=\sqrt{3 x+4}$. Thus $x^{2}=3 x+4$. Hence $x^{2}-3 x-4=0$. Hence $(x+1)(x-4)=0$. Thus $x=-1$, or $x=4$. But since $1 \leq x \leq 4$, then $x \neq-1$. Therefore $\lim _{n \rightarrow \infty} x_{n}=4$.
3. Put ($\mathbf{T})$ if the statement is true and (\mathbf{F}) if the statement is false.
(a) Every bounded sequence is Cauchy.
(a) \qquad

Solution:

F.

For example $x_{n}=(-1)^{n}$, then $\left|x_{n}\right|=\left|(-1)^{n}\right|=1$ and hence bounded. But $\left\{x_{n}\right\}$ is divergent and hence not Cauchy.
(b) The sequence $\left\{(-1)^{n}+\cos n\right\}$ has a Cauchy subsequence.
(b)

Solution:

T.

Since $\left|(-1)^{n}+\cos n\right| \leq\left|(-1)^{n}\right|+|\cos n| \leq 1+1=2$, then $\left\{(-1)^{n}+\cos n\right\}$ has a convergent subsequence and hence a Cauchy subsequence.
(c) A monotone sequence is Cauchy.
(c)

Solution:

F.

The sequence $\{n\}$ is a monotone sequence which is divergent. Hence can not be Cauchy.
(d) Let $A=\{x \in \mathbb{Q}: x<6\}$. Then A is open.

(d)

Solution:

F. Since any open interval contains rational and irrational numbers, then for $x \in A$ we have for all $\delta>0,(x-\delta, x+\delta) \nsubseteq A$.
Hence A is not open.
(e) Let $A=\left\{\left.\frac{2 n}{n+1} \right\rvert\, n \in \mathbb{N}\right\}$. Then $A^{\prime}=\{2\}$.
(e)

Solution:

T.

Since $\lim _{n \rightarrow \infty} \frac{2 n}{n+1}=2$, then $A^{\prime}=\{2\}$.
(f) Let $a \in \mathbb{R}$. Then $\{a\}$ is a closed set.
(f)

Solution:

T. Since $\{a\}^{c}=(-\infty, a) \cup(a, \infty)$, which is open (union of two open intervals). Then $\{a\}$ is a closed set.
(g) Every sequence has a monotone subsequence that is convergent.
(g) \qquad

Solution:

F.

The sequence $\{n\}$ has no convergent subsequence.
(h) $\mathbb{Q} \cap \mathbb{Q}^{c}$ is a closed set.
(h) \qquad

Solution:

T.

Since $\mathbb{Q} \cap \mathbb{Q}^{c}=\emptyset$ which is closed and open at the same time.
(i) Let $a \in \mathbb{R}$. Then $a \in \mathbb{Q}^{\prime} \cap\left(\mathbb{Q}^{c}\right)^{\prime}$.
(i)

Solution:

T.

Since $\mathbb{Q}^{\prime}=\mathbb{R}$ and $\left(\mathbb{Q}^{c}\right)^{\prime}=\mathbb{R}$, then $a \in \mathbb{Q}^{\prime} \cap\left(\mathbb{Q}^{c}\right)^{\prime}=\mathbb{R}$.
(j) Let $A=\left\{\left.\frac{n-1}{n} \right\rvert\, n \in \mathbb{N}\right\} \cup\{1\}$. Then A is closed.
(j)

Solution:

T. Since $\lim _{n \rightarrow \infty} \frac{n-1}{n}=1$. Then $A^{\prime}=\{1\} \subset A$, then A is closed.
4. (a) Let $\left\{x_{n}\right\}$ be a bounded above increasing sequence and $x=\sup \left\{x_{n}: n \in \mathbb{N}\right\}$. Prove that $\lim _{n \rightarrow \infty} x_{n}=x$.

Solution:

Let $\epsilon>0$ be given. Since $x-\epsilon$ is not an upper bound of $\left\{x_{n}: n \in \mathbb{N}\right\}$, then there exist $N \in \mathbb{N}$ such that $x-\epsilon<x_{N}$. Now, if $n>N$, since $\left\{x_{n}\right\}$ is increasing sequence, then $x_{N} \leq x_{n}$. If $n>N \Rightarrow x-\epsilon<x_{N} \leq x_{n} \leq x<x+\epsilon$. Hence, if $n>N \Rightarrow x-\epsilon<x_{n}<x+\epsilon$. Thus, if $n>N \Rightarrow\left|x_{n}-x\right|<\epsilon$. Therefore $\lim _{n \rightarrow \infty} x_{n}=x$.
(b) Let $\left\{y_{n}\right\}$ be a bounded below decreasing sequence and $y=\inf \left\{y_{n}: n \in \mathbb{N}\right\}$. Prove that $\lim _{n \rightarrow \infty} y_{n}=y$.

Solution:

Let $\epsilon>0$ be given. Since $y+\epsilon$ is not a lower bound of $\left\{y_{n}: n \in \mathbb{N}\right\}$, then there exist $N \in \mathbb{N}$ such that $y_{N}<y+\epsilon$. Now, if $n>N$, since $\left\{y_{n}\right\}$ is decreasing sequence, then $y_{n} \leq y_{N}$. If $n>N \Rightarrow y-\epsilon<y \leq y_{n} \leq y_{N}<y+\epsilon$. Hence, if $n>N \Rightarrow y-\epsilon<y_{n}<y+\epsilon$. Thus, if $n>N \Rightarrow\left|y_{n}-y\right|<\epsilon$. Therefore $\lim _{n \rightarrow \infty} y_{n}=y$.
(c) Is the sequence $\left\{1-\frac{1}{n}\right\}$ increasing or decreasing? Prove your answer.

Solution:

$$
\begin{aligned}
\text { Since } & \Leftrightarrow n<n+1 \\
& \Leftrightarrow \frac{1}{n}>\frac{1}{n+1} \\
& \Leftrightarrow-\frac{1}{n}<-\frac{1}{n+1} \\
& \Leftrightarrow 1-\frac{1}{n}<1-\frac{1}{n+1}
\end{aligned}
$$

Thus the sequence is increasing.
5. (a) Let A, B be two nonempty subsets of \mathbb{R}.
i. If A is closed. Prove that $A^{\prime} \subseteq A$.

Solution:

Let $x \in A^{\prime}$. Thus x is a limit point of A. We want to show that $x \in A$. Assume that $x \in A^{c}$. Since A is closed, then A^{c} is open and $x \in A^{c}$, then there is $\delta>0$ such that $(x-\delta, x+\delta) \subset A^{c}$. Hence $(x-\delta, x+\delta) \cap A=\emptyset$. Contradiction to the fact that x is a limit point of A. Hence $x \in A$.
ii. If A and B are open. Prove that $A \cup B$ is open.

Solution:

Let $x \in A \cup B$. Then $x \in A$ or $x \in B$. Then there are $\delta_{1}, \delta_{2}>0$ such that $\left(x-\delta_{1}, x+\delta_{1}\right) \subseteq A$ and $\left(x-\delta_{2}, x+\delta_{2}\right) \subseteq B$. Let $\delta=\delta_{1}>0$. Now $(x-\delta, x+\delta) \subseteq A \subseteq A \cup B$. Hence $A \cup B$ is open.
(b) Give an example of two nonempty subsets A, B of \mathbb{R} such that $A \cap B=\emptyset, A^{\prime}=B^{\prime}$, and $A^{\circ}=B^{\circ}$.

Solution:

Let $A=\mathbb{Q}$ and $B=\mathbb{Q}^{c}$. Then $\mathbb{Q}^{\prime}=\mathbb{R}=\left(\mathbb{Q}^{c}\right)^{\prime}$ and $\mathbb{Q}^{\circ}=\emptyset=\left(\mathbb{Q}^{c}\right)^{\circ}$.
6. Let $A=\{x \in \mathbb{Q} \mid 1<x<3\}, B=(4,6]$, and $C=\left\{\left.\pi+\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$.
(a) Find A^{\prime}, B^{\prime} and C^{\prime}. Prove your answer.

Solution:

For $x \in[1,3]$ and for any $\delta>0$, the interval $(x-\delta, x+\delta)$ contains infinitely many rational numbers and hence $(x-\delta, x+\delta) \cap A-\{x\} \neq \emptyset$. Hence x is a limit point for A. Thus $A^{\prime}=[1,3]$.
For $x \in[4,6]$ and for any $\delta>0$, the interval $(x-\delta, x+\delta)$ contains infinitely many numbers of B and hence $(x-\delta, x+\delta) \cap B-\{x\} \neq \emptyset$. Hence x is a limit point for B. Thus $B^{\prime}=[4,6]$.
Since $\lim _{n \rightarrow \infty}\left[\pi+\frac{1}{n}\right]=\pi$. Then $C^{\prime}=\{\pi\}$.
(b) Find A°, B° and C°. Prove your answer.

Solution:

Since A and C contain no intervals, then $A^{\circ}=\emptyset=C^{\circ}$.
For $x \in(4,6)$, let $\delta=\min \left\{\frac{x-4}{2}, \frac{6-x}{2}\right\}>0$. Then $(x-\delta, x+\delta) \subseteq B$. Hence x is an intrior point. Thus $B^{\circ}=(4,6)$.
(c) Prove that there exist a sequence $\left\{x_{n}\right\} \subset A$ such that $\lim _{n \rightarrow \infty} x_{n}=\sqrt{2}$.

Solution:

For each $n \in \mathbb{N}$, let $\alpha_{n}=\max \left\{1, \sqrt{2}-\frac{1}{n}\right\}$, and $\beta_{n}=\min \left\{3, \sqrt{2}+\frac{1}{n}\right\}$. Note that $1 \leq \alpha_{n}<\beta_{n} \leq 3$ and $\sqrt{2}-\frac{1}{n} \leq \alpha_{n}<\beta_{n} \leq \sqrt{2}+\frac{1}{n}$. Since between any real numbers there is a rational number, then the exists $x_{n} \in\left(\alpha_{n}, \beta_{n}\right)$ such that $x_{n} \in \mathbb{Q}$. Since $\left(\alpha_{n}, \beta_{n}\right) \subset(1,3)$, and $x_{n} \in \mathbb{Q}$, then $x_{n} \in A$. Also since $\left(\alpha_{n}, \beta_{n}\right) \subset\left(\sqrt{2}-\frac{1}{n}, \sqrt{2}+\frac{1}{n}\right)$, then $\sqrt{2}-\frac{1}{n}<x_{n}<\sqrt{2}+\frac{1}{n}$. Using Squeeze Theorem we have

$$
\sqrt{2}=\lim _{n \rightarrow \infty}\left[\sqrt{2}-\frac{1}{n}\right] \leq \lim _{n \rightarrow \infty} x_{n} \leq \lim _{n \rightarrow \infty}\left[\sqrt{2}+\frac{1}{n}\right]=\sqrt{2} .
$$

Thus $\lim _{n \rightarrow \infty} x_{n}=\sqrt{2}$.
7. (a) Let $a \in \mathbb{R}$. Prove that $(-\infty, a)$ is open set.

Solution:

For $x \in(-\infty, a)$ let $\delta=a-x>0$. Since $-\infty<2 x-a=x-(a-x)=x-\delta<$ $x+\delta=x-(a-x)=a$, then $(x-\delta, x+\delta) \subseteq(-\infty, a)$. Hence $(-\infty, a)$ is open set.
(b) Let $a, b \in \mathbb{R}$ with $a<b$. Prove that $\{a, b\}$ is closed set.

Solution:

Since $\{a, b\}^{c}=(-\infty, a) \cup(a, b) \cup(b, \infty)$ which is open (union of open sets is open set), hence $\{a, b\}$ is closed set.
(c) Let $a \in \mathbb{R}$. Prove that there exist a sequence $\left\{x_{n}\right\} \subset(-\infty, a)$ such that $\lim _{n \rightarrow \infty} x_{n}=a$.

Solution:

For each $n \in \mathbb{N}$, since $a-\frac{1}{n}<a$, there exists $a-\frac{1}{n}<x_{n}<a<a+\frac{1}{n}$. Note that $x_{n}<a$ and $a-\frac{1}{n} \leq x_{n}<a+\frac{1}{n}$. Hence $x_{n} \in(-\infty, a)$. Using Squeeze Theorem we have

$$
a=\lim _{n \rightarrow \infty}\left[a-\frac{1}{n}\right] \leq \lim _{n \rightarrow \infty} x_{n} \leq \lim _{n \rightarrow \infty}\left[a+\frac{1}{n}\right]=a .
$$

Thus $\lim _{n \rightarrow \infty} x_{n}=a$.

